This fixes the problem that "init=" options may not be passed to kernel
correctly.
parse_mem_cmdline() of mn10300 arch gets rid of "mem=" string from
redboot_command_line. Then init_setup() parses the "init=" options from
static_command_line, which is a copy of redboot_command_line, and keeps
the pointer to the init options in execute_command variable.
Since the commit 026cee0 upstream (params: <level>_initcall-like kernel
parameters), static_command_line becomes overwritten by saved_command_line at
do_initcall_level(). Notice that saved_command_line is a command line
which includes "mem=" string.
As a result, execute_command may point to weird string by the length of
"mem=" parameter.
I noticed this problem when using the command line like this:
mem=128M console=ttyS0,115200 init=/bin/sh
Here is the processing flow of command line parameters.
start_kernel()
setup_arch(&command_line)
parse_mem_cmdline(cmdline_p)
* strcpy(boot_command_line, redboot_command_line);
* Remove "mem=xxx" from redboot_command_line.
* *cmdline_p = redboot_command_line;
setup_command_line(command_line) <-- command_line is redboot_command_line
* strcpy(saved_command_line, boot_command_line)
* strcpy(static_command_line, command_line)
parse_early_param()
strlcpy(tmp_cmdline, boot_command_line, COMMAND_LINE_SIZE);
parse_early_options(tmp_cmdline);
parse_args("early options", cmdline, NULL, 0, 0, 0, do_early_param);
parse_args("Booting ..", static_command_line, ...);
init_setup() <-- save the pointer in execute_command
rest_init()
kernel_thread(kernel_init, NULL, CLONE_FS | CLONE_SIGHAND);
At this point, execute_command points to "/bin/sh" string.
kernel_init()
kernel_init_freeable()
do_basic_setup()
do_initcalls()
do_initcall_level()
(*) strcpy(static_command_line, saved_command_line);
Here, execute_command gets to point to "200" string !!
Signed-off-by: David Howells <dhowells@redhat.com>
Implement the Panasonic MN10300 AM34 CPU subarch and implement SMP support for
MN10300. Also implement support for the MN2WS0060 processor and the ASB2364
evaluation board which are AM34 based.
Signed-off-by: Akira Takeuchi <takeuchi.akr@jp.panasonic.com>
Signed-off-by: Kiyoshi Owada <owada.kiyoshi@jp.panasonic.com>
Signed-off-by: David Howells <dhowells@redhat.com>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Make all seq_operations structs const, to help mitigate against
revectoring user-triggerable function pointers.
This is derived from the grsecurity patch, although generated from scratch
because it's simpler than extracting the changes from there.
Signed-off-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Acked-by: Casey Schaufler <casey@schaufler-ca.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Discard duplicate PFN_xxx() macros from arch code as they're now in the
general headers.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
MN10300 arch headers and place them instead in the same directories as contain
the .c files for the processor and unit implementations.
This permits the symlinks include/asm/proc and include/asm/unit to be
dispensed with. This does, however, require that #include <asm/proc/xxx.h> be
converted to #include <proc/xxx.h> and similarly for asm/unit -> unit.
Signed-off-by: David Howells <dhowells@redhat.com>
Give the correct size when reserving the interrupt vector table. It should be
a page not a single byte.
Signed-off-by: Akira Takeuchi <takeuchi.akr@jp.panasonic.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add architecture support for the MN10300/AM33 CPUs produced by MEI to the
kernel.
This patch also adds board support for the ASB2303 with the ASB2308 daughter
board, and the ASB2305. The only processor supported is the MN103E010, which
is an AM33v2 core plus on-chip devices.
[akpm@linux-foundation.org: nuke cvs control strings]
Signed-off-by: Masakazu Urade <urade.masakazu@jp.panasonic.com>
Signed-off-by: Koichi Yasutake <yasutake.koichi@jp.panasonic.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>