Classic SRCU was only ever intended to be a fallback in case of issues
with Tree/Tiny SRCU, and the latter two are doing quite well in testing.
This commit therefore removes Classic SRCU.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The call_srcu() docbook entry is currently in include/linux/srcu.h,
which causes needless processing for each include point. This commit
therefore moves this entry to kernel/rcu/srcutree.c, which the compiler
reads only once. In addition, the srcu_batches_completed() function is
used only within RCU and its torture-test suites. This commit therefore
also moves this function's declaration from include/linux/srcutiny.h,
include/linux/srcutree.h, and include/linux/srcuclassic.h to
kernel/rcu/rcu.h.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Commit d160a727c4 ("srcu: Make SRCU be built by default") in response
to build errors, which were caused by code that included srcu.h
despite !SRCU. However, srcutiny.o is almost 2K of code, which is not
insignificant for those attempting to run the Linux kernel on IoT devices.
This commit therefore makes SRCU be once again optional, and adjusts
srcu.h to allow error-free inclusion in !SRCU kernel builds.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Nicolas Pitre <nico@linaro.org>
Linu Cherian reported a WARN in cleanup_srcu_struct() when shutting
down a guest running iperf on a VFIO assigned device. This happens
because irqfd_wakeup() calls srcu_read_lock(&kvm->irq_srcu) in interrupt
context, while a worker thread does the same inside kvm_set_irq(). If the
interrupt happens while the worker thread is executing __srcu_read_lock(),
updates to the Classic SRCU ->lock_count[] field or the Tree SRCU
->srcu_lock_count[] field can be lost.
The docs say you are not supposed to call srcu_read_lock() and
srcu_read_unlock() from irq context, but KVM interrupt injection happens
from (host) interrupt context and it would be nice if SRCU supported the
use case. KVM is using SRCU here not really for the "sleepable" part,
but rather due to its IPI-free fast detection of grace periods. It is
therefore not desirable to switch back to RCU, which would effectively
revert commit 719d93cd5f ("kvm/irqchip: Speed up KVM_SET_GSI_ROUTING",
2014-01-16).
However, the docs are overly conservative. You can have an SRCU instance
only has users in irq context, and you can mix process and irq context
as long as process context users disable interrupts. In addition,
__srcu_read_unlock() actually uses this_cpu_dec() on both Tree SRCU and
Classic SRCU. For those two implementations, only srcu_read_lock()
is unsafe.
When Classic SRCU's __srcu_read_unlock() was changed to use this_cpu_dec(),
in commit 5a41344a3d ("srcu: Simplify __srcu_read_unlock() via
this_cpu_dec()", 2012-11-29), __srcu_read_lock() did two increments.
Therefore it kept __this_cpu_inc(), with preempt_disable/enable in
the caller. Tree SRCU however only does one increment, so on most
architectures it is more efficient for __srcu_read_lock() to use
this_cpu_inc(), and any performance differences appear to be down in
the noise.
Cc: stable@vger.kernel.org
Fixes: 719d93cd5f ("kvm/irqchip: Speed up KVM_SET_GSI_ROUTING")
Reported-by: Linu Cherian <linuc.decode@gmail.com>
Suggested-by: Linu Cherian <linuc.decode@gmail.com>
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The TREE_SRCU rewrite is large and a bit on the non-simple side, so
this commit helps reduce risk by allowing the old v4.11 SRCU algorithm
to be selected using a new CLASSIC_SRCU Kconfig option that depends
on RCU_EXPERT. The default is to use the new TREE_SRCU and TINY_SRCU
algorithms, in order to help get these the testing that they need.
However, if your users do not require the update-side scalability that
is to be provided by TREE_SRCU, select RCU_EXPERT and then CLASSIC_SRCU
to revert back to the old classic SRCU algorithm.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
In response to automated complaints about modifications to SRCU
increasing its size, this commit creates a tiny SRCU that is
used in SMP=n && PREEMPT=n builds.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
SRCU's implementation of expedited grace periods has always assumed
that the SRCU instance is idle when the expedited request arrives.
This commit improves this a bit by maintaining a count of the number
of outstanding expedited requests, thus allowing prior non-expedited
grace periods accommodate these requests by shifting to expedited mode.
However, any non-expedited wait already in progress will still wait for
the full duration.
Improved control of expedited grace periods is planned, but one step
at a time.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Updating ->srcu_state and ->srcu_gp_seq will lead to extremely complex
race conditions given multiple callback queues, so this commit takes
advantage of the two-bit state now available in rcu_seq counters to
store the state in the bottom two bits of ->srcu_gp_seq.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit switches SRCU from custom-built callback queues to the new
rcu_segcblist structure. This change associates grace-period sequence
numbers with groups of callbacks, which will be needed for efficient
processing of per-CPU callbacks.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit adds grace-period sequence numbers, which will be used to
handle mid-boot grace periods and per-CPU callback lists.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The current SRCU grace-period processing might never reach the last
portion of srcu_advance_batches(). This is OK given the current
implementation, as the first portion, up to the try_check_zero()
following the srcu_flip() is sufficient to drive grace periods forward.
However, it has the unfortunate side-effect of making it impossible to
determine when a given grace period has ended, and it will be necessary
to efficiently trace ends of grace periods in order to efficiently handle
per-CPU SRCU callback lists.
This commit therefore adds states to the SRCU grace-period processing,
so that the end of a given SRCU grace period is marked by the transition
to the SRCU_STATE_DONE state.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
SRCU uses two per-cpu counters: a nesting counter to count the number of
active critical sections, and a sequence counter to ensure that the nesting
counters don't change while they are being added together in
srcu_readers_active_idx_check().
This patch instead uses per-cpu lock and unlock counters. Because both
counters only increase and srcu_readers_active_idx_check() reads the unlock
counter before the lock counter, this achieves the same end without having
to increment two different counters in srcu_read_lock(). This also saves a
smp_mb() in srcu_readers_active_idx_check().
Possible bug: There is no guarantee that the lock counter won't overflow
during srcu_readers_active_idx_check(), as there are no memory barriers
around srcu_flip() (see comment in srcu_readers_active_idx_check() for
details). However, this problem was already present before this patch.
Suggested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Lance Roy <ldr709@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
SRCU uses per-CPU variables, and DEFINE_STATIC_SRCU() uses a static
per-CPU variable. However, per-CPU variables have significant
restrictions, for example, names of per-CPU variables must be globally
unique, even if declared static. These restrictions carry over to
DEFINE_STATIC_SRCU(), and this commit therefore documents these
restrictions.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Suggested-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Currently, __srcu_read_lock() cannot be invoked from restricted
environments because it contains calls to preempt_disable() and
preempt_enable(), both of which can invoke lockdep, which is a bad
idea in some restricted execution modes. This commit therefore moves
the preempt_disable() and preempt_enable() from __srcu_read_lock()
to srcu_read_lock(). It also inserts the preempt_disable() and
preempt_enable() around the call to __srcu_read_lock() in do_exit().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
The rcu_dereference_check() family of primitives evaluates the RCU
lockdep expression first, and only then evaluates the expression passed
in. This works fine normally, but can potentially fail in environments
(such as NMI handlers) where lockdep cannot be invoked. The problem is
that even if the expression passed in is "1", the compiler would need to
prove that the RCU lockdep expression (rcu_read_lock_held(), for example)
is free of side effects in order to be able to elide it. Given that
rcu_read_lock_held() is sometimes separately compiled, the compiler cannot
always use this optimization.
This commit therefore reverse the order of evaluation, so that the
expression passed in is evaluated first, and the RCU lockdep expression is
evaluated only if the passed-in expression evaluated to false, courtesy
of the C-language short-circuit boolean evaluation rules. This compells
the compiler to forego executing the RCU lockdep expression in cases
where the passed-in expression evaluates to "1" at compile time, so that
(for example) rcu_dereference_raw() can be guaranteed to execute safely
within an NMI handler.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
The DEFINE_SRCU() and DEFINE_STATIC_SRCU() definitions are quite
similar, so this commit combines them, saving a bit of code and removing
redundancy.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
When rcutorture used only the low-order 32 bits of the grace-period
number, it was not a problem for SRCU to use a 32-bit completed field.
However, rcutorture now uses the full 64 bits on 64-bit systems, so
this commit converts SRCU's ->completed field to unsigned long so as to
provide 64 bits on 64-bit systems.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
All of the RCU source files have the usual GPL header, which contains a
long-obsolete postal address for FSF. To avoid the need to track the
FSF office's movements, this commit substitutes the URL where GPL may
be found.
Reported-by: Greg KH <gregkh@linuxfoundation.org>
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
srcu read lock/unlock include a full memory barrier
but that's an implementation detail.
Add an API for make memory fencing explicit for
users that need this barrier, to make sure we
can change it as needed without breaking all users.
Acked-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
These interfaces never did get used, so this commit removes them,
their rcutorture tests, and documentation referencing them.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
SRCU has its own statemachine and no longer relies on normal RCU.
Its read-side critical section can now be used by an offline CPU, so this
commit removes the check and the comments, reverting the SRCU portion
of ff195cb6 (rcu: Warn when srcu_read_lock() is used in an extended
quiescent state).
It also makes the codes match the comments in whatisRCU.txt:
g. Do you need read-side critical sections that are respected
even though they are in the middle of the idle loop, during
user-mode execution, or on an offlined CPU? If so, SRCU is the
only choice that will work for you.
[ paulmck: There is at least one remaining issue, namely use of lockdep
with tracing enabled. ]
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
SRCU has its own statemachine and no longer relies on normal RCU.
Its read-side critical section can now be used by an offline CPU, so this
commit removes the check and the comments, reverting the SRCU portion
of c0d6d01b (rcu: Check for illegal use of RCU from offlined CPUs).
It also makes the code match the comments in whatisRCU.txt:
g. Do you need read-side critical sections that are respected
even though they are in the middle of the idle loop, during
user-mode execution, or on an offlined CPU? If so, SRCU is the
only choice that will work for you.
[ paulmck: There is at least one remaining issue, namely use of lockdep
with tracing enabled. ]
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
In old days, we had two different API sets for dynamic-allocated per-CPU
data and DEFINE_PER_CPU()-defined per_cpu data, and because SRCU used
dynamic-allocated per-CPU data, its srcu_struct structures cannot be
declared statically. This commit therefore introduces DEFINE_SRCU()
and DEFINE_STATIC_SRCU() to allow statically declared SRCU structures,
using the new static per-CPU interfaces.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Updated for __DELAYED_WORK_INITIALIZER() added argument,
fixed whitespace issue. ]
Because process_srcu() will be used in DEFINE_SRCU(), which is a macro
that could be expanded pretty much anywhere, it can no longer be static.
Note that process_srcu() is still internal to srcu.h.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Lai Jiangshan rewrote SRCU, so this commit ensures that he gets his
proper share of blame^Wcredit.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The old srcu_barrier() macro is now unused. This commit removes it so
that it may be used for the SRCU flavor of rcu_barrier(), which will in
turn be needed to allow the upcoming call_srcu() to be used from within
modules.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit implements a variant of Peter's algorithm, which may be found
at https://lkml.org/lkml/2012/2/1/119.
o Make the checking lock-free to enable parallel checking.
Parallel checking is required when (1) the original checking
task is preempted for a long time, (2) sychronize_srcu_expedited()
starts during an ongoing SRCU grace period, or (3) we wish to
avoid acquiring a lock.
o Since the checking is lock-free, we avoid a mutex in state machine
for call_srcu().
o Remove the SRCU_REF_MASK and remove the coupling with the flipping.
This might allow us to remove the preempt_disable() in future
versions, though such removal will need great care because it
rescinds the one-old-reader-per-CPU guarantee.
o Remove a smp_mb(), simplify the comments and make the smp_mb() pairs
more intuitive.
Inspired-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The purpose of the upper bit of SRCU's per-CPU counters is to guarantee
that no reasonable series of srcu_read_lock() and srcu_read_unlock()
operations can return the value of the counter to its original value.
This guarantee is require only after the index has been switched to
the other set of counters, so at most one srcu_read_lock() can affect
a given CPU's counter. The number of srcu_read_unlock() operations
on a given counter is limited to the number of tasks in the system,
which given the Linux kernel's current structure is limited to far less
than 2^30 on 32-bit systems and far less than 2^62 on 64-bit systems.
(Something about a limited number of bytes in the kernel's address space.)
Therefore, if srcu_read_lock() increments the upper bits, then
srcu_read_unlock() need not do so. In this case, an srcu_read_lock() and
an srcu_read_unlock() will flip the lower bit of the upper field of the
counter. An unreasonably large additional number of srcu_read_unlock()
operations would be required to return the counter to its initial value,
thus preserving the guarantee.
This commit takes this approach, which further allows it to shrink
the size of the upper field to one bit, making the number of
srcu_read_unlock() operations required to return the counter to its
initial value even more unreasonable than before.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The current implementation of synchronize_srcu_expedited() can cause
severe OS jitter due to its use of synchronize_sched(), which in turn
invokes try_stop_cpus(), which causes each CPU to be sent an IPI.
This can result in severe performance degradation for real-time workloads
and especially for short-interation-length HPC workloads. Furthermore,
because only one instance of try_stop_cpus() can be making forward progress
at a given time, only one instance of synchronize_srcu_expedited() can
make forward progress at a time, even if they are all operating on
distinct srcu_struct structures.
This commit, inspired by an earlier implementation by Peter Zijlstra
(https://lkml.org/lkml/2012/1/31/211) and by further offline discussions,
takes a strictly algorithmic bits-in-memory approach. This has the
disadvantage of requiring one explicit memory-barrier instruction in
each of srcu_read_lock() and srcu_read_unlock(), but on the other hand
completely dispenses with OS jitter and furthermore allows SRCU to be
used freely by CPUs that RCU believes to be idle or offline.
The update-side implementation handles the single read-side memory
barrier by rechecking the per-CPU counters after summing them and
by running through the update-side state machine twice.
This implementation has passed moderate rcutorture testing on both
x86 and Power. Also updated to use this_cpu_ptr() instead of per_cpu_ptr(),
as suggested by Peter Zijlstra.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
The WARN_ON_ONCE() in rcu_lock_acquire() results in infinite recursion
on S390, and also doesn't print very much information. Remove this.
Updated patch to add lockdep-RCU assertions to RCU's read-side primitives.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Although it is legal to use RCU during early boot, it is anything
but legal to use RCU at runtime from an offlined CPU. After all, RCU
explicitly ignores offlined CPUs. This commit therefore adds checks
for runtime use of RCU from offlined CPUs.
These checks are not perfect, in particular, they can be subverted
through use of things like rcu_dereference_raw(). Note that it is not
possible to put checks in rcu_read_lock() and friends due to the fact
that these primitives are used in code that might be used under either
RCU or lock-based protection, which means that checking rcu_read_lock()
gets you fat piles of false positives.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The intent is that a given RCU read-side critical section be confined
to a single context. For example, it is illegal to invoke rcu_read_lock()
in an exception handler and then invoke rcu_read_unlock() from the
context of the task that received the exception.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The RCU implementations, including SRCU, are designed to be used in a
lock-like fashion, so that the read-side lock and unlock primitives must
execute in the same context for any given read-side critical section.
This constraint is enforced by lockdep-RCU. However, there is a need
to enter an SRCU read-side critical section within the context of an
exception and then exit in the context of the task that encountered the
exception. The cost of this capability is that the read-side operations
incur the overhead of disabling interrupts.
Note that although the current implementation allows a given read-side
critical section to be entered by one task and then exited by another, all
known possible implementations that allow this have scalability problems.
Therefore, a given read-side critical section must be exited by the same
task that entered it, though perhaps from an interrupt or exception
handler running within that task's context. But if you are thinking
in terms of interrupt handlers, make sure that you have considered the
possibility of threaded interrupt handlers.
Credit goes to Peter Zijlstra for suggesting use of the existing _raw
suffix to indicate disabling lockdep over the earlier "bulkref" names.
Requested-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
A common debug_lockdep_rcu_enabled() function is used to check whether
RCU lockdep splats should be reported, but srcu_read_lock() does not
use it. This commit therefore brings srcu_read_lock_held() up to date.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Catch SRCU up to the other variants of RCU by making PROVE_RCU
complain if either srcu_read_lock() or srcu_read_lock_held() are
used from within RCU-idle mode.
Frederic reworked this to allow for the new versions of his patches
that check for extended quiescent states.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
It is illegal to wait for an SRCU grace period while within the
corresponding flavor of SRCU read-side critical section. Therefore,
this commit updates the srcu_read_lock() docbook accordingly.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit provides definitions for the __rcu annotation defined earlier.
This annotation permits sparse to check for correct use of RCU-protected
pointers. If a pointer that is annotated with __rcu is accessed
directly (as opposed to via rcu_dereference(), rcu_assign_pointer(),
or one of their variants), sparse can be made to complain. To enable
such complaints, use the new default-disabled CONFIG_SPARSE_RCU_POINTER
kernel configuration option. Please note that these sparse complaints are
intended to be a debugging aid, -not- a code-style-enforcement mechanism.
There are special rcu_dereference_protected() and rcu_access_pointer()
accessors for use when RCU read-side protection is not required, for
example, when no other CPU has access to the data structure in question
or while the current CPU hold the update-side lock.
This patch also updates a number of docbook comments that were showing
their age.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Christopher Li <sparse@chrisli.org>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Add a #include for mutex.h to allow SRCU to be more easily used in
kernel modules.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Inspection is proving insufficient to catch all RCU misuses,
which is understandable given that rcu_dereference() might be
protected by any of four different flavors of RCU (RCU, RCU-bh,
RCU-sched, and SRCU), and might also/instead be protected by any
of a number of locking primitives. It is therefore time to
enlist the aid of lockdep.
This set of patches is inspired by earlier work by Peter
Zijlstra and Thomas Gleixner, and takes the following approach:
o Set up separate lockdep classes for RCU, RCU-bh, and RCU-sched.
o Set up separate lockdep classes for each instance of SRCU.
o Create primitives that check for being in an RCU read-side
critical section. These return exact answers if lockdep is
fully enabled, but if unsure, report being in an RCU read-side
critical section. (We want to avoid false positives!)
The primitives are:
For RCU: rcu_read_lock_held(void)
For RCU-bh: rcu_read_lock_bh_held(void)
For RCU-sched: rcu_read_lock_sched_held(void)
For SRCU: srcu_read_lock_held(struct srcu_struct *sp)
o Add rcu_dereference_check(), which takes a second argument
in which one places a boolean expression based on the above
primitives and/or lockdep_is_held().
o A new kernel configuration parameter, CONFIG_PROVE_RCU, enables
rcu_dereference_check(). This depends on CONFIG_PROVE_LOCKING,
and should be quite helpful during the transition period while
CONFIG_PROVE_RCU-unaware patches are in flight.
The existing rcu_dereference() primitive does no checking, but
upcoming patches will change that.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1266887105-1528-1-git-send-email-paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Add __percpu sparse annotations to core subsystems.
These annotations are to make sparse consider percpu variables to be
in a different address space and warn if accessed without going
through percpu accessors. This patch doesn't affect normal builds.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: linux-mm@kvack.org
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Dipankar Sarma <dipankar@in.ibm.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Eric Biederman <ebiederm@xmission.com>
This patch creates a synchronize_srcu_expedited() that uses
synchronize_sched_expedited() where synchronize_srcu()
uses synchronize_sched(). The synchronize_srcu() and
synchronize_srcu_expedited() functions become one-liners that
pass synchronize_sched() or synchronize_sched_expedited(),
repectively, to a new __synchronize_srcu() function.
While in the file, move the EXPORT_SYMBOL_GPL()s to immediately
follow the corresponding functions.
Requested-by: Avi Kivity <avi@redhat.com>
Tested-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Josh Triplett <josh@joshtriplett.org>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
Cc: avi@redhat.com
LKML-Reference: <12565226354038-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Currently the init_srcu_struct() routine has no way to report out-of-memory
errors. This patch (as761) makes it return -ENOMEM when the per-cpu data
allocation fails.
The patch also makes srcu_init_notifier_head() report a BUG if a notifier
head can't be initialized. Perhaps it should return -ENOMEM instead, but
in the most likely cases where this might occur I don't think any recovery
is possible. Notifier chains generally are not created dynamically.
[akpm@osdl.org: avoid statement-with-side-effect in macro]
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Acked-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch (as751) adds a new type of notifier chain, based on the SRCU
(Sleepable Read-Copy Update) primitives recently added to the kernel. An
SRCU notifier chain is much like a blocking notifier chain, in that it must
be called in process context and its callout routines are allowed to sleep.
The difference is that the chain's links are protected by the SRCU
mechanism rather than by an rw-semaphore, so calling the chain has
extremely low overhead: no memory barriers and no cache-line bouncing. On
the other hand, unregistering from the chain is expensive and the chain
head requires special runtime initialization (plus cleanup if it is to be
deallocated).
SRCU notifiers are appropriate for notifiers that will be called very
frequently and for which unregistration occurs very seldom. The proposed
"task notifier" scheme qualifies, as may some of the network notifiers.
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Acked-by: Paul E. McKenney <paulmck@us.ibm.com>
Acked-by: Chandra Seetharaman <sekharan@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>