Commit 56e8e57fc3 ("crypto: morus - Add common SIMD glue code for
MORUS") accidetally consiedered the glue code to be usable by different
architectures, but it seems to be only usable on x86.
This patch moves it under arch/x86/crypto and adds 'depends on X86' to
the Kconfig options and also removes the prompt to hide these internal
options from the user.
Reported-by: kbuild test robot <lkp@intel.com>
Signed-off-by: Ondrej Mosnacek <omosnacek@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds a common glue code for optimized implementations of
MORUS AEAD algorithms.
Signed-off-by: Ondrej Mosnacek <omosnacek@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds the generic implementation of the MORUS family of AEAD
algorithms (MORUS-640 and MORUS-1280). The original authors of MORUS
are Hongjun Wu and Tao Huang.
At the time of writing, MORUS is one of the finalists in CAESAR, an
open competition intended to select a portfolio of alternatives to
the problematic AES-GCM:
https://competitions.cr.yp.to/caesar-submissions.htmlhttps://competitions.cr.yp.to/round3/morusv2.pdf
Signed-off-by: Ondrej Mosnacek <omosnacek@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds the generic implementation of the AEGIS family of AEAD
algorithms (AEGIS-128, AEGIS-128L, and AEGIS-256). The original
authors of AEGIS are Hongjun Wu and Bart Preneel.
At the time of writing, AEGIS is one of the finalists in CAESAR, an
open competition intended to select a portfolio of alternatives to
the problematic AES-GCM:
https://competitions.cr.yp.to/caesar-submissions.htmlhttps://competitions.cr.yp.to/round3/aegisv11.pdf
Signed-off-by: Ondrej Mosnacek <omosnacek@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Adds zstd support to crypto and scompress. Only supports the default
level.
Previously we held off on this patch, since there weren't any users.
Now zram is ready for zstd support, but depends on CONFIG_CRYPTO_ZSTD,
which isn't defined until this patch is in. I also see a patch adding
zstd to pstore [0], which depends on crypto zstd.
[0] lkml.kernel.org/r/9c9416b2dff19f05fb4c35879aaa83d11ff72c92.1521626182.git.geliangtang@gmail.com
Signed-off-by: Nick Terrell <terrelln@fb.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Our convention is to distinguish file types by suffixes with a period
as a separator.
*-asn1.[ch] is a different pattern from other generated sources such
as *.lex.c, *.tab.[ch], *.dtb.S, etc. More confusing, files with
'-asn1.[ch]' are generated files, but '_asn1.[ch]' are checked-in
files:
net/netfilter/nf_conntrack_h323_asn1.c
include/linux/netfilter/nf_conntrack_h323_asn1.h
include/linux/sunrpc/gss_asn1.h
Rename generated files to *.asn1.[ch] for consistency.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Introduce the SM4 cipher algorithms (OSCCA GB/T 32907-2016).
SM4 (GBT.32907-2016) is a cryptographic standard issued by the
Organization of State Commercial Administration of China (OSCCA)
as an authorized cryptographic algorithms for the use within China.
SMS4 was originally created for use in protecting wireless
networks, and is mandated in the Chinese National Standard for
Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
(GB.15629.11-2003).
Signed-off-by: Gilad Ben-Yossef <gilad@benyossef.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
TPM security routines require encryption and decryption with AES in
CFB mode, so add it to the Linux Crypto schemes. CFB is basically a
one time pad where the pad is generated initially from the encrypted
IV and then subsequently from the encrypted previous block of
ciphertext. The pad is XOR'd into the plain text to get the final
ciphertext.
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#CFB
Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
All users of ablk_helper have been converted over to crypto_simd, so
remove ablk_helper.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add a generic implementation of Speck, including the Speck128 and
Speck64 variants. Speck is a lightweight block cipher that can be much
faster than AES on processors that don't have AES instructions.
We are planning to offer Speck-XTS (probably Speck128/256-XTS) as an
option for dm-crypt and fscrypt on Android, for low-end mobile devices
with older CPUs such as ARMv7 which don't have the Cryptography
Extensions. Currently, such devices are unencrypted because AES is not
fast enough, even when the NEON bit-sliced implementation of AES is
used. Other AES alternatives such as Twofish, Threefish, Camellia,
CAST6, and Serpent aren't fast enough either; it seems that only a
modern ARX cipher can provide sufficient performance on these devices.
This is a replacement for our original proposal
(https://patchwork.kernel.org/patch/10101451/) which was to offer
ChaCha20 for these devices. However, the use of a stream cipher for
disk/file encryption with no space to store nonces would have been much
more insecure than we thought initially, given that it would be used on
top of flash storage as well as potentially on top of F2FS, neither of
which is guaranteed to overwrite data in-place.
Speck has been somewhat controversial due to its origin. Nevertheless,
it has a straightforward design (it's an ARX cipher), and it appears to
be the leading software-optimized lightweight block cipher currently,
with the most cryptanalysis. It's also easy to implement without side
channels, unlike AES. Moreover, we only intend Speck to be used when
the status quo is no encryption, due to AES not being fast enough.
We've also considered a novel length-preserving encryption mode based on
ChaCha20 and Poly1305. While theoretically attractive, such a mode
would be a brand new crypto construction and would be more complicated
and difficult to implement efficiently in comparison to Speck-XTS.
There is confusion about the byte and word orders of Speck, since the
original paper doesn't specify them. But we have implemented it using
the orders the authors recommended in a correspondence with them. The
test vectors are taken from the original paper but were mapped to byte
arrays using the recommended byte and word orders.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
My last bugfix added -Os on the command line, which unfortunately caused
a build regression on powerpc in some configurations.
I've done some more analysis of the original problem and found slightly
different workaround that avoids this regression and also results in
better performance on gcc-7.0: -fcode-hoisting is an optimization step
that got added in gcc-7 and that for all gcc-7 versions causes worse
performance.
This disables -fcode-hoisting on all compilers that understand the option.
For gcc-7.1 and 7.2 I found the same performance as my previous patch
(using -Os), in gcc-7.0 it was even better. On gcc-8 I could see no
change in performance from this patch. In theory, code hoisting should
not be able make things better for the AES cipher, so leaving it
disabled for gcc-8 only serves to simplify the Makefile change.
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Link: https://www.mail-archive.com/linux-crypto@vger.kernel.org/msg30418.html
Link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83356
Link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83651
Fixes: 148b974dee ("crypto: aes-generic - build with -Os on gcc-7+")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
While testing other changes, I discovered that gcc-7.2.1 produces badly
optimized code for aes_encrypt/aes_decrypt. This is especially true when
CONFIG_UBSAN_SANITIZE_ALL is enabled, where it leads to extremely
large stack usage that in turn might cause kernel stack overflows:
crypto/aes_generic.c: In function 'aes_encrypt':
crypto/aes_generic.c:1371:1: warning: the frame size of 4880 bytes is larger than 2048 bytes [-Wframe-larger-than=]
crypto/aes_generic.c: In function 'aes_decrypt':
crypto/aes_generic.c:1441:1: warning: the frame size of 4864 bytes is larger than 2048 bytes [-Wframe-larger-than=]
I verified that this problem exists on all architectures that are
supported by gcc-7.2, though arm64 in particular is less affected than
the others. I also found that gcc-7.1 and gcc-8 do not show the extreme
stack usage but still produce worse code than earlier versions for this
file, apparently because of optimization passes that generally provide
a substantial improvement in object code quality but understandably fail
to find any shortcuts in the AES algorithm.
Possible workarounds include
a) disabling -ftree-pre and -ftree-sra optimizations, this was an earlier
patch I tried, which reliably fixed the stack usage, but caused a
serious performance regression in some versions, as later testing
found.
b) disabling UBSAN on this file or all ciphers, as suggested by Ard
Biesheuvel. This would lead to massively better crypto performance in
UBSAN-enabled kernels and avoid the stack usage, but there is a concern
over whether we should exclude arbitrary files from UBSAN at all.
c) Forcing the optimization level in a different way. Similar to a),
but rather than deselecting specific optimization stages,
this now uses "gcc -Os" for this file, regardless of the
CONFIG_CC_OPTIMIZE_FOR_PERFORMANCE/SIZE option. This is a reliable
workaround for the stack consumption on all architecture, and I've
retested the performance results now on x86, cycles/byte (lower is
better) for cbc(aes-generic) with 256 bit keys:
-O2 -Os
gcc-6.3.1 14.9 15.1
gcc-7.0.1 14.7 15.3
gcc-7.1.1 15.3 14.7
gcc-7.2.1 16.8 15.9
gcc-8.0.0 15.5 15.6
This implements the option c) by enabling forcing -Os on all compiler
versions starting with gcc-7.1. As a workaround for PR83356, it would
only be needed for gcc-7.2+ with UBSAN enabled, but since it also shows
better performance on gcc-7.1 without UBSAN, it seems appropriate to
use the faster version here as well.
Side note: during testing, I also played with the AES code in libressl,
which had a similar performance regression from gcc-6 to gcc-7.2,
but was three times slower overall. It might be interesting to
investigate that further and possibly port the Linux implementation
into that.
Link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83356
Link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83651
Cc: Richard Biener <rguenther@suse.de>
Cc: Jakub Jelinek <jakub@gcc.gnu.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Pull crypto updates from Herbert Xu:
"Here is the crypto update for 4.15:
API:
- Disambiguate EBUSY when queueing crypto request by adding ENOSPC.
This change touches code outside the crypto API.
- Reset settings when empty string is written to rng_current.
Algorithms:
- Add OSCCA SM3 secure hash.
Drivers:
- Remove old mv_cesa driver (replaced by marvell/cesa).
- Enable rfc3686/ecb/cfb/ofb AES in crypto4xx.
- Add ccm/gcm AES in crypto4xx.
- Add support for BCM7278 in iproc-rng200.
- Add hash support on Exynos in s5p-sss.
- Fix fallback-induced error in vmx.
- Fix output IV in atmel-aes.
- Fix empty GCM hash in mediatek.
Others:
- Fix DoS potential in lib/mpi.
- Fix potential out-of-order issues with padata"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (162 commits)
lib/mpi: call cond_resched() from mpi_powm() loop
crypto: stm32/hash - Fix return issue on update
crypto: dh - Remove pointless checks for NULL 'p' and 'g'
crypto: qat - Clean up error handling in qat_dh_set_secret()
crypto: dh - Don't permit 'key' or 'g' size longer than 'p'
crypto: dh - Don't permit 'p' to be 0
crypto: dh - Fix double free of ctx->p
hwrng: iproc-rng200 - Add support for BCM7278
dt-bindings: rng: Document BCM7278 RNG200 compatible
crypto: chcr - Replace _manual_ swap with swap macro
crypto: marvell - Add a NULL entry at the end of mv_cesa_plat_id_table[]
hwrng: virtio - Virtio RNG devices need to be re-registered after suspend/resume
crypto: atmel - remove empty functions
crypto: ecdh - remove empty exit()
MAINTAINERS: update maintainer for qat
crypto: caam - remove unused param of ctx_map_to_sec4_sg()
crypto: caam - remove unneeded edesc zeroization
crypto: atmel-aes - Reset the controller before each use
crypto: atmel-aes - properly set IV after {en,de}crypt
hwrng: core - Reset user selected rng by writing "" to rng_current
...
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add support for generating ecc private keys.
Generation of ecc private keys is helpful in a user-space to kernel
ecdh offload because the keys are not revealed to user-space. Private
key generation is also helpful to implement forward secrecy.
If the user provides a NULL ecc private key, the kernel will generate it
and further use it for ecdh.
Move ecdh's object files below drbg's. drbg must be present in the kernel
at the time of calling.
Signed-off-by: Tudor Ambarus <tudor.ambarus@microchip.com>
Reviewed-by: Stephan Müller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
An ancient gcc bug (first reported in 2003) has apparently resurfaced
on MIPS, where kernelci.org reports an overly large stack frame in the
whirlpool hash algorithm:
crypto/wp512.c:987:1: warning: the frame size of 1112 bytes is larger than 1024 bytes [-Wframe-larger-than=]
With some testing in different configurations, I'm seeing large
variations in stack frames size up to 1500 bytes for what should have
around 300 bytes at most. I also checked the reference implementation,
which is essentially the same code but also comes with some test and
benchmarking infrastructure.
It seems that recent compiler versions on at least arm, arm64 and powerpc
have a partial fix for this problem, but enabling "-fsched-pressure", but
even with that fix they suffer from the issue to a certain degree. Some
testing on arm64 shows that the time needed to hash a given amount of
data is roughly proportional to the stack frame size here, which makes
sense given that the wp512 implementation is doing lots of loads for
table lookups, and the problem with the overly large stack is a result
of doing a lot more loads and stores for spilled registers (as seen from
inspecting the object code).
Disabling -fschedule-insns consistently fixes the problem for wp512,
in my collection of cross-compilers, the results are consistently better
or identical when comparing the stack sizes in this function, though
some architectures (notable x86) have schedule-insns disabled by
default.
The four columns are:
default: -O2
press: -O2 -fsched-pressure
nopress: -O2 -fschedule-insns -fno-sched-pressure
nosched: -O2 -no-schedule-insns (disables sched-pressure)
default press nopress nosched
alpha-linux-gcc-4.9.3 1136 848 1136 176
am33_2.0-linux-gcc-4.9.3 2100 2076 2100 2104
arm-linux-gnueabi-gcc-4.9.3 848 848 1048 352
cris-linux-gcc-4.9.3 272 272 272 272
frv-linux-gcc-4.9.3 1128 1000 1128 280
hppa64-linux-gcc-4.9.3 1128 336 1128 184
hppa-linux-gcc-4.9.3 644 308 644 276
i386-linux-gcc-4.9.3 352 352 352 352
m32r-linux-gcc-4.9.3 720 656 720 268
microblaze-linux-gcc-4.9.3 1108 604 1108 256
mips64-linux-gcc-4.9.3 1328 592 1328 208
mips-linux-gcc-4.9.3 1096 624 1096 240
powerpc64-linux-gcc-4.9.3 1088 432 1088 160
powerpc-linux-gcc-4.9.3 1080 584 1080 224
s390-linux-gcc-4.9.3 456 456 624 360
sh3-linux-gcc-4.9.3 292 292 292 292
sparc64-linux-gcc-4.9.3 992 240 992 208
sparc-linux-gcc-4.9.3 680 592 680 312
x86_64-linux-gcc-4.9.3 224 240 272 224
xtensa-linux-gcc-4.9.3 1152 704 1152 304
aarch64-linux-gcc-7.0.0 224 224 1104 208
arm-linux-gnueabi-gcc-7.0.1 824 824 1048 352
mips-linux-gcc-7.0.0 1120 648 1120 272
x86_64-linux-gcc-7.0.1 240 240 304 240
arm-linux-gnueabi-gcc-4.4.7 840 392
arm-linux-gnueabi-gcc-4.5.4 784 728 784 320
arm-linux-gnueabi-gcc-4.6.4 736 728 736 304
arm-linux-gnueabi-gcc-4.7.4 944 784 944 352
arm-linux-gnueabi-gcc-4.8.5 464 464 760 352
arm-linux-gnueabi-gcc-4.9.3 848 848 1048 352
arm-linux-gnueabi-gcc-5.3.1 824 824 1064 336
arm-linux-gnueabi-gcc-6.1.1 808 808 1056 344
arm-linux-gnueabi-gcc-7.0.1 824 824 1048 352
Trying the same test for serpent-generic, the picture is a bit different,
and while -fno-schedule-insns is generally better here than the default,
-fsched-pressure wins overall, so I picked that instead.
default press nopress nosched
alpha-linux-gcc-4.9.3 1392 864 1392 960
am33_2.0-linux-gcc-4.9.3 536 524 536 528
arm-linux-gnueabi-gcc-4.9.3 552 552 776 536
cris-linux-gcc-4.9.3 528 528 528 528
frv-linux-gcc-4.9.3 536 400 536 504
hppa64-linux-gcc-4.9.3 524 208 524 480
hppa-linux-gcc-4.9.3 768 472 768 508
i386-linux-gcc-4.9.3 564 564 564 564
m32r-linux-gcc-4.9.3 712 576 712 532
microblaze-linux-gcc-4.9.3 724 392 724 512
mips64-linux-gcc-4.9.3 720 384 720 496
mips-linux-gcc-4.9.3 728 384 728 496
powerpc64-linux-gcc-4.9.3 704 304 704 480
powerpc-linux-gcc-4.9.3 704 296 704 480
s390-linux-gcc-4.9.3 560 560 592 536
sh3-linux-gcc-4.9.3 540 540 540 540
sparc64-linux-gcc-4.9.3 544 352 544 496
sparc-linux-gcc-4.9.3 544 344 544 496
x86_64-linux-gcc-4.9.3 528 536 576 528
xtensa-linux-gcc-4.9.3 752 544 752 544
aarch64-linux-gcc-7.0.0 432 432 656 480
arm-linux-gnueabi-gcc-7.0.1 616 616 808 536
mips-linux-gcc-7.0.0 720 464 720 488
x86_64-linux-gcc-7.0.1 536 528 600 536
arm-linux-gnueabi-gcc-4.4.7 592 440
arm-linux-gnueabi-gcc-4.5.4 776 448 776 544
arm-linux-gnueabi-gcc-4.6.4 776 448 776 544
arm-linux-gnueabi-gcc-4.7.4 768 448 768 544
arm-linux-gnueabi-gcc-4.8.5 488 488 776 544
arm-linux-gnueabi-gcc-4.9.3 552 552 776 536
arm-linux-gnueabi-gcc-5.3.1 552 552 776 536
arm-linux-gnueabi-gcc-6.1.1 560 560 776 536
arm-linux-gnueabi-gcc-7.0.1 616 616 808 536
I did not do any runtime tests with serpent, so it is possible that stack
frame size does not directly correlate with runtime performance here and
it actually makes things worse, but it's more likely to help here, and
the reduced stack frame size is probably enough reason to apply the patch,
especially given that the crypto code is often used in deep call chains.
Link: https://kernelci.org/build/id/58797d7559b5149efdf6c3a9/logs/
Link: http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
Link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=11488
Link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=79149
Cc: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Lookup table based AES is sensitive to timing attacks, which is due to
the fact that such table lookups are data dependent, and the fact that
8 KB worth of tables covers a significant number of cachelines on any
architecture, resulting in an exploitable correlation between the key
and the processing time for known plaintexts.
For network facing algorithms such as CTR, CCM or GCM, this presents a
security risk, which is why arch specific AES ports are typically time
invariant, either through the use of special instructions, or by using
SIMD algorithms that don't rely on table lookups.
For generic code, this is difficult to achieve without losing too much
performance, but we can improve the situation significantly by switching
to an implementation that only needs 256 bytes of table data (the actual
S-box itself), which can be prefetched at the start of each block to
eliminate data dependent latencies.
This code encrypts at ~25 cycles per byte on ARM Cortex-A57 (while the
ordinary generic AES driver manages 18 cycles per byte on this
hardware). Decryption is substantially slower.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Both asn1 headers are included by rsa_helper.c, so rsa_helper.o
should explicitly depend on them.
Signed-off-by: David Michael <david.michael@coreos.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds the simd skcipher helper which is meant to be
a replacement for ablk helper. It replaces the underlying blkcipher
interface with skcipher, and also presents the top-level algorithm
as an skcipher.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Fix dependency between acomp and scomp that appears when acomp is
built as module
Signed-off-by: Giovanni Cabiddu <giovanni.cabiddu@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add a synchronous back-end (scomp) to acomp. This allows to easily
expose the already present compression algorithms in LKCF via acomp.
Signed-off-by: Giovanni Cabiddu <giovanni.cabiddu@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add acomp, an asynchronous compression api that uses scatterlist
buffers.
Signed-off-by: Giovanni Cabiddu <giovanni.cabiddu@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch removes the old crypto_grab_skcipher helper and replaces
it with crypto_grab_skcipher2.
As this is the final entry point into givcipher this patch also
removes all traces of the top-level givcipher interface, including
all implicit IV generators such as chainiv.
The bottom-level givcipher interface remains until the drivers
using it are converted.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* Implement ECDH under kpp API
* Provide ECC software support for curve P-192 and
P-256.
* Add kpp test for ECDH with data generated by OpenSSL
Signed-off-by: Salvatore Benedetto <salvatore.benedetto@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* Implement MPI based Diffie-Hellman under kpp API
* Test provided uses data generad by OpenSSL
Signed-off-by: Salvatore Benedetto <salvatore.benedetto@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add key-agreement protocol primitives (kpp) API which allows to
implement primitives required by protocols such as DH and ECDH.
The API is composed mainly by the following functions
* set_secret() - It allows the user to set his secret, also
referred to as his private key, along with the parameters
known to both parties involved in the key-agreement session.
* generate_public_key() - It generates the public key to be sent to
the other counterpart involved in the key-agreement session. The
function has to be called after set_params() and set_secret()
* generate_secret() - It generates the shared secret for the session
Other functions such as init() and exit() are provided for allowing
cryptographic hardware to be inizialized properly before use
Signed-off-by: Salvatore Benedetto <salvatore.benedetto@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds the implementation of SHA3 algorithm
in software and it's based on original implementation
pushed in patch https://lwn.net/Articles/518415/ with
additional changes to match the padding rules specified
in SHA-3 specification.
Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
Signed-off-by: Raveendra Padasalagi <raveendra.padasalagi@broadcom.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Now block cipher engines need to implement and maintain their own queue/thread
for processing requests, moreover currently helpers provided for only the queue
itself (in crypto_enqueue_request() and crypto_dequeue_request()) but they
don't help with the mechanics of driving the hardware (things like running the
request immediately, DMA map it or providing a thread to process the queue in)
even though a lot of that code really shouldn't vary that much from device to
device.
Thus this patch provides a mechanism for pushing requests to the hardware
as it becomes free that drivers could use. And this framework is patterned
on the SPI code and has worked out well there.
(https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/
drivers/spi/spi.c?id=ffbbdd21329f3e15eeca6df2d4bc11c04d9d91c0)
Signed-off-by: Baolin Wang <baolin.wang@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The generic crc32 implementation is currently called crc32. This
is a problem because it clashes with the lib implementation of crc32.
This patch renames the crypto crc32 to crc32_generic so that it is
consistent with crc32c. An alias for the driver is also added.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds PKCS#1 v1.5 standard RSA padding as a separate template.
This way an RSA cipher with padding can be obtained by instantiating
"pkcs1pad(rsa)". The reason for adding this is that RSA is almost
never used without this padding (or OAEP) so it will be needed for
either certificate work in the kernel or the userspace, and I also hear
that it is likely implemented by hardware RSA in which case hardware
implementations of the whole of pkcs1pad(rsa) can be provided.
Signed-off-by: Andrew Zaborowski <andrew.zaborowski@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Hook keywrap source code into Kconfig and Makefile
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Setkey function has been split into set_priv_key and set_pub_key.
Akcipher requests takes sgl for src and dst instead of void *.
Users of the API i.e. two existing RSA implementation and
test mgr code have been updated accordingly.
Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch introduces the crypto skcipher interface which aims
to replace both blkcipher and ablkcipher.
It's very similar to the existing ablkcipher interface. The
main difference is the removal of the givcrypt interface. In
order to make the transition easier for blkcipher users, there
is a helper SKCIPHER_REQUEST_ON_STACK which can be used to place
a request on the stack for synchronous transforms.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The Kconfig option NULL2 has been added as CRYPTO_MANAGER now
depends indirectly on NULL2. However, the Makefile was not updated
to use the new option, resulting in potential build failures when
only NULL2 is enabled.
Fixes: 149a39717d ("crypto: aead - Add type-safe geniv init/exit helpers")
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The core of the Jitter RNG is intended to be compiled with -O0. To
ensure that the Jitter RNG can be compiled on all architectures,
separate out the RNG core into a stand-alone C file that can be compiled
with -O0 which does not depend on any kernel include file.
As no kernel includes can be used in the C file implementing the core
RNG, any dependencies on kernel code must be extracted.
A second file provides the link to the kernel and the kernel crypto API
that can be compiled with the regular compile options of the kernel.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add a new rsa generic SW implementation.
This implements only cryptographic primitives.
Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com>
Added select on ASN1.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add Public Key Encryption API.
Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com>
Made CRYPTO_AKCIPHER invisible like other type config options.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Replace the global -O0 compiler flag from the Makefile with GCC
pragmas to mark only the functions required to be compiled without
optimizations.
This patch also adds a comment describing the rationale for the
functions chosen to be compiled without optimizations.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This AEAD uses a chacha20 ablkcipher and a poly1305 ahash to construct the
ChaCha20-Poly1305 AEAD as defined in RFC7539. It supports both synchronous and
asynchronous operations, even if we currently have no async chacha20 or poly1305
drivers.
Signed-off-by: Martin Willi <martin@strongswan.org>
Acked-by: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Poly1305 is a fast message authenticator designed by Daniel J. Bernstein.
It is further defined in RFC7539 as a building block for the ChaCha20-Poly1305
AEAD for use in IETF protocols.
This is a portable C implementation of the algorithm without architecture
specific optimizations, based on public domain code by Daniel J. Bernstein and
Andrew Moon.
Signed-off-by: Martin Willi <martin@strongswan.org>
Acked-by: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
ChaCha20 is a high speed 256-bit key size stream cipher algorithm designed by
Daniel J. Bernstein. It is further specified in RFC7539 for use in IETF
protocols as a building block for the ChaCha20-Poly1305 AEAD.
This is a portable C implementation without any architecture specific
optimizations. It uses a 16-byte IV, which includes the 12-byte ChaCha20 nonce
prepended by the initial block counter. Some algorithms require an explicit
counter value, for example the mentioned AEAD construction.
Signed-off-by: Martin Willi <martin@strongswan.org>
Acked-by: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The CPU Jitter RNG provides a source of good entropy by
collecting CPU executing time jitter. The entropy in the CPU
execution time jitter is magnified by the CPU Jitter Random
Number Generator. The CPU Jitter Random Number Generator uses
the CPU execution timing jitter to generate a bit stream
which complies with different statistical measurements that
determine the bit stream is random.
The CPU Jitter Random Number Generator delivers entropy which
follows information theoretical requirements. Based on these
studies and the implementation, the caller can assume that
one bit of data extracted from the CPU Jitter Random Number
Generator holds one bit of entropy.
The CPU Jitter Random Number Generator provides a decentralized
source of entropy, i.e. every caller can operate on a private
state of the entropy pool.
The RNG does not have any dependencies on any other service
in the kernel. The RNG only needs a high-resolution time
stamp.
Further design details, the cryptographic assessment and
large array of test results are documented at
http://www.chronox.de/jent.html.
CC: Andreas Steffen <andreas.steffen@strongswan.org>
CC: Theodore Ts'o <tytso@mit.edu>
CC: Sandy Harris <sandyinchina@gmail.com>
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds a new AEAD IV generator echainiv. It is intended
to replace the existing skcipher IV generator eseqiv.
If the underlying AEAD algorithm is using the old AEAD interface,
then echainiv will simply use its IV generator.
Otherwise, echainiv will encrypt a counter just like eseqiv but
it'll first xor it against a previously stored IV similar to
chainiv.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Enable compilation of the AEAD AF_ALG support and provide a Kconfig
option to compile the AEAD AF_ALG support.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Enable compilation of the RNG AF_ALG support and provide a Kconfig
option to compile the RNG AF_ALG support.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>