* 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (96 commits)
apic, x86: Use BIOS settings for IBS and MCE threshold interrupt LVT offsets
apic, x86: Check if EILVT APIC registers are available (AMD only)
x86: ioapic: Call free_irte only if interrupt remapping enabled
arm: Use ARCH_IRQ_INIT_FLAGS
genirq, ARM: Fix boot on ARM platforms
genirq: Fix CONFIG_GENIRQ_NO_DEPRECATED=y build
x86: Switch sparse_irq allocations to GFP_KERNEL
genirq: Switch sparse_irq allocator to GFP_KERNEL
genirq: Make sparse_lock a mutex
x86: lguest: Use new irq allocator
genirq: Remove the now unused sparse irq leftovers
genirq: Sanitize dynamic irq handling
genirq: Remove arch_init_chip_data()
x86: xen: Sanitise sparse_irq handling
x86: Use sane enumeration
x86: uv: Clean up the direct access to irq_desc
x86: Make io_apic.c local functions static
genirq: Remove irq_2_iommu
x86: Speed up the irq_remapped check in hot pathes
intr_remap: Simplify the code further
...
Fix up trivial conflicts in arch/x86/Kconfig
* 'x86-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: Remove pr_<level> uses of KERN_<level>
therm_throt.c: Trivial printk message fix for a unsuitable abbreviation of 'thermal'
x86: Use {push,pop}{l,q}_cfi in more places
i386: Add unwind directives to syscall ptregs stubs
x86-64: Use symbolics instead of raw numbers in entry_64.S
x86-64: Adjust frame type at paranoid_exit:
x86-64: Fix unwind annotations in syscall stubs
Disable the interrupt in CPU_DEAD where it belongs. Remove the
open coded irq_desc manipulation.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Cc: Jacob Pan <jacob.jun.pan@linux.intel.com>
boot_cpu_id is there for historical reasons and was renamed to
boot_cpu_physical_apicid in patch:
c70dcb7 x86: change boot_cpu_id to boot_cpu_physical_apicid
However, there are some remaining occurrences of boot_cpu_id that are
never touched in the kernel and thus its value is always 0.
This patch removes boot_cpu_id completely.
Signed-off-by: Robert Richter <robert.richter@amd.com>
LKML-Reference: <1279731838-1522-8-git-send-email-robert.richter@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Always-on local APIC timer (ARAT) has been introduced to Medfield, along
with the platform APB timers we have more timer configuration options
between Moorestown and Medfield.
This patch adds run-time detection of avaiable timer features so that
we can treat Medfield as a variant of Moorestown and set up the optimal
timer options for each platform. i.e.
Medfield: per cpu always-on local APIC timer
Moorestown: per cpu APB timer
Manual override is possible via cmdline option x86_mrst_timer.
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
LKML-Reference: <1274295685-6774-4-git-send-email-jacob.jun.pan@linux.intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
APB timer is used on Moorestown platforms but not on a standard PC.
If APB timer code is compiled in but not initialized at run-time due
to lack of FW reported SFI table, kernel would panic when the non-boot
CPUs are offlined and notifier is called.
https://bugzilla.kernel.org/show_bug.cgi?id=15786
This patch ensures CPU hotplug notifier for APB timer is only registered
when the APBT timer block is initialized.
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
LKML-Reference: <1271701423-1162-1-git-send-email-jacob.jun.pan@linux.intel.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Checkin bb24c4716185f6e116c440462c65c1f56649183b:
"Moorestown APB system timer driver" suffered from severe whitespace
damage in arch/x86/kernel/apb_timer.c due to using Microsoft Lookout
to send a patch. Fix the whitespace breakage.
Reported-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
The current APB timer code incorrectly registers a static copy of the
clockevent device for the boot CPU. The per cpu clockevent should be
used instead.
This bug was hidden by zero-initialized data; as such it did not get
exposed in testing, but was discovered by code review.
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
LKML-Reference: <1267592494-7723-1-git-send-email-jacob.jun.pan@linux.intel.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Moorestown platform does not have PIT or HPET platform timers. Instead it
has a bank of eight APB timers. The number of available timers to the os
is exposed via SFI mtmr tables. All APB timer interrupts are routed via
ioapic rtes and delivered as MSI.
Currently, we use timer 0 and 1 for per cpu clockevent devices, timer 2
for clocksource.
Signed-off-by: Jacob Pan <jacob.jun.pan@intel.com>
LKML-Reference: <43F901BD926A4E43B106BF17856F0755A318D2D2@orsmsx508.amr.corp.intel.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>