Add MIB counters for checksum errors in IP layer,
and TCP/UDP/ICMP layers, to help diagnose problems.
$ nstat -a | grep Csum
IcmpInCsumErrors 72 0.0
TcpInCsumErrors 382 0.0
UdpInCsumErrors 463221 0.0
Icmp6InCsumErrors 75 0.0
Udp6InCsumErrors 173442 0.0
IpExtInCsumErrors 10884 0.0
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Host queues (Qdisc + NIC) can hold packets so long that TCP can
eventually retransmit a packet before the first transmit even left
the host.
Its not clear right now if we could avoid this in the first place :
- We could arm RTO timer not at the time we enqueue packets, but
at the time we TX complete them (tcp_wfree())
- Cancel the sending of the new copy of the packet if prior one
is still in queue.
This patch adds instrumentation so that we can at least see how
often this problem happens.
TCPSpuriousRtxHostQueues SNMP counter is incremented every time
we detect the fast clone is not yet freed in tcp_transmit_skb()
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Cc: Tom Herbert <therbert@google.com>
Cc: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This is the second of the TLP patch series; it augments the basic TLP
algorithm with a loss detection scheme.
This patch implements a mechanism for loss detection when a Tail
loss probe retransmission plugs a hole thereby masking packet loss
from the sender. The loss detection algorithm relies on counting
TLP dupacks as outlined in Sec. 3 of:
http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01
The basic idea is: Sender keeps track of TLP "episode" upon
retransmission of a TLP packet. An episode ends when the sender receives
an ACK above the SND.NXT (tracked by tlp_high_seq) at the time of the
episode. We want to make sure that before the episode ends the sender
receives a "TLP dupack", indicating that the TLP retransmission was
unnecessary, so there was no loss/hole that needed plugging. If the
sender gets no TLP dupack before the end of the episode, then it reduces
ssthresh and the congestion window, because the TLP packet arriving at
the receiver probably plugged a hole.
Signed-off-by: Nandita Dukkipati <nanditad@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch series implement the Tail loss probe (TLP) algorithm described
in http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01. The
first patch implements the basic algorithm.
TLP's goal is to reduce tail latency of short transactions. It achieves
this by converting retransmission timeouts (RTOs) occuring due
to tail losses (losses at end of transactions) into fast recovery.
TLP transmits one packet in two round-trips when a connection is in
Open state and isn't receiving any ACKs. The transmitted packet, aka
loss probe, can be either new or a retransmission. When there is tail
loss, the ACK from a loss probe triggers FACK/early-retransmit based
fast recovery, thus avoiding a costly RTO. In the absence of loss,
there is no change in the connection state.
PTO stands for probe timeout. It is a timer event indicating
that an ACK is overdue and triggers a loss probe packet. The PTO value
is set to max(2*SRTT, 10ms) and is adjusted to account for delayed
ACK timer when there is only one oustanding packet.
TLP Algorithm
On transmission of new data in Open state:
-> packets_out > 1: schedule PTO in max(2*SRTT, 10ms).
-> packets_out == 1: schedule PTO in max(2*RTT, 1.5*RTT + 200ms)
-> PTO = min(PTO, RTO)
Conditions for scheduling PTO:
-> Connection is in Open state.
-> Connection is either cwnd limited or no new data to send.
-> Number of probes per tail loss episode is limited to one.
-> Connection is SACK enabled.
When PTO fires:
new_segment_exists:
-> transmit new segment.
-> packets_out++. cwnd remains same.
no_new_packet:
-> retransmit the last segment.
Its ACK triggers FACK or early retransmit based recovery.
ACK path:
-> rearm RTO at start of ACK processing.
-> reschedule PTO if need be.
In addition, the patch includes a small variation to the Early Retransmit
(ER) algorithm, such that ER and TLP together can in principle recover any
N-degree of tail loss through fast recovery. TLP is controlled by the same
sysctl as ER, tcp_early_retrans sysctl.
tcp_early_retrans==0; disables TLP and ER.
==1; enables RFC5827 ER.
==2; delayed ER.
==3; TLP and delayed ER. [DEFAULT]
==4; TLP only.
The TLP patch series have been extensively tested on Google Web servers.
It is most effective for short Web trasactions, where it reduced RTOs by 15%
and improved HTTP response time (average by 6%, 99th percentile by 10%).
The transmitted probes account for <0.5% of the overall transmissions.
Signed-off-by: Nandita Dukkipati <nanditad@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Remove the check if x->km.state equal to XFRM_STATE_VALID in
xfrm_state_check_expire(), which will be done before call
xfrm_state_check_expire().
add a LINUX_MIB_XFRMOUTSTATEINVALID statistic to record the
outbound error due to invalid xfrm state.
Signed-off-by: Li RongQing <roy.qing.li@gmail.com>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Michael Kerrisk <mtk.manpages@gmail.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Dave Jones <davej@redhat.com>