Sometimes ->nr_running may cross 2 but interrupt is not being
sent to rq's cpu. In this case we don't reenable the timer.
Looks like this may be the reason for rare unexpected effects,
if nohz is enabled.
Patch replaces all places of direct changing of nr_running
and makes add_nr_running() caring about crossing border.
Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140508225830.2469.97461.stgit@localhost
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, in idle_balance(), we update rq->next_balance when we pull_tasks.
However, it is also important to update this in the !pulled_tasks case too.
When the CPU is "busy" (the CPU isn't idle), rq->next_balance gets computed
using sd->busy_factor (so we increase the balance interval when the CPU is
busy). However, when the CPU goes idle, rq->next_balance could still be set
to a large value that was computed with the sd->busy_factor.
Thus, we need to also update rq->next_balance in idle_balance() in the cases
where !pulled_tasks too, so that rq->next_balance gets updated without taking
the busy_factor into account when the CPU is about to go idle.
This patch makes rq->next_balance get updated independently of whether or
not we pulled_task. Also, we add logic to ensure that we always traverse
at least 1 of the sched domains to get a proper next_balance value for
updating rq->next_balance.
Additionally, since load_balance() modifies the sd->balance_interval, we
need to re-obtain the sched domain's interval after the call to
load_balance() in rebalance_domains() before we update rq->next_balance.
This patch adds and uses 2 new helper functions, update_next_balance() and
get_sd_balance_interval() to update next_balance and obtain the sched
domain's balance_interval.
Signed-off-by: Jason Low <jason.low2@hp.com>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: daniel.lezcano@linaro.org
Cc: alex.shi@linaro.org
Cc: efault@gmx.de
Cc: vincent.guittot@linaro.org
Cc: morten.rasmussen@arm.com
Cc: aswin@hp.com
Link: http://lkml.kernel.org/r/1399596562.2200.7.camel@j-VirtualBox
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On smaller systems, the top level sched domain will be an affine
domain, and select_idle_sibling is invoked for every SD_WAKE_AFFINE
wakeup. This seems to be working well.
On larger systems, with the node distance between far away NUMA nodes
being > RECLAIM_DISTANCE, select_idle_sibling is only called if the
waker and the wakee are on nodes less than RECLAIM_DISTANCE apart.
This patch leaves in place the policy of not pulling the task across
nodes on such systems, while fixing the issue that select_idle_sibling
is not called at all in certain circumstances.
The code will look for an idle CPU in the same CPU package as the
CPU where the task ran previously.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: morten.rasmussen@arm.com
Cc: george.mccollister@gmail.com
Cc: ktkhai@parallels.com
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Link: http://lkml.kernel.org/r/20140514114037.2d93266f@annuminas.surriel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
task_hot checks exec_start on any runnable task, but if it has been
migrated since the it last ran, then exec_start is a clock_task from
another cpu. If the old cpu's clock_task was sufficiently far ahead of
this cpu's then the task will not be considered for another migration
until it has run. Instead reset exec_start whenever a task is migrated,
since it is presumably no longer hot anyway.
Signed-off-by: Ben Segall <bsegall@google.com>
[ Made it compile. ]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140515225920.7179.13924.stgit@sword-of-the-dawn.mtv.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It was found that when running some workloads (such as AIM7) on large
systems with many cores, CPUs do not remain idle for long. Thus, tasks
can wake/get enqueued while doing idle balancing.
In this patch, while traversing the domains in idle balance, in
addition to checking for pulled_task, we add an extra check for
this_rq->nr_running for determining if we should stop searching for
tasks to pull. If there are runnable tasks on this rq, then we will
stop traversing the domains. This reduces the chance that idle balance
delays a task from running.
This patch resulted in approximately a 6% performance improvement when
running a Java Server workload on an 8 socket machine.
Signed-off-by: Jason Low <jason.low2@hp.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: daniel.lezcano@linaro.org
Cc: alex.shi@linaro.org
Cc: preeti@linux.vnet.ibm.com
Cc: efault@gmx.de
Cc: vincent.guittot@linaro.org
Cc: morten.rasmussen@arm.com
Cc: aswin@hp.com
Cc: chegu_vinod@hp.com
Link: http://lkml.kernel.org/r/1398303035-18255-4-git-send-email-jason.low2@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Setting the numa_preferred_node for a task in task_numa_migrate
does nothing on a 2-node system. Either we migrate to the node
that already was our preferred node, or we stay where we were.
On a 4-node system, it can slightly decrease overhead, by not
calling the NUMA code as much. Since every node tends to be
directly connected to every other node, running on the wrong
node for a while does not do much damage.
However, on an 8 node system, there are far more bad nodes
than there are good ones, and pretending that a second choice
is actually the preferred node can greatly delay, or even
prevent, a workload from converging.
The only time we can safely pretend that a second choice
node is the preferred node is when the task is part of a
workload that spans multiple NUMA nodes.
Signed-off-by: Rik van Riel <riel@redhat.com>
Tested-by: Vinod Chegu <chegu_vinod@hp.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1397235629-16328-4-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When tasks have not converged on their preferred nodes yet, we want
to retry fairly often, to make sure we do not migrate a task's memory
to an undesirable location, only to have to move it again later.
This patch reduces the interval at which migration is retried,
when the task's numa_scan_period is small.
Signed-off-by: Rik van Riel <riel@redhat.com>
Tested-by: Vinod Chegu <chegu_vinod@hp.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1397235629-16328-3-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The NUMA code is smart enough to distribute the memory of workloads
that span multiple NUMA nodes across those NUMA nodes.
However, it still has a pretty high scan rate for such workloads,
because any memory that is left on a node other than the node of
the CPU that faulted on the memory is counted as non-local, which
causes the scan rate to go up.
Counting the memory on any node where the task's numa group is
actively running as local, allows the scan rate to slow down
once the application is settled in.
This should reduce the overhead of the automatic NUMA placement
code, when a workload spans multiple NUMA nodes.
Signed-off-by: Rik van Riel <riel@redhat.com>
Tested-by: Vinod Chegu <chegu_vinod@hp.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1397235629-16328-2-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The following commit:
e5fc66119e ("sched: Fix race in idle_balance()")
can potentially cause rq->max_idle_balance_cost to not be updated,
even when load_balance(NEWLY_IDLE) is attempted and the per-sd
max cost value is updated.
Preeti noticed a similar issue with updating rq->next_balance.
In this patch, we fix this by making sure we still check/update those values
even if a task gets enqueued while browsing the domains.
Signed-off-by: Jason Low <jason.low2@hp.com>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: morten.rasmussen@arm.com
Cc: aswin@hp.com
Cc: daniel.lezcano@linaro.org
Cc: alex.shi@linaro.org
Cc: efault@gmx.de
Cc: vincent.guittot@linaro.org
Link: http://lkml.kernel.org/r/1398725155-7591-2-git-send-email-jason.low2@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This reverts commit 4c6c4e38c4 ("sched/core: Fix endless loop in
pick_next_task()"), which is not necessary after ("sched/rt: Substract number
of tasks of throttled queues from rq->nr_running").
Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
[conflict resolution with stop task checking patch]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1394835307.18748.34.camel@HP-250-G1-Notebook-PC
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Mike reported that, while unlikely, its entirely possible for
scale_rt_power() to see the time go backwards. This yields rather
'interesting' results.
So like all other sites that deal with clocks; make this one ignore
backward clock movement too.
Reported-by: Mike Galbraith <bitbucket@online.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140227094035.GZ9987@twins.programming.kicks-ass.net
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We need to do it like we do for the other higher priority classes..
Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Cc: Michael wang <wangyun@linux.vnet.ibm.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/336561397137116@web27h.yandex.ru
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Sasha reported that lockdep claims that the following commit:
made numa_group.lock interrupt unsafe:
156654f491 ("sched/numa: Move task_numa_free() to __put_task_struct()")
While I don't see how that could be, given the commit in question moved
task_numa_free() from one irq enabled region to another, the below does
make both gripes and lockups upon gripe with numa=fake=4 go away.
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Fixes: 156654f491 ("sched/numa: Move task_numa_free() to __put_task_struct()")
Signed-off-by: Mike Galbraith <bitbucket@online.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: torvalds@linux-foundation.org
Cc: mgorman@suse.com
Cc: akpm@linux-foundation.org
Cc: Dave Jones <davej@redhat.com>
Link: http://lkml.kernel.org/r/1396860915.5170.5.camel@marge.simpson.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The tmp value has been already calculated in:
scaled_busy_load_per_task =
(busiest->load_per_task * SCHED_POWER_SCALE) /
busiest->group_power;
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1394555166-22894-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Check for fair tasks number to decide, that we've pulled a task.
rq's nr_running may contain throttled RT tasks.
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1394118975.19290.104.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
1) Single cpu machine case.
When rq has only RT tasks, but no one of them can be picked
because of throttling, we enter in endless loop.
pick_next_task_{dl,rt} return NULL.
In pick_next_task_fair() we permanently go to retry
if (rq->nr_running != rq->cfs.h_nr_running)
return RETRY_TASK;
(rq->nr_running is not being decremented when rt_rq becomes
throttled).
No chances to unthrottle any rt_rq or to wake fair here,
because of rq is locked permanently and interrupts are
disabled.
2) In case of SMP this can cause a hang too. Although we unlock
rq in idle_balance(), interrupts are still disabled.
The solution is to check for available tasks in DL and RT
classes instead of checking for sum.
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1394098321.19290.11.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We close idle_exit_fair() bracket in case of we've pulled something or we've received
task of high priority class.
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: http://lkml.kernel.org/r/1394098315.19290.10.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Michael spotted that the idle_balance() push down created a task
priority problem.
Previously, when we called idle_balance() before pick_next_task() it
wasn't a problem when -- because of the rq->lock droppage -- an rt/dl
task slipped in.
Similarly for pre_schedule(), rt pre-schedule could have a dl task
slip in.
But by pulling it into the pick_next_task() loop, we'll not try a
higher task priority again.
Cure this by creating a re-start condition in pick_next_task(); and
triggering this from pick_next_task_{rt,fair}().
It also fixes a live-lock where we get stuck in pick_next_task_fair()
due to idle_balance() seeing !0 nr_running but there not actually
being any fair tasks about.
Reported-by: Michael Wang <wangyun@linux.vnet.ibm.com>
Fixes: 38033c37fa ("sched: Push down pre_schedule() and idle_balance()")
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20140224121218.GR15586@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The struct sched_avg of struct rq is only used in case group
scheduling is enabled inside __update_tg_runnable_avg() to update
per-cpu representation of a task group. I.e. that there is no need to
maintain the runnable avg of a rq in the !CONFIG_FAIR_GROUP_SCHED case.
This patch guards struct sched_avg of struct rq and
update_rq_runnable_avg() with CONFIG_FAIR_GROUP_SCHED.
There is an extra empty definition for update_rq_runnable_avg()
necessary for the !CONFIG_FAIR_GROUP_SCHED && CONFIG_SMP case.
The function print_cfs_group_stats() which prints out struct sched_avg
of struct rq is already guarded with CONFIG_FAIR_GROUP_SCHED.
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/530DCDC5.1060406@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
dequeue_entity() is called when p->on_rq and sets se->on_rq = 0
which appears to guarentee that the !se->on_rq condition is met.
If the task has done set_current_state(TASK_INTERRUPTIBLE) without
schedule() the second condition will be met and vruntime will be
incorrectly adjusted twice.
In certain cases this can result in the task's vruntime never increasing
past the vruntime of other tasks on the CFS' run queue, starving them of
CPU time.
This patch changes switched_from_fair() to use !p->on_rq instead of
!se->on_rq.
I'm able to cause a task with a priority of 120 to starve all other
tasks with the same priority on an ARM platform running 3.2.51-rt72
PREEMPT RT by writing one character at time to a serial tty (16550 UART)
in a tight loop. I'm also able to verify making this change corrects the
problem on that platform and kernel version.
Signed-off-by: George McCollister <george.mccollister@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/1392767811-28916-1-git-send-email-george.mccollister@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The user explicitly disabled load balancing, else this core would not be
disconnected. Don't add these to nohz.idle_cpus_mask.
Signed-off-by: Mike Galbraith <mgalbraith@suse.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Lei Wen <leiwen@marvell.com>
Link: http://lkml.kernel.org/n/tip-vmme4f49psirp966pklm5l9j@git.kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Dan Carpenter reported:
> kernel/sched/rt.c:1347 pick_next_task_rt() warn: variable dereferenced before check 'prev' (see line 1338)
> kernel/sched/deadline.c:1011 pick_next_task_dl() warn: variable dereferenced before check 'prev' (see line 1005)
Kirill also spotted that migrate_tasks() will have an instant NULL
deref because pick_next_task() will immediately deref prev.
Instead of fixing all the corner cases because migrate_tasks() can
pass in a NULL prev task in the unlikely case of hot-un-plug, provide
a fake task such that we can remove all the NULL checks from the far
more common paths.
A further problem; not previously spotted; is that because we pushed
pre_schedule() and idle_balance() into pick_next_task() we now need to
avoid those getting called and pulling more tasks on our dying CPU.
We avoid pull_{dl,rt}_task() by setting fake_task.prio to MAX_PRIO+1.
We also note that since we call pick_next_task() exactly the amount of
times we have runnable tasks present, we should never land in
idle_balance().
Fixes: 38033c37fa ("sched: Push down pre_schedule() and idle_balance()")
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Reported-by: Kirill Tkhai <tkhai@yandex.ru>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140212094930.GB3545@laptop.programming.kicks-ass.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Remove idle_balance() from the public life; also reduce some #ifdef
clutter by folding the pick_next_task_fair() idle path into
idle_balance().
Cc: mingo@kernel.org
Reported-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140211151148.GP27965@twins.programming.kicks-ass.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Sasha reported:
[ 522.645288] BUG: unable to handle kernel NULL pointer dereference at ...
[ 522.646271] IP: [<ffffffff81186c6f>] check_preempt_wakeup+0x11f/0x210
...
[ 522.650021] Call Trace:
[ 522.650021] <IRQ>
[ 522.650021] [<ffffffff8117361d>] check_preempt_curr+0x3d/0xb0
[ 522.650021] [<ffffffff81175d88>] ttwu_do_wakeup+0x18/0x130
...
which was caused by the se-depth changed during the time when task is not
FAIR, and we will use the wrong depth value after it switched back to FAIR.
This patch reset the depth at the time when task switched to FAIR, make sure
that we always have the correct value when task is FAIR.
Cc: Ingo Molnar <mingo@kernel.org>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Michael Wang <wangyun@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/5305732D.70001@linux.vnet.ibm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Normally task_numa_work scans over a fairly small amount of memory,
but it is possible to run into a large unpopulated part of virtual
memory, with no pages mapped. In that case, task_numa_work can run
for a while, and it may make sense to reschedule as required.
Cc: akpm@linux-foundation.org
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Reported-by: Xing Gang <gang.xing@hp.com>
Tested-by: Chegu Vinod <chegu_vinod@hp.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1392761566-24834-2-git-send-email-riel@redhat.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Since is_same_group() is only used in the group scheduling code, there is
no need to define it outside CONFIG_FAIR_GROUP_SCHED.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1391005773-29493-1-git-send-email-dietmar.eggemann@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch both merged idle_balance() and pre_schedule() and pushes
both of them into pick_next_task().
Conceptually pre_schedule() and idle_balance() are rather similar,
both are used to pull more work onto the current CPU.
We cannot however first move idle_balance() into pre_schedule_fair()
since there is no guarantee the last runnable task is a fair task, and
thus we would miss newidle balances.
Similarly, the dl and rt pre_schedule calls must be ran before
idle_balance() since their respective tasks have higher priority and
it would not do to delay their execution searching for less important
tasks first.
However, by noticing that pick_next_tasks() already traverses the
sched_class hierarchy in the right order, we can get the right
behaviour and do away with both calls.
We must however change the special case optimization to also require
that prev is of sched_class_fair, otherwise we can miss doing a dl or
rt pull where we needed one.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/n/tip-a8k6vvaebtn64nie345kx1je@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since commit 2f36825b1 ("sched: Next buddy hint on sleep and preempt
path") it is likely we pick a new task from the same cgroup, doing a put
and then set on all intermediate entities is a waste of time, so try to
avoid this.
Measured using:
mount nodev /cgroup -t cgroup -o cpu
cd /cgroup
mkdir a; cd a
mkdir b; cd b
mkdir c; cd c
echo $$ > tasks
perf stat --repeat 10 -- taskset 1 perf bench sched pipe
PRE : 4.542422684 seconds time elapsed ( +- 0.33% )
POST: 4.389409991 seconds time elapsed ( +- 0.32% )
Which shows a significant improvement of ~3.5%
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1328936700.2476.17.camel@laptop
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In order to avoid having to do put/set on a whole cgroup hierarchy
when we context switch, push the put into pick_next_task() so that
both operations are in the same function. Further changes then allow
us to possibly optimize away redundant work.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1328936700.2476.17.camel@laptop
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Track depth in cgroup tree, this is useful for things like
find_matching_se() where you need to get to a common parent of two
sched entities.
Keeping the depth avoids having to calculate it on the spot, which
saves a number of possible cache-misses.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1328936700.2476.17.camel@laptop
Signed-off-by: Ingo Molnar <mingo@kernel.org>
idle_balance() modifies the rq->idle_stamp field, making this information
shared across core.c and fair.c.
As we know if the cpu is going to idle or not with the previous patch, let's
encapsulate the rq->idle_stamp information in core.c by moving it up to the
caller.
The idle_balance() function returns true in case a balancing occured and the
cpu won't be idle, false if no balance happened and the cpu is going idle.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: alex.shi@linaro.org
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1389949444-14821-3-git-send-email-daniel.lezcano@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The scheduler main function 'schedule()' checks if there are no more tasks
on the runqueue. Then it checks if a task should be pulled in the current
runqueue in idle_balance() assuming it will go to idle otherwise.
But idle_balance() releases the rq->lock in order to look up the sched
domains and takes the lock again right after. That opens a window where
another cpu may put a task in our runqueue, so we won't go to idle but
we have filled the idle_stamp, thinking we will.
This patch closes the window by checking if the runqueue has been modified
but without pulling a task after taking the lock again, so we won't go to idle
right after in the __schedule() function.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: alex.shi@linaro.org
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1389949444-14821-2-git-send-email-daniel.lezcano@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cleanup suggested by Mel Gorman. Now the code contains some more
hints on what statistics go where.
Suggested-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Chegu Vinod <chegu_vinod@hp.com>
Link: http://lkml.kernel.org/r/1390860228-21539-10-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We track both the node of the memory after a NUMA fault, and the node
of the CPU on which the fault happened. Rename the local variables in
task_numa_fault to make things more explicit.
Suggested-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Chegu Vinod <chegu_vinod@hp.com>
Link: http://lkml.kernel.org/r/1390860228-21539-9-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The current code in task_numa_placement calculates the difference
between the old and the new value, but also temporarily stores half
of the old value in the per-process variables.
The NUMA balancing code looks at those per-process variables, and
having other tasks temporarily see halved statistics could lead to
unwanted numa migrations. This can be avoided by doing all the math
in local variables.
This change also simplifies the code a little.
Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Chegu Vinod <chegu_vinod@hp.com>
Link: http://lkml.kernel.org/r/1390860228-21539-8-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tracing the code that decides the active nodes has made it abundantly clear
that the naive implementation of the faults_from code has issues.
Specifically, the garbage collector in some workloads will access orders
of magnitudes more memory than the threads that do all the active work.
This resulted in the node with the garbage collector being marked the only
active node in the group.
This issue is avoided if we weigh the statistics by CPU use of each task in
the numa group, instead of by how many faults each thread has occurred.
To achieve this, we normalize the number of faults to the fraction of faults
that occurred on each node, and then multiply that fraction by the fraction
of CPU time the task has used since the last time task_numa_placement was
invoked.
This way the nodes in the active node mask will be the ones where the tasks
from the numa group are most actively running, and the influence of eg. the
garbage collector and other do-little threads is properly minimized.
On a 4 node system, using CPU use statistics calculated over a longer interval
results in about 1% fewer page migrations with two 32-warehouse specjbb runs
on a 4 node system, and about 5% fewer page migrations, as well as 1% better
throughput, with two 8-warehouse specjbb runs, as compared with the shorter
term statistics kept by the scheduler.
Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Chegu Vinod <chegu_vinod@hp.com>
Link: http://lkml.kernel.org/r/1390860228-21539-7-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use the active_nodes nodemask to make smarter decisions on NUMA migrations.
In order to maximize performance of workloads that do not fit in one NUMA
node, we want to satisfy the following criteria:
1) keep private memory local to each thread
2) avoid excessive NUMA migration of pages
3) distribute shared memory across the active nodes, to
maximize memory bandwidth available to the workload
This patch accomplishes that by implementing the following policy for
NUMA migrations:
1) always migrate on a private fault
2) never migrate to a node that is not in the set of active nodes
for the numa_group
3) always migrate from a node outside of the set of active nodes,
to a node that is in that set
4) within the set of active nodes in the numa_group, only migrate
from a node with more NUMA page faults, to a node with fewer
NUMA page faults, with a 25% margin to avoid ping-ponging
This results in most pages of a workload ending up on the actively
used nodes, with reduced ping-ponging of pages between those nodes.
Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Chegu Vinod <chegu_vinod@hp.com>
Link: http://lkml.kernel.org/r/1390860228-21539-6-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The numa_faults_cpu statistics are used to maintain an active_nodes nodemask
per numa_group. This allows us to be smarter about when to do numa migrations.
Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Chegu Vinod <chegu_vinod@hp.com>
Link: http://lkml.kernel.org/r/1390860228-21539-5-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Track which nodes NUMA faults are triggered from, in other words
the CPUs on which the NUMA faults happened. This uses a similar
mechanism to what is used to track the memory involved in numa faults.
The next patches use this to build up a bitmap of which nodes a
workload is actively running on.
Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Chegu Vinod <chegu_vinod@hp.com>
Link: http://lkml.kernel.org/r/1390860228-21539-4-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In order to get a more consistent naming scheme, making it clear
which fault statistics track memory locality, and which track
CPU locality, rename the memory fault statistics.
Suggested-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Chegu Vinod <chegu_vinod@hp.com>
Link: http://lkml.kernel.org/r/1390860228-21539-3-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Excessive migration of pages can hurt the performance of workloads
that span multiple NUMA nodes. However, it turns out that the
p->numa_migrate_deferred knob is a really big hammer, which does
reduce migration rates, but does not actually help performance.
Now that the second stage of the automatic numa balancing code
has stabilized, it is time to replace the simplistic migration
deferral code with something smarter.
Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Chegu Vinod <chegu_vinod@hp.com>
Link: http://lkml.kernel.org/r/1390860228-21539-2-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler fixes from Ingo Molnar:
"A couple of regression fixes mostly hitting virtualized setups, but
also some bare metal systems"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/x86/tsc: Initialize multiplier to 0
sched/clock: Fixup early initialization
sched/preempt/x86: Fix voluntary preempt for x86
Revert "sched: Fix sleep time double accounting in enqueue entity"
This reverts commit 282cf499f0.
With the current implementation, the load average statistics of a sched entity
change according to other activity on the CPU even if this activity is done
between the running window of the sched entity and have no influence on the
running duration of the task.
When a task wakes up on the same CPU, we currently update last_runnable_update
with the return of __synchronize_entity_decay without updating the
runnable_avg_sum and runnable_avg_period accordingly. In fact, we have to sync
the load_contrib of the se with the rq's blocked_load_contrib before removing
it from the latter (with __synchronize_entity_decay) but we must keep
last_runnable_update unchanged for updating runnable_avg_sum/period during the
next update_entity_load_avg.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Cc: pjt@google.com
Cc: alex.shi@linaro.org
Link: http://lkml.kernel.org/r/1390376734-6800-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch adds three tracepoints
o trace_sched_move_numa when a task is moved to a node
o trace_sched_swap_numa when a task is swapped with another task
o trace_sched_stick_numa when a numa-related migration fails
The tracepoints allow the NUMA scheduler activity to be monitored and the
following high-level metrics can be calculated
o NUMA migrated stuck nr trace_sched_stick_numa
o NUMA migrated idle nr trace_sched_move_numa
o NUMA migrated swapped nr trace_sched_swap_numa
o NUMA local swapped trace_sched_swap_numa src_nid == dst_nid (should never happen)
o NUMA remote swapped trace_sched_swap_numa src_nid != dst_nid (should == NUMA migrated swapped)
o NUMA group swapped trace_sched_swap_numa src_ngid == dst_ngid
Maybe a small number of these are acceptable
but a high number would be a major surprise.
It would be even worse if bounces are frequent.
o NUMA avg task migs. Average number of migrations for tasks
o NUMA stddev task mig Self-explanatory
o NUMA max task migs. Maximum number of migrations for a single task
In general the intent of the tracepoints is to help diagnose problems
where automatic NUMA balancing appears to be doing an excessive amount
of useless work.
[akpm@linux-foundation.org: remove semicolon-after-if, repair coding-style]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Alex Thorlton <athorlton@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The test on_null_domain is done twice in the trigger_load_balance function.
Move the test at the begin of the function, so there is only one check.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1389008085-9069-9-git-send-email-daniel.lezcano@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The cpu information is stored in the struct rq. Pass the struct rq to
nohz_idle_balance, so all the functions called in run_rebalance_domains have
the same parameters and the 'this_cpu' variable becomes pointless.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
[ Added !SMP build fix. ]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1389008085-9069-8-git-send-email-daniel.lezcano@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The cpu information is stored in the struct rq and the caller of the
rebalance_domains function pass the cpu to retrieve the struct rq but
it already has the struct rq info. Replace the cpu parameter with the
struct rq.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1389008085-9069-7-git-send-email-daniel.lezcano@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The cpu parameter is no longer needed in nohz_balancer_kick, let's remove
the parameter.
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1389008085-9069-6-git-send-email-daniel.lezcano@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The 'call_cpu' is never used in the function. Remove it.
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1389008085-9069-5-git-send-email-daniel.lezcano@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The on_null_domain() function is getting the cpu to retrieve the struct rq
associated with it.
Pass 'struct rq' directly to the function as the caller already has the info.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1389008085-9069-4-git-send-email-daniel.lezcano@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The cpu information is already stored in the struct rq, so no need to pass it
as parameter to the nohz_kick_needed function.
The caller of this function just called idle_cpu() before to fill the
rq->idle_balance field.
Use rq->cpu and rq->idle_balance.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1389008085-9069-3-git-send-email-daniel.lezcano@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Thomas Hellstrom bisected a regression where erratic 3D performance is
experienced on virtual machines as measured by glxgears. It identified
commit 58d081b5 ("sched/numa: Avoid overloading CPUs on a preferred NUMA
node") as the problem which had modified the behaviour of effective_load.
Effective load calculates the difference to the system-wide load if a
scheduling entity was moved to another CPU. The task group is not heavier
as a result of the move but overall system load can increase/decrease as a
result of the change. Commit 58d081b5 ("sched/numa: Avoid overloading CPUs
on a preferred NUMA node") changed effective_load to make it suitable for
calculating if a particular NUMA node was compute overloaded. To reduce
the cost of the function, it assumed that a current sched entity weight
of 0 was uninteresting but that is not the case.
wake_affine() uses a weight of 0 for sync wakeups on the grounds that it
is assuming the waking task will sleep and not contribute to load in the
near future. In this case, we still want to calculate the effective load
of the sched entity hierarchy. As effective_load is no longer used by
task_numa_compare since commit fb13c7ee (sched/numa: Use a system-wide
search to find swap/migration candidates), this patch simply restores the
historical behaviour.
Reported-and-tested-by: Thomas Hellstrom <thellstrom@vmware.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
[ Wrote changelog]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140106113912.GC6178@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Inaccessible VMA should not be trapping NUMA hint faults. Skip them.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The original code is as intended and was meant to scale the difference
between the NUMA_PERIOD_THRESHOLD and local/remote ratio when adjusting
the scan period. The period_slot recalculation can be dropped.
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Rik van Riel <riel@redhat.com>
Link: http://lkml.kernel.org/r/1386833006-6600-4-git-send-email-liwanp@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use wrapper function task_faults_idx to calculate index in group_faults.
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Rik van Riel <riel@redhat.com>
Link: http://lkml.kernel.org/r/1386833006-6600-3-git-send-email-liwanp@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use wrapper function task_node to get node which task is on.
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/1386833006-6600-2-git-send-email-liwanp@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
commit 887c290e (sched/numa: Decide whether to favour task or group weights
based on swap candidate relationships) drop the check against
sysctl_numa_balancing_settle_count, this patch remove the sysctl.
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Link: http://lkml.kernel.org/r/1386833006-6600-1-git-send-email-liwanp@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Christian suffers from a bad BIOS that wrecks his i5's TSC sync. This
results in him occasionally seeing time going backwards - which
crashes the scheduler ...
Most of our time accounting can actually handle that except the most
common one; the tick time update of sched_fair.
There is a further problem with that code; previously we assumed that
because we get a tick every TICK_NSEC our time delta could never
exceed 32bits and math was simpler.
However, ever since Frederic managed to get NO_HZ_FULL merged; this is
no longer the case since now a task can run for a long time indeed
without getting a tick. It only takes about ~4.2 seconds to overflow
our u32 in nanoseconds.
This means we not only need to better deal with time going backwards;
but also means we need to be able to deal with large deltas.
This patch reworks the entire code and uses mul_u64_u32_shr() as
proposed by Andy a long while ago.
We express our virtual time scale factor in a u32 multiplier and shift
right and the 32bit mul_u64_u32_shr() implementation reduces to a
single 32x32->64 multiply if the time delta is still short (common
case).
For 64bit a 64x64->128 multiply can be used if ARCH_SUPPORTS_INT128.
Reported-and-Tested-by: Christian Engelmayer <cengelma@gmx.at>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: fweisbec@gmail.com
Cc: Paul Turner <pjt@google.com>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20131118172706.GI3866@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add rq->nr_running to sgs->sum_nr_running directly instead of
assigning it through an intermediate variable nr_running.
Signed-off-by: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1384508212-25032-1-git-send-email-kamalesh@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
After commit 863bffc808 ("sched/fair: Fix group power_orig
computation"), we can dereference rq->sd before it is set.
Fix this by falling back to power_of() in this case and add a comment
explaining things.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
[ Added comment and tweaked patch. ]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: mikey@neuling.org
Link: http://lkml.kernel.org/r/20131113151718.GN21461@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
sa->runnable_avg_sum is of type u32 but after shifting it by NICE_0_SHIFT
bits it is promoted to u64. This of course makes no sense, since the
result will never be more then 32-bit long. Casting sa->runnable_avg_sum
to u64 before it is shifted, fixes this problem.
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Michal Nazarewicz <mina86@mina86.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1384112521-25177-1-git-send-email-mpn@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Because we're completely unserialized against hotplug its well
possible to try and generate numa stats for an offlined node.
Bail out early (and avoid a /0) in this case. The resulting stats are
all 0 which should result in an undesirable balance target -- not to
mention that actually trying to migrate to an offline CPU will fail.
Reported-by: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Link: http://lkml.kernel.org/n/tip-orja0qylcvyhxfsuebcyL5sI@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The cpusets code can split up the scheduler's domain tree into
smaller domains. Some of those smaller domains may not cross
NUMA nodes at all, leading to a NULL pointer dereference on the
per-cpu sd_numa pointer.
Tasks cannot be migrated out of their domain, so the patch
also sets p->numa_preferred_nid to whereever they are, to
prevent the migration from being retried over and over again.
Reported-by: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Link: http://lkml.kernel.org/n/tip-oosqomw0Jput0Jkvoowhrqtu@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
nr_busy_cpus parameter is used by nohz_kick_needed() to find out the
number of busy cpus in a sched domain which has SD_SHARE_PKG_RESOURCES
flag set. Therefore instead of updating nr_busy_cpus at every level
of sched domain, since it is irrelevant, we can update this parameter
only at the parent domain of the sd which has this flag set. Introduce
a per-cpu parameter sd_busy which represents this parent domain.
In nohz_kick_needed() we directly query the nr_busy_cpus parameter
associated with the groups of sd_busy.
By associating sd_busy with the highest domain which has
SD_SHARE_PKG_RESOURCES flag set, we cover all lower level domains
which could have this flag set and trigger nohz_idle_balancing if any
of the levels have more than one busy cpu.
sd_busy is irrelevant for asymmetric load balancing. However sd_asym
has been introduced to represent the highest sched domain which has
SD_ASYM_PACKING flag set so that it can be queried directly when
required.
While we are at it, we might as well change the nohz_idle parameter to
be updated at the sd_busy domain level alone and not the base domain
level of a CPU. This will unify the concept of busy cpus at just one
level of sched domain where it is currently used.
Signed-off-by: Preeti U Murthy<preeti@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: svaidy@linux.vnet.ibm.com
Cc: vincent.guittot@linaro.org
Cc: bitbucket@online.de
Cc: benh@kernel.crashing.org
Cc: anton@samba.org
Cc: Morten.Rasmussen@arm.com
Cc: pjt@google.com
Cc: peterz@infradead.org
Cc: mikey@neuling.org
Link: http://lkml.kernel.org/r/20131030031252.23426.4417.stgit@preeti.in.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Asymmetric scheduling within a core is a scheduler loadbalancing
feature that is triggered when SD_ASYM_PACKING flag is set. The goal
for the load balancer is to move tasks to lower order idle SMT threads
within a core on a POWER7 system.
In nohz_kick_needed(), we intend to check if our sched domain (core)
is completely busy or we have idle cpu.
The following check for SD_ASYM_PACKING:
(cpumask_first_and(nohz.idle_cpus_mask, sched_domain_span(sd)) < cpu)
already covers the case of checking if the domain has an idle cpu,
because cpumask_first_and() will not yield any set bits if this domain
has no idle cpu.
Hence, nr_busy check against group weight can be removed.
Reported-by: Michael Neuling <michael.neuling@au1.ibm.com>
Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Tested-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: vincent.guittot@linaro.org
Cc: bitbucket@online.de
Cc: benh@kernel.crashing.org
Cc: anton@samba.org
Cc: Morten.Rasmussen@arm.com
Cc: pjt@google.com
Link: http://lkml.kernel.org/r/20131030031242.23426.13019.stgit@preeti.in.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
throttle_cfs_rq() doesn't check to make sure that period_timer is running,
and while update_curr/assign_cfs_runtime does, a concurrently running
period_timer on another cpu could cancel itself between this cpu's
update_curr and throttle_cfs_rq(). If there are no other cfs_rqs running
in the tg to restart the timer, this causes the cfs_rq to be stranded
forever.
Fix this by calling __start_cfs_bandwidth() in throttle if the timer is
inactive.
(Also add some sched_debug lines for cfs_bandwidth.)
Tested: make a run/sleep task in a cgroup, loop switching the cgroup
between 1ms/100ms quota and unlimited, checking for timer_active=0 and
throttled=1 as a failure. With the throttle_cfs_rq() change commented out
this fails, with the full patch it passes.
Signed-off-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: pjt@google.com
Link: http://lkml.kernel.org/r/20131016181632.22647.84174.stgit@sword-of-the-dawn.mtv.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, group entity load-weights are initialized to zero. This
admits some races with respect to the first time they are re-weighted in
earlty use. ( Let g[x] denote the se for "g" on cpu "x". )
Suppose that we have root->a and that a enters a throttled state,
immediately followed by a[0]->t1 (the only task running on cpu[0])
blocking:
put_prev_task(group_cfs_rq(a[0]), t1)
put_prev_entity(..., t1)
check_cfs_rq_runtime(group_cfs_rq(a[0]))
throttle_cfs_rq(group_cfs_rq(a[0]))
Then, before unthrottling occurs, let a[0]->b[0]->t2 wake for the first
time:
enqueue_task_fair(rq[0], t2)
enqueue_entity(group_cfs_rq(b[0]), t2)
enqueue_entity_load_avg(group_cfs_rq(b[0]), t2)
account_entity_enqueue(group_cfs_ra(b[0]), t2)
update_cfs_shares(group_cfs_rq(b[0]))
< skipped because b is part of a throttled hierarchy >
enqueue_entity(group_cfs_rq(a[0]), b[0])
...
We now have b[0] enqueued, yet group_cfs_rq(a[0])->load.weight == 0
which violates invariants in several code-paths. Eliminate the
possibility of this by initializing group entity weight.
Signed-off-by: Paul Turner <pjt@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20131016181627.22647.47543.stgit@sword-of-the-dawn.mtv.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
__start_cfs_bandwidth calls hrtimer_cancel while holding rq->lock,
waiting for the hrtimer to finish. However, if sched_cfs_period_timer
runs for another loop iteration, the hrtimer can attempt to take
rq->lock, resulting in deadlock.
Fix this by ensuring that cfs_b->timer_active is cleared only if the
_latest_ call to do_sched_cfs_period_timer is returning as idle. Then
__start_cfs_bandwidth can just call hrtimer_try_to_cancel and wait for
that to succeed or timer_active == 1.
Signed-off-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: pjt@google.com
Link: http://lkml.kernel.org/r/20131016181622.22647.16643.stgit@sword-of-the-dawn.mtv.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
hrtimer_expires_remaining does not take internal hrtimer locks and thus
must be guarded against concurrent __hrtimer_start_range_ns (but
returning HRTIMER_RESTART is safe). Use cfs_b->lock to make it safe.
Signed-off-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: pjt@google.com
Link: http://lkml.kernel.org/r/20131016181617.22647.73829.stgit@sword-of-the-dawn.mtv.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When we transition cfs_bandwidth_used to false, any currently
throttled groups will incorrectly return false from cfs_rq_throttled.
While tg_set_cfs_bandwidth will unthrottle them eventually, currently
running code (including at least dequeue_task_fair and
distribute_cfs_runtime) will cause errors.
Fix this by turning off cfs_bandwidth_used only after unthrottling all
cfs_rqs.
Tested: toggle bandwidth back and forth on a loaded cgroup. Caused
crashes in minutes without the patch, hasn't crashed with it.
Signed-off-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: pjt@google.com
Link: http://lkml.kernel.org/r/20131016181611.22647.80365.stgit@sword-of-the-dawn.mtv.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is a subtle race in migrate_swap, when task P, on CPU A, decides to swap
places with task T, on CPU B.
Task P:
- call migrate_swap
Task T:
- go to sleep, removing itself from the runqueue
Task P:
- double lock the runqueues on CPU A & B
Task T:
- get woken up, place itself on the runqueue of CPU C
Task P:
- see that task T is on a runqueue, and pretend to remove it
from the runqueue on CPU B
Now CPUs B & C both have corrupted scheduler data structures.
This patch fixes it, by holding the pi_lock for both of the tasks
involved in the migrate swap. This prevents task T from waking up,
and placing itself onto another runqueue, until after migrate_swap
has released all locks.
This means that, when migrate_swap checks, task T will be either
on the runqueue where it was originally seen, or not on any
runqueue at all. Migrate_swap deals correctly with of those cases.
Tested-by: Joe Mario <jmario@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: hannes@cmpxchg.org
Cc: aarcange@redhat.com
Cc: srikar@linux.vnet.ibm.com
Cc: tglx@linutronix.de
Cc: hpa@zytor.com
Link: http://lkml.kernel.org/r/20131010181722.GO13848@laptop.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The balance parameter was removed by 23f0d20 ("sched: Factor out
code to should_we_balance()", 2013-08-06).
Signed-off-by: Ramkumar Ramachandra <artagnon@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381400433-2030-1-git-send-email-artagnon@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reflow the function a bit because GCC gets confused:
kernel/sched/fair.c: In function ‘task_numa_fault’:
kernel/sched/fair.c:1448:3: warning: ‘my_grp’ may be used uninitialized in this function [-Wmaybe-uninitialized]
kernel/sched/fair.c:1463:27: note: ‘my_grp’ was declared here
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-6ebt6x7u64pbbonq1khqu2z9@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Short spikes of CPU load can lead to a task being migrated
away from its preferred node for temporary reasons.
It is important that the task is migrated back to where it
belongs, in order to avoid migrating too much memory to its
new location, and generally disturbing a task's NUMA location.
This patch fixes NUMA placement for 4 specjbb instances on
a 4 node system. Without this patch, things take longer to
converge, and processes are not always completely on their
own node.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-64-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As Peter says "If you're going to hold locks you can also do away with all
that atomic_long_*() nonsense". Lock aquisition moved slightly to protect
the updates.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-63-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Shared faults can lead to lots of unnecessary page migrations,
slowing down the system, and causing private faults to hit the
per-pgdat migration ratelimit.
This patch adds sysctl numa_balancing_migrate_deferred, which specifies
how many shared page migrations to skip unconditionally, after each page
migration that is skipped because it is a shared fault.
This reduces the number of page migrations back and forth in
shared fault situations. It also gives a strong preference to
the tasks that are already running where most of the memory is,
and to moving the other tasks to near the memory.
Testing this with a much higher scan rate than the default
still seems to result in fewer page migrations than before.
Memory seems to be somewhat better consolidated than previously,
with multi-instance specjbb runs on a 4 node system.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-62-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With the scan rate code working (at least for multi-instance specjbb),
the large hammer that is "sched: Do not migrate memory immediately after
switching node" can be replaced with something smarter. Revert temporarily
migration disabling and all traces of numa_migrate_seq.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-61-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With scan rate adaptions based on whether the workload has properly
converged or not there should be no need for the scan period reset
hammer. Get rid of it.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-60-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Adjust numa_scan_period in task_numa_placement, depending on how much
useful work the numa code can do. The more local faults there are in a
given scan window the longer the period (and hence the slower the scan rate)
during the next window. If there are excessive shared faults then the scan
period will decrease with the amount of scaling depending on whether the
ratio of shared/private faults. If the preferred node changes then the
scan rate is reset to recheck if the task is properly placed.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-59-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Scan rate is altered based on whether shared/private faults dominated.
task_numa_group() may detect false sharing but that information is not
taken into account when adapting the scan rate. Take it into account.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-58-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Due to the way the pid is truncated, and tasks are moved between
CPUs by the scheduler, it is possible for the current task_numa_fault
to group together tasks that do not actually share memory together.
This patch adds a few easy sanity checks to task_numa_fault, joining
tasks together if they share the same tsk->mm, or if the fault was on
a page with an elevated mapcount, in a shared VMA.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-57-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch classifies scheduler domains and runqueues into types depending
the number of tasks that are about their NUMA placement and the number
that are currently running on their preferred node. The types are
regular: There are tasks running that do not care about their NUMA
placement.
remote: There are tasks running that care about their placement but are
currently running on a node remote to their ideal placement
all: No distinction
To implement this the patch tracks the number of tasks that are optimally
NUMA placed (rq->nr_preferred_running) and the number of tasks running
that care about their placement (nr_numa_running). The load balancer
uses this information to avoid migrating idea placed NUMA tasks as long
as better options for load balancing exists. For example, it will not
consider balancing between a group whose tasks are all perfectly placed
and a group with remote tasks.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1381141781-10992-56-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch separately considers task and group affinities when
searching for swap candidates during NUMA placement. If tasks
are part of the same group, or no group at all, the task weights
are considered.
Some hysteresis is added to prevent tasks within one group from
getting bounced between NUMA nodes due to tiny differences.
If tasks are part of different groups, the code compares group
weights, in order to favor grouping task groups together.
The patch also changes the group weight multiplier to be the
same as the task weight multiplier, since the two are no longer
added up like before.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-55-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch separately considers task and group affinities when searching
for swap candidates during task NUMA placement. If tasks are not part of
a group or the same group then the task weights are considered.
Otherwise the group weights are compared.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-54-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Having multiple tasks in a group go through task_numa_placement
simultaneously can lead to a task picking a wrong node to run on, because
the group stats may be in the middle of an update. This patch avoids
parallel updates by holding the numa_group lock during placement
decisions.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-52-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It is possible for a task in a numa group to call exec, and
have the new (unrelated) executable inherit the numa group
association from its former self.
This has the potential to break numa grouping, and is trivial
to fix.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-51-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch uses the fraction of faults on a particular node for both task
and group, to figure out the best node to place a task. If the task and
group statistics disagree on what the preferred node should be then a full
rescan will select the node with the best combined weight.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-50-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
And here's a little something to make sure not the whole world ends up
in a single group.
As while we don't migrate shared executable pages, we do scan/fault on
them. And since everybody links to libc, everybody ends up in the same
group.
Suggested-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1381141781-10992-47-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It is desirable to model from userspace how the scheduler groups tasks
over time. This patch adds an ID to the numa_group and reports it via
/proc/PID/status.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-45-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While parallel applications tend to align their data on the cache
boundary, they tend not to align on the page or THP boundary.
Consequently tasks that partition their data can still "false-share"
pages presenting a problem for optimal NUMA placement.
This patch uses NUMA hinting faults to chain tasks together into
numa_groups. As well as storing the NID a task was running on when
accessing a page a truncated representation of the faulting PID is
stored. If subsequent faults are from different PIDs it is reasonable
to assume that those two tasks share a page and are candidates for
being grouped together. Note that this patch makes no scheduling
decisions based on the grouping information.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1381141781-10992-44-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Change the per page last fault tracking to use cpu,pid instead of
nid,pid. This will allow us to try and lookup the alternate task more
easily. Note that even though it is the cpu that is store in the page
flags that the mpol_misplaced decision is still based on the node.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1381141781-10992-43-git-send-email-mgorman@suse.de
[ Fixed build failure on 32-bit systems. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The load balancer will spread workloads across multiple NUMA nodes,
in order to balance the load on the system. This means that sometimes
a task's preferred node has available capacity, but moving the task
there will not succeed, because that would create too large an imbalance.
In that case, other NUMA nodes need to be considered.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-42-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A tasks preferred node is selected based on the number of faults
recorded for a node but the actual task_numa_migate() conducts a global
search regardless of the preferred nid. This patch checks if the
preferred nid has capacity and if so, searches for a CPU within that
node. This avoids a global search when the preferred node is not
overloaded.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-41-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch implements a system-wide search for swap/migration candidates
based on total NUMA hinting faults. It has a balance limit, however it
doesn't properly consider total node balance.
In the old scheme a task selected a preferred node based on the highest
number of private faults recorded on the node. In this scheme, the preferred
node is based on the total number of faults. If the preferred node for a
task changes then task_numa_migrate will search the whole system looking
for tasks to swap with that would improve both the overall compute
balance and minimise the expected number of remote NUMA hinting faults.
Not there is no guarantee that the node the source task is placed
on by task_numa_migrate() has any relationship to the newly selected
task->numa_preferred_nid due to compute overloading.
Signed-off-by: Mel Gorman <mgorman@suse.de>
[ Do not swap with tasks that cannot run on source cpu]
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
[ Fixed compiler warning on UP. ]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-40-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use the new stop_two_cpus() to implement migrate_swap(), a function that
flips two tasks between their respective cpus.
I'm fairly sure there's a less crude way than employing the stop_two_cpus()
method, but everything I tried either got horribly fragile and/or complex. So
keep it simple for now.
The notable detail is how we 'migrate' tasks that aren't runnable
anymore. We'll make it appear like we migrated them before they went to
sleep. The sole difference is the previous cpu in the wakeup path, so we
override this.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Link: http://lkml.kernel.org/r/1381141781-10992-39-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
NUMA hinting faults will not migrate a shared executable page mapped by
multiple processes on the grounds that the data is probably in the CPU
cache already and the page may just bounce between tasks running on multipl
nodes. Even if the migration is avoided, there is still the overhead of
trapping the fault, updating the statistics, making scheduler placement
decisions based on the information etc. If we are never going to migrate
the page, it is overhead for no gain and worse a process may be placed on
a sub-optimal node for shared executable pages. This patch avoids trapping
faults for shared libraries entirely.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-36-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a task is already running on its preferred node, increment
numa_migrate_seq to indicate that the task is settled if migration is
temporarily disabled, and memory should migrate towards it.
Signed-off-by: Rik van Riel <riel@redhat.com>
[ Only increment migrate_seq if migration temporarily disabled. ]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-35-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a preferred node is selected for a tasks there is an attempt to migrate
the task to a CPU there. This may fail in which case the task will only
migrate if the active load balancer takes action. This may never happen if
the conditions are not right. This patch will check at NUMA hinting fault
time if another attempt should be made to migrate the task. It will only
make an attempt once every five seconds.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-34-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch replaces find_idlest_cpu_node with task_numa_find_cpu.
find_idlest_cpu_node has two critical limitations. It does not take the
scheduling class into account when calculating the load and it is unsuitable
for using when comparing loads between NUMA nodes.
task_numa_find_cpu uses similar load calculations to wake_affine() when
selecting the least loaded CPU within a scheduling domain common to the
source and destimation nodes. It avoids causing CPU load imbalances in
the machine by refusing to migrate if the relative load on the target
CPU is higher than the source CPU.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-33-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is a 90% regression observed with a large Oracle performance test
on a 4 node system. Profiles indicated that the overhead was due to
contention on sp_lock when looking up shared memory policies. These
policies do not have the appropriate flags to allow them to be
automatically balanced so trapping faults on them is pointless. This
patch skips VMAs that do not have MPOL_F_MOF set.
[riel@redhat.com: Initial patch]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reported-and-tested-by: Joe Mario <jmario@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-32-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The load balancer can move tasks between nodes and does not take NUMA
locality into account. With automatic NUMA balancing this may result in the
tasks working set being migrated to the new node. However, as the fault
buffer will still store faults from the old node the schduler may decide to
reset the preferred node and migrate the task back resulting in more
migrations.
The ideal would be that the scheduler did not migrate tasks with a heavy
memory footprint but this may result nodes being overloaded. We could
also discard the fault information on task migration but this would still
cause all the tasks working set to be migrated. This patch simply avoids
migrating the memory for a short time after a task is migrated.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-31-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Ideally it would be possible to distinguish between NUMA hinting faults that
are private to a task and those that are shared. If treated identically
there is a risk that shared pages bounce between nodes depending on
the order they are referenced by tasks. Ultimately what is desirable is
that task private pages remain local to the task while shared pages are
interleaved between sharing tasks running on different nodes to give good
average performance. This is further complicated by THP as even
applications that partition their data may not be partitioning on a huge
page boundary.
To start with, this patch assumes that multi-threaded or multi-process
applications partition their data and that in general the private accesses
are more important for cpu->memory locality in the general case. Also,
no new infrastructure is required to treat private pages properly but
interleaving for shared pages requires additional infrastructure.
To detect private accesses the pid of the last accessing task is required
but the storage requirements are a high. This patch borrows heavily from
Ingo Molnar's patch "numa, mm, sched: Implement last-CPU+PID hash tracking"
to encode some bits from the last accessing task in the page flags as
well as the node information. Collisions will occur but it is better than
just depending on the node information. Node information is then used to
determine if a page needs to migrate. The PID information is used to detect
private/shared accesses. The preferred NUMA node is selected based on where
the maximum number of approximately private faults were measured. Shared
faults are not taken into consideration for a few reasons.
First, if there are many tasks sharing the page then they'll all move
towards the same node. The node will be compute overloaded and then
scheduled away later only to bounce back again. Alternatively the shared
tasks would just bounce around nodes because the fault information is
effectively noise. Either way accounting for shared faults the same as
private faults can result in lower performance overall.
The second reason is based on a hypothetical workload that has a small
number of very important, heavily accessed private pages but a large shared
array. The shared array would dominate the number of faults and be selected
as a preferred node even though it's the wrong decision.
The third reason is that multiple threads in a process will race each
other to fault the shared page making the fault information unreliable.
Signed-off-by: Mel Gorman <mgorman@suse.de>
[ Fix complication error when !NUMA_BALANCING. ]
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-30-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
task_numa_work skips small VMAs. At the time the logic was to reduce the
scanning overhead which was considerable. It is a dubious hack at best.
It would make much more sense to cache where faults have been observed
and only rescan those regions during subsequent PTE scans. Remove this
hack as motivation to do it properly in the future.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-29-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
task_numa_placement checks current->mm but after buffers for faults
have already been uselessly allocated. Move the check earlier.
[peterz@infradead.org: Identified the problem]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-27-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Ideally it would be possible to distinguish between NUMA hinting faults
that are private to a task and those that are shared. This patch prepares
infrastructure for separately accounting shared and private faults by
allocating the necessary buffers and passing in relevant information. For
now, all faults are treated as private and detection will be introduced
later.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-26-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A preferred node is selected based on the node the most NUMA hinting
faults was incurred on. There is no guarantee that the task is running
on that node at the time so this patch rescheules the task to run on
the most idle CPU of the selected node when selected. This avoids
waiting for the balancer to make a decision.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-25-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Just as "sched: Favour moving tasks towards the preferred node" favours
moving tasks towards nodes with a higher number of recorded NUMA hinting
faults, this patch resists moving tasks towards nodes with lower faults.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-24-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch favours moving tasks towards NUMA node that recorded a higher
number of NUMA faults during active load balancing. Ideally this is
self-reinforcing as the longer the task runs on that node, the more faults
it should incur causing task_numa_placement to keep the task running on that
node. In reality a big weakness is that the nodes CPUs can be overloaded
and it would be more efficient to queue tasks on an idle node and migrate
to the new node. This would require additional smarts in the balancer so
for now the balancer will simply prefer to place the task on the preferred
node for a PTE scans which is controlled by the numa_balancing_settle_count
sysctl. Once the settle_count number of scans has complete the schedule
is free to place the task on an alternative node if the load is imbalanced.
[srikar@linux.vnet.ibm.com: Fixed statistics]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
[ Tunable and use higher faults instead of preferred. ]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-23-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
NUMA hinting fault counts and placement decisions are both recorded in the
same array which distorts the samples in an unpredictable fashion. The values
linearly accumulate during the scan and then decay creating a sawtooth-like
pattern in the per-node counts. It also means that placement decisions are
time sensitive. At best it means that it is very difficult to state that
the buffer holds a decaying average of past faulting behaviour. At worst,
it can confuse the load balancer if it sees one node with an artifically high
count due to very recent faulting activity and may create a bouncing effect.
This patch adds a second array. numa_faults stores the historical data
which is used for placement decisions. numa_faults_buffer holds the
fault activity during the current scan window. When the scan completes,
numa_faults decays and the values from numa_faults_buffer are copied
across.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-22-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch selects a preferred node for a task to run on based on the
NUMA hinting faults. This information is later used to migrate tasks
towards the node during balancing.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-21-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch tracks what nodes numa hinting faults were incurred on.
This information is later used to schedule a task on the node storing
the pages most frequently faulted by the task.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-20-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
NUMA PTE scanning slows if a NUMA hinting fault was trapped and no page
was migrated. For long-lived but idle processes there may be no faults
but the scan rate will be high and just waste CPU. This patch will slow
the scan rate for processes that are not trapping faults.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-19-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The NUMA PTE scan rate is controlled with a combination of the
numa_balancing_scan_period_min, numa_balancing_scan_period_max and
numa_balancing_scan_size. This scan rate is independent of the size
of the task and as an aside it is further complicated by the fact that
numa_balancing_scan_size controls how many pages are marked pte_numa and
not how much virtual memory is scanned.
In combination, it is almost impossible to meaningfully tune the min and
max scan periods and reasoning about performance is complex when the time
to complete a full scan is is partially a function of the tasks memory
size. This patch alters the semantic of the min and max tunables to be
about tuning the length time it takes to complete a scan of a tasks occupied
virtual address space. Conceptually this is a lot easier to understand. There
is a "sanity" check to ensure the scan rate is never extremely fast based on
the amount of virtual memory that should be scanned in a second. The default
of 2.5G seems arbitrary but it is to have the maximum scan rate after the
patch roughly match the maximum scan rate before the patch was applied.
On a similar note, numa_scan_period is in milliseconds and not
jiffies. Properly placed pages slow the scanning rate but adding 10 jiffies
to numa_scan_period means that the rate scanning slows depends on HZ which
is confusing. Get rid of the jiffies_to_msec conversion and treat it as ms.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-18-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Scan delay logic and resets are currently initialised to start scanning
immediately instead of delaying properly. Initialise them properly at
fork time and catch when a new mm has been allocated.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-17-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
PTE scanning and NUMA hinting fault handling is expensive so commit
5bca2303 ("mm: sched: numa: Delay PTE scanning until a task is scheduled
on a new node") deferred the PTE scan until a task had been scheduled on
another node. The problem is that in the purely shared memory case that
this may never happen and no NUMA hinting fault information will be
captured. We are not ruling out the possibility that something better
can be done here but for now, this patch needs to be reverted and depend
entirely on the scan_delay to avoid punishing short-lived processes.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-16-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Avoiding marking PTEs pte_numa because a particular NUMA node is migrate rate
limited sees like a bad idea. Even if this node can't migrate anymore other
nodes might and we want up-to-date information to do balance decisions.
We already rate limit the actual migrations, this should leave enough
bandwidth to allow the non-migrating scanning. I think its important we
keep up-to-date information if we're going to do placement based on it.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1381141781-10992-15-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With a trace_printk("working\n"); right after the cmpxchg in
task_numa_work() we can see that of a 4 thread process, its always the
same task winning the race and doing the protection change.
This is a problem since the task doing the protection change has a
penalty for taking faults -- it is busy when marking the PTEs. If its
always the same task the ->numa_faults[] get severely skewed.
Avoid this by delaying the task doing the protection change such that
it is unlikely to win the privilege again.
Before:
root@interlagos:~# grep "thread 0/.*working" /debug/tracing/trace | tail -15
thread 0/0-3232 [022] .... 212.787402: task_numa_work: working
thread 0/0-3232 [022] .... 212.888473: task_numa_work: working
thread 0/0-3232 [022] .... 212.989538: task_numa_work: working
thread 0/0-3232 [022] .... 213.090602: task_numa_work: working
thread 0/0-3232 [022] .... 213.191667: task_numa_work: working
thread 0/0-3232 [022] .... 213.292734: task_numa_work: working
thread 0/0-3232 [022] .... 213.393804: task_numa_work: working
thread 0/0-3232 [022] .... 213.494869: task_numa_work: working
thread 0/0-3232 [022] .... 213.596937: task_numa_work: working
thread 0/0-3232 [022] .... 213.699000: task_numa_work: working
thread 0/0-3232 [022] .... 213.801067: task_numa_work: working
thread 0/0-3232 [022] .... 213.903155: task_numa_work: working
thread 0/0-3232 [022] .... 214.005201: task_numa_work: working
thread 0/0-3232 [022] .... 214.107266: task_numa_work: working
thread 0/0-3232 [022] .... 214.209342: task_numa_work: working
After:
root@interlagos:~# grep "thread 0/.*working" /debug/tracing/trace | tail -15
thread 0/0-3253 [005] .... 136.865051: task_numa_work: working
thread 0/2-3255 [026] .... 136.965134: task_numa_work: working
thread 0/3-3256 [024] .... 137.065217: task_numa_work: working
thread 0/3-3256 [024] .... 137.165302: task_numa_work: working
thread 0/3-3256 [024] .... 137.265382: task_numa_work: working
thread 0/0-3253 [004] .... 137.366465: task_numa_work: working
thread 0/2-3255 [026] .... 137.466549: task_numa_work: working
thread 0/0-3253 [004] .... 137.566629: task_numa_work: working
thread 0/0-3253 [004] .... 137.666711: task_numa_work: working
thread 0/1-3254 [028] .... 137.766799: task_numa_work: working
thread 0/0-3253 [004] .... 137.866876: task_numa_work: working
thread 0/2-3255 [026] .... 137.966960: task_numa_work: working
thread 0/1-3254 [028] .... 138.067041: task_numa_work: working
thread 0/2-3255 [026] .... 138.167123: task_numa_work: working
thread 0/3-3256 [024] .... 138.267207: task_numa_work: working
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1381141781-10992-14-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fix a 80 column violation and a PTE vs PMD reference.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1381141781-10992-4-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch builds on patch 2 and periodically decays that max value to
do idle balancing per sched domain by approximately 1% per second. Also
decay the rq's max_idle_balance_cost value.
Signed-off-by: Jason Low <jason.low2@hp.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1379096813-3032-4-git-send-email-jason.low2@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In this patch, we keep track of the max cost we spend doing idle load balancing
for each sched domain. If the avg time the CPU remains idle is less then the
time we have already spent on idle balancing + the max cost of idle balancing
in the sched domain, then we don't continue to attempt the balance. We also
keep a per rq variable, max_idle_balance_cost, which keeps track of the max
time spent on newidle load balances throughout all its domains so that we can
determine the avg_idle's max value.
By using the max, we avoid overrunning the average. This further reduces the
chance we attempt balancing when the CPU is not idle for longer than the cost
to balance.
Signed-off-by: Jason Low <jason.low2@hp.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1379096813-3032-3-git-send-email-jason.low2@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Patch a003a2 (sched: Consider runnable load average in move_tasks())
sets all top-level cfs_rqs' h_load to rq->avg.load_avg_contrib, which is
always 0. This mistype leads to all tasks having weight 0 when load
balancing in a cpu-cgroup enabled setup. There obviously should be sum
of weights of all runnable tasks there instead. Fix it.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Reviewed-by: Paul Turner <pjt@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1379173186-11944-1-git-send-email-vdavydov@parallels.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In busiest->group_imb case we can come to fix_small_imbalance() with
local->avg_load > busiest->avg_load. This can result in wrong imbalance
fix-up, because there is the following check there where all the
members are unsigned:
if (busiest->avg_load - local->avg_load + scaled_busy_load_per_task >=
(scaled_busy_load_per_task * imbn)) {
env->imbalance = busiest->load_per_task;
return;
}
As a result we can end up constantly bouncing tasks from one cpu to
another if there are pinned tasks.
Fix it by substituting the subtraction with an equivalent addition in
the check.
[ The bug can be caught by running 2*N cpuhogs pinned to two logical cpus
belonging to different cores on an HT-enabled machine with N logical
cpus: just look at se.nr_migrations growth. ]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/ef167822e5c5b2d96cf5b0e3e4f4bdff3f0414a2.1379252740.git.vdavydov@parallels.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In busiest->group_imb case we can come to calculate_imbalance() with
local->avg_load >= busiest->avg_load >= sds->avg_load. This can result
in imbalance overflow, because it is calculated as follows
env->imbalance = min(
max_pull * busiest->group_power,
(sds->avg_load - local->avg_load) * local->group_power) / SCHED_POWER_SCALE;
As a result we can end up constantly bouncing tasks from one cpu to
another if there are pinned tasks.
Fix this by skipping the assignment and assuming imbalance=0 in case
local->avg_load > sds->avg_load.
[ The bug can be caught by running 2*N cpuhogs pinned to two logical cpus
belonging to different cores on an HT-enabled machine with N logical
cpus: just look at se.nr_migrations growth. ]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/8f596cc6bc0e5e655119dc892c9bfcad26e971f4.1379252740.git.vdavydov@parallels.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Do away with 'phantom' cores due to N*frac(smt_power) >= 1 by limiting
the capacity to the actual number of cores.
The assumption of 1 < smt_power < 2 is an actual requirement because
of what SMT is so this should work regardless of the SMT
implementation.
It can still be defeated by creative use of cpu hotplug, but if you're
one of those freaks, you get to live with it.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Vincent Guittot <vincent.guitto@linaro.org>
Link: http://lkml.kernel.org/n/tip-dczmbi8tfgixacg1ji2av1un@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When looking at the code I noticed we don't actually compute
sgp->power_orig correctly for groups, fix that.
Currently the only consumer of that value is fix_small_capacity()
which is only used on POWER7+ and that code excludes this case by
being limited to SD_SHARE_CPUPOWER which is only ever set on the SMT
domain which must be the lowest domain and this has singleton groups.
So nothing should be affected by this change.
Cc: Michael Neuling <mikey@neuling.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-db2pe0vxwunv37plc7onnugj@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Change the group_imb detection from the old 'load-spike' detector to
an actual imbalance detector. We set it from the lower domain balance
pass when it fails to create a balance in the presence of task
affinities.
The advantage is that this should no longer generate the false
positive group_imb conditions generated by transient load spikes from
the normal balancing/bulk-wakeup etc. behaviour.
While I haven't actually observed those they could happen.
I'm not entirely happy with this patch; it somehow feels a little
fragile.
Nor does it solve the biggest issue I have with the group_imb code; it
it still a fragile construct in that once we 'fixed' the imbalance
we'll not detect the group_imb again and could end up re-creating it.
That said, this patch does seem to preserve behaviour for the
described degenerate case. In particular on my 2*6*2 wsm-ep:
taskset -c 3-11 bash -c 'for ((i=0;i<9;i++)) do while :; do :; done & done'
ends up with 9 spinners, each on their own CPU; whereas if you disable
the group_imb code that typically doesn't happen (you'll get one pair
sharing a CPU most of the time).
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-36fpbgl39dv4u51b6yz2ypz5@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is a small race between copy_process() and cgroup_attach_task()
where child->se.parent,cfs_rq points to invalid (old) ones.
parent doing fork() | someone moving the parent to another cgroup
-------------------------------+---------------------------------------------
copy_process()
+ dup_task_struct()
-> parent->se is copied to child->se.
se.parent,cfs_rq of them point to old ones.
cgroup_attach_task()
+ cgroup_task_migrate()
-> parent->cgroup is updated.
+ cpu_cgroup_attach()
+ sched_move_task()
+ task_move_group_fair()
+- set_task_rq()
-> se.parent,cfs_rq of parent
are updated.
+ cgroup_fork()
-> parent->cgroup is copied to child->cgroup. (*1)
+ sched_fork()
+ task_fork_fair()
-> se.parent,cfs_rq of child are accessed
while they point to old ones. (*2)
In the worst case, this bug can lead to "use-after-free" and cause a panic,
because it's new cgroup's refcount that is incremented at (*1),
so the old cgroup(and related data) can be freed before (*2).
In fact, a panic caused by this bug was originally caught in RHEL6.4.
BUG: unable to handle kernel NULL pointer dereference at (null)
IP: [<ffffffff81051e3e>] sched_slice+0x6e/0xa0
[...]
Call Trace:
[<ffffffff81051f25>] place_entity+0x75/0xa0
[<ffffffff81056a3a>] task_fork_fair+0xaa/0x160
[<ffffffff81063c0b>] sched_fork+0x6b/0x140
[<ffffffff8106c3c2>] copy_process+0x5b2/0x1450
[<ffffffff81063b49>] ? wake_up_new_task+0xd9/0x130
[<ffffffff8106d2f4>] do_fork+0x94/0x460
[<ffffffff81072a9e>] ? sys_wait4+0xae/0x100
[<ffffffff81009598>] sys_clone+0x28/0x30
[<ffffffff8100b393>] stub_clone+0x13/0x20
[<ffffffff8100b072>] ? system_call_fastpath+0x16/0x1b
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/039601ceae06$733d3130$59b79390$@mxp.nes.nec.co.jp
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 23f0d20 ("sched: Factor out code to should_we_balance()")
introduces the should_we_balance() function. This function should
return 1 if this cpu is appropriate for balancing. But the newly
introduced code doesn't do so, it returns 0 instead of 1.
This introduces performance regression, reported by Dave Chinner:
v4 filesystem v5 filesystem
3.11+xfsdev: 220k files/s 225k files/s
3.12-git 180k files/s 185k files/s
3.12-git-revert 245k files/s 247k files/s
You can find more detailed information at:
https://lkml.org/lkml/2013/9/10/1
This patch corrects the return value of should_we_balance()
function as orignally intended.
With this patch, Dave Chinner reports that the regression is gone:
v4 filesystem v5 filesystem
3.11+xfsdev: 220k files/s 225k files/s
3.12-git 180k files/s 185k files/s
3.12-git-revert 245k files/s 247k files/s
3.12-git-fix 249k files/s 248k files/s
Reported-by: Dave Chinner <dchinner@redhat.com>
Tested-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Link: http://lkml.kernel.org/r/20130910065448.GA20368@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler changes from Ingo Molnar:
"Various optimizations, cleanups and smaller fixes - no major changes
in scheduler behavior"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/fair: Fix the sd_parent_degenerate() code
sched/fair: Rework and comment the group_imb code
sched/fair: Optimize find_busiest_queue()
sched/fair: Make group power more consistent
sched/fair: Remove duplicate load_per_task computations
sched/fair: Shrink sg_lb_stats and play memset games
sched: Clean-up struct sd_lb_stat
sched: Factor out code to should_we_balance()
sched: Remove one division operation in find_busiest_queue()
sched/cputime: Use this_cpu_add() in task_group_account_field()
cpumask: Fix cpumask leak in partition_sched_domains()
sched/x86: Optimize switch_mm() for multi-threaded workloads
generic-ipi: Kill unnecessary variable - csd_flags
numa: Mark __node_set() as __always_inline
sched/fair: Cleanup: remove duplicate variable declaration
sched/__wake_up_sync_key(): Fix nr_exclusive tasks which lead to WF_SYNC clearing
Rik reported some weirdness due to the group_imb code. As a start to
looking at it, clean it up a little and add a few explanatory
comments.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-caeeqttnla4wrrmhp5uf89gp@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use for_each_cpu_and() and thereby avoid computing the capacity for
CPUs we know we're not interested in.
Reviewed-by: Paul Turner <pjt@google.com>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-lppceyv6kb3a19g8spmrn20b@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For easier access, less dereferences and more consistent value, store
the group power in update_sg_lb_stats() and use it thereafter. The
actual value in sched_group::sched_group_power::power can change
throughout the load-balance pass if we're unlucky.
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-739xxqkyvftrhnh9ncudutc7@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since we already compute (but don't store) the sgs load_per_task value
in update_sg_lb_stats() we might as well store it and not re-compute
it later on.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-ym1vmljiwbzgdnnrwp9azftq@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We can shrink sg_lb_stats because rq::nr_running is an unsigned int
and cpu numbers are 'int'
Before:
sgs: /* size: 72, cachelines: 2, members: 10 */
sds: /* size: 184, cachelines: 3, members: 7 */
After:
sgs: /* size: 56, cachelines: 1, members: 10 */
sds: /* size: 152, cachelines: 3, members: 7 */
Further we can avoid clearing all of sds since we do a total
clear/assignment of sg_stats in update_sg_lb_stats() with exception of
busiest_stat.avg_load which is referenced in update_sd_pick_busiest().
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-0klzmz9okll8wc0nsudguc9p@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is no reason to maintain separate variables for this_group
and busiest_group in sd_lb_stat, except saving some space.
But this structure is always allocated in stack, so this saving
isn't really benificial [peterz: reducing stack space is good; in this
case readability increases enough that I think its still beneficial]
This patch unify these variables, so IMO, readability may be improved.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
[ Rename this to local -- avoids confusion between this_cpu and the C++ this pointer. ]
Reviewed-by: Paul Turner <pjt@google.com>
[ Lots of style edits, a few fixes and a rename. ]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1375778203-31343-4-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now checking whether this cpu is appropriate to balance or not
is embedded into update_sg_lb_stats() and this checking has no direct
relationship to this function. There is not enough reason to place
this checking at update_sg_lb_stats(), except saving one iteration
for sched_group_cpus.
In this patch, I factor out this checking to should_we_balance() function.
And before doing actual work for load_balancing, check whether this cpu is
appropriate to balance via should_we_balance(). If this cpu is not
a candidate for balancing, it quit the work immediately.
With this change, we can save two memset cost and can expect better
compiler optimization.
Below is result of this patch.
* Vanilla *
text data bss dec hex filename
34499 1136 116 35751 8ba7 kernel/sched/fair.o
* Patched *
text data bss dec hex filename
34243 1136 116 35495 8aa7 kernel/sched/fair.o
In addition, rename @balance to @continue_balancing in order to represent
its purpose more clearly.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
[ s/should_balance/continue_balancing/g ]
Reviewed-by: Paul Turner <pjt@google.com>
[ Made style changes and a fix in should_we_balance(). ]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1375778203-31343-3-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.19 (GNU/Linux)
iQEcBAABAgAGBQJSCDSjAAoJEHm+PkMAQRiGDXMIAI7Loae0Oqb1eoeJkvjyZsBS
OJDeeEcn+k58VbxVHyRdc7hGo4yI4tUZm172SpnOaM8sZ/ehPU7zBrwJK2lzX334
/jAM3uvVPfxA2nu0I4paNpkED/NQ8NRRsYE1iTE8dzHXOH6dA3mgp5qfco50rQvx
rvseXpME4KIAJEq4jnyFZF5+nuHiPueM9JftPmSSmJJ3/KY9kY1LESovyWd7ttg1
jYSVPFal9J0E+tl2UQY5g9H16GqhhjYn+39Iei6Q5P4bL4ZubQgTRQTN9nyDc06Z
ezQtGoqZ8kEz/2SyRlkda6PzjSEhgXlc8mCL5J7AW+dMhTHHx2IrosjiCA80kG8=
=c0rK
-----END PGP SIGNATURE-----
Merge tag 'v3.11-rc5' into perf/core
Merge Linux 3.11-rc5, to sync up with the latest upstream fixes since -rc1.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler fixes from Ingo Molnar:
"Docbook fixes that make 99% of the diffstat, plus a oneliner fix"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched: Ensure update_cfs_shares() is called for parents of continuously-running tasks
sched: Fix some kernel-doc warnings
Commit 3105b86a9f ("mm: sched: numa: Control enabling and disabling of
NUMA balancing if !SCHED_DEBUG") defined numabalancing_enabled to
control the enabling and disabling of automatic NUMA balancing, but it
is never used.
I believe the intention was to use this in place of sched_feat_numa(NUMA).
Currently, if SCHED_DEBUG is not defined, sched_feat_numa(NUMA) will
never be changed from the initial "false".
Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We typically update a task_group's shares within the dequeue/enqueue
path. However, continuously running tasks sharing a CPU are not
subject to these updates as they are only put/picked. Unfortunately,
when we reverted f269ae046 (in 17bc14b7), we lost the augmenting
periodic update that was supposed to account for this; resulting in a
potential loss of fairness.
To fix this, re-introduce the explicit update in
update_cfs_rq_blocked_load() [called via entity_tick()].
Reported-by: Max Hailperin <max@gustavus.edu>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/n/tip-9545m3apw5d93ubyrotrj31y@git.kernel.org
Cc: <stable@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Smart wake-affine is using node-size as the factor currently, but the overhead
of the mask operation is high.
Thus, this patch introduce the 'sd_llc_size' percpu variable, which will record
the highest cache-share domain size, and make it to be the new factor, in order
to reduce the overhead and make it more reasonable.
Tested-by: Davidlohr Bueso <davidlohr.bueso@hp.com>
Tested-by: Michael Wang <wangyun@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Michael Wang <wangyun@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Link: http://lkml.kernel.org/r/51D5008E.6030102@linux.vnet.ibm.com
[ Tidied up the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The wake-affine scheduler feature is currently always trying to pull
the wakee close to the waker. In theory this should be beneficial if
the waker's CPU caches hot data for the wakee, and it's also beneficial
in the extreme ping-pong high context switch rate case.
Testing shows it can benefit hackbench up to 15%.
However, the feature is somewhat blind, from which some workloads
such as pgbench suffer. It's also time-consuming algorithmically.
Testing shows it can damage pgbench up to 50% - far more than the
benefit it brings in the best case.
So wake-affine should be smarter and it should realize when to
stop its thankless effort at trying to find a suitable CPU to wake on.
This patch introduces 'wakee_flips', which will be increased each
time the task flips (switches) its wakee target.
So a high 'wakee_flips' value means the task has more than one
wakee, and the bigger the number, the higher the wakeup frequency.
Now when making the decision on whether to pull or not, pay attention to
the wakee with a high 'wakee_flips', pulling such a task may benefit
the wakee. Also imply that the waker will face cruel competition later,
it could be very cruel or very fast depends on the story behind
'wakee_flips', waker therefore suffers.
Furthermore, if waker also has a high 'wakee_flips', that implies that
multiple tasks rely on it, then waker's higher latency will damage all
of them, so pulling wakee seems to be a bad deal.
Thus, when 'waker->wakee_flips / wakee->wakee_flips' becomes
higher and higher, the cost of pulling seems to be worse and worse.
The patch therefore helps the wake-affine feature to stop its pulling
work when:
wakee->wakee_flips > factor &&
waker->wakee_flips > (factor * wakee->wakee_flips)
The 'factor' here is the number of CPUs in the current CPU's NUMA node,
so a bigger node will lead to more pulling since the trial becomes more
severe.
After applying the patch, pgbench shows up to 40% improvements and no regressions.
Tested with 12 cpu x86 server and tip 3.10.0-rc7.
The percentages in the final column highlight the areas with the biggest wins,
all other areas improved as well:
pgbench base smart
| db_size | clients | tps | | tps |
+---------+---------+-------+ +-------+
| 22 MB | 1 | 10598 | | 10796 |
| 22 MB | 2 | 21257 | | 21336 |
| 22 MB | 4 | 41386 | | 41622 |
| 22 MB | 8 | 51253 | | 57932 |
| 22 MB | 12 | 48570 | | 54000 |
| 22 MB | 16 | 46748 | | 55982 | +19.75%
| 22 MB | 24 | 44346 | | 55847 | +25.93%
| 22 MB | 32 | 43460 | | 54614 | +25.66%
| 7484 MB | 1 | 8951 | | 9193 |
| 7484 MB | 2 | 19233 | | 19240 |
| 7484 MB | 4 | 37239 | | 37302 |
| 7484 MB | 8 | 46087 | | 50018 |
| 7484 MB | 12 | 42054 | | 48763 |
| 7484 MB | 16 | 40765 | | 51633 | +26.66%
| 7484 MB | 24 | 37651 | | 52377 | +39.11%
| 7484 MB | 32 | 37056 | | 51108 | +37.92%
| 15 GB | 1 | 8845 | | 9104 |
| 15 GB | 2 | 19094 | | 19162 |
| 15 GB | 4 | 36979 | | 36983 |
| 15 GB | 8 | 46087 | | 49977 |
| 15 GB | 12 | 41901 | | 48591 |
| 15 GB | 16 | 40147 | | 50651 | +26.16%
| 15 GB | 24 | 37250 | | 52365 | +40.58%
| 15 GB | 32 | 36470 | | 50015 | +37.14%
Signed-off-by: Michael Wang <wangyun@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/51D50057.9000809@linux.vnet.ibm.com
[ Improved the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The bad thing about update_h_load(), which computes hierarchical load
factor for task groups, is that it is called for each task group in the
system before every load balancer run, and since rebalance can be
triggered very often, this function can eat really a lot of cpu time if
there are many cpu cgroups in the system.
Although the situation was improved significantly by commit a35b646
('sched, cgroup: Reduce rq->lock hold times for large cgroup
hierarchies'), the problem still can arise under some kinds of loads,
e.g. when cpus are switching from idle to busy and back very frequently.
For instance, when I start 1000 of processes that wake up every
millisecond on my 8 cpus host, 'top' and 'perf top' show:
Cpu(s): 17.8%us, 24.3%sy, 0.0%ni, 57.9%id, 0.0%wa, 0.0%hi, 0.0%si
Events: 243K cycles
7.57% [kernel] [k] __schedule
7.08% [kernel] [k] timerqueue_add
6.13% libc-2.12.so [.] usleep
Then if I create 10000 *idle* cpu cgroups (no processes in them), cpu
usage increases significantly although the 'wakers' are still executing
in the root cpu cgroup:
Cpu(s): 19.1%us, 48.7%sy, 0.0%ni, 31.6%id, 0.0%wa, 0.0%hi, 0.7%si
Events: 230K cycles
24.56% [kernel] [k] tg_load_down
5.76% [kernel] [k] __schedule
This happens because this particular kind of load triggers 'new idle'
rebalance very frequently, which requires calling update_h_load(),
which, in turn, calls tg_load_down() for every *idle* cpu cgroup even
though it is absolutely useless, because idle cpu cgroups have no tasks
to pull.
This patch tries to improve the situation by making h_load calculation
proceed only when h_load is really necessary. To achieve this, it
substitutes update_h_load() with update_cfs_rq_h_load(), which computes
h_load only for a given cfs_rq and all its ascendants, and makes the
load balancer call this function whenever it considers if a task should
be pulled, i.e. it moves h_load calculations directly to task_h_load().
For h_load of the same cfs_rq not to be updated multiple times (in case
several tasks in the same cgroup are considered during the same balance
run), the patch keeps the time of the last h_load update for each cfs_rq
and breaks calculation when it finds h_load to be uptodate.
The benefit of it is that h_load is computed only for those cfs_rq's,
which really need it, in particular all idle task groups are skipped.
Although this, in fact, moves h_load calculation under rq lock, it
should not affect latency much, because the amount of work done under rq
lock while trying to pull tasks is limited by sched_nr_migrate.
After the patch applied with the setup described above (1000 wakers in
the root cgroup and 10000 idle cgroups), I get:
Cpu(s): 16.9%us, 24.8%sy, 0.0%ni, 58.4%id, 0.0%wa, 0.0%hi, 0.0%si
Events: 242K cycles
7.57% [kernel] [k] __schedule
6.70% [kernel] [k] timerqueue_add
5.93% libc-2.12.so [.] usleep
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1373896159-1278-1-git-send-email-vdavydov@parallels.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
cfs_rq is declared twice, fix it.
Also use 'se' instead of '&p->se'.
Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/169201374366727@web6d.yandex.ru
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When building the htmldocs (in verbose mode), scripts/kernel-doc
reports the follwing type of warnings:
Warning(kernel/sched/core.c:936): No description found for return value of 'task_curr'
...
Fix those by:
- adding the missing descriptions
- using "Return" sections for the descriptions
Signed-off-by: Yacine Belkadi <yacine.belkadi.1@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1373654747-2389-1-git-send-email-yacine.belkadi.1@gmail.com
[ While at it, fix the cpupri_set() explanation. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The __cpuinit type of throwaway sections might have made sense
some time ago when RAM was more constrained, but now the savings
do not offset the cost and complications. For example, the fix in
commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time")
is a good example of the nasty type of bugs that can be created
with improper use of the various __init prefixes.
After a discussion on LKML[1] it was decided that cpuinit should go
the way of devinit and be phased out. Once all the users are gone,
we can then finally remove the macros themselves from linux/init.h.
This removes all the uses of the __cpuinit macros from C files in
the core kernel directories (kernel, init, lib, mm, and include)
that don't really have a specific maintainer.
[1] https://lkml.org/lkml/2013/5/20/589
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Similar to runnable_load_avg, blocked_load_avg variable, long type is
enough for removed_load in 64 bit or 32 bit machine.
Then we avoid the expensive atomic64 operations on 32 bit machine.
Signed-off-by: Alex Shi <alex.shi@intel.com>
Reviewed-by: Paul Turner <pjt@google.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1371694737-29336-12-git-send-email-alex.shi@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since tg->load_avg is smaller than tg->load_weight, we don't need a
atomic64_t variable for load_avg in 32 bit machine.
The same reason for cfs_rq->tg_load_contrib.
The atomic_long_t/unsigned long variable type are more efficient and
convenience for them.
Signed-off-by: Alex Shi <alex.shi@intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1371694737-29336-11-git-send-email-alex.shi@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since the 'u64 runnable_load_avg, blocked_load_avg' in cfs_rq struct are
smaller than 'unsigned long' cfs_rq->load.weight. We don't need u64
vaiables to describe them. unsigned long is more efficient and convenience.
Signed-off-by: Alex Shi <alex.shi@intel.com>
Reviewed-by: Paul Turner <pjt@google.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1371694737-29336-10-git-send-email-alex.shi@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Aside from using runnable load average in background, move_tasks is
also the key function in load balance. We need consider the runnable
load average in it in order to make it an apple to apple load
comparison.
Morten had caught a div u64 bug on ARM, thanks!
Thanks-to: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Alex Shi <alex.shi@intel.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1371694737-29336-8-git-send-email-alex.shi@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
They are the base values in load balance, update them with rq runnable
load average, then the load balance will consider runnable load avg
naturally.
We also try to include the blocked_load_avg as cpu load in balancing,
but that cause kbuild performance drop 6% on every Intel machine, and
aim7/oltp drop on some of 4 CPU sockets machines.
Or only add blocked_load_avg into get_rq_runable_load, hackbench still
drop a little on NHM EX.
Signed-off-by: Alex Shi <alex.shi@intel.com>
Reviewed-by: Gu Zheng <guz.fnst@cn.fujitsu.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1371694737-29336-7-git-send-email-alex.shi@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The woken migrated task will __synchronize_entity_decay(se); in
migrate_task_rq_fair, then it needs to set
`se->avg.last_runnable_update -= (-se->avg.decay_count) << 20' before
update_entity_load_avg, in order to avoid sleep time is updated twice
for se.avg.load_avg_contrib in both __syncchronize and
update_entity_load_avg.
However if the sleeping task is woken up from the same cpu, it miss
the last_runnable_update before update_entity_load_avg(se, 0, 1), then
the sleep time was used twice in both functions. So we need to remove
the double sleep time accounting.
Paul also contributed some code comments in this commit.
Signed-off-by: Alex Shi <alex.shi@intel.com>
Reviewed-by: Paul Turner <pjt@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1371694737-29336-5-git-send-email-alex.shi@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We need to initialize the se.avg.{decay_count, load_avg_contrib} for a
new forked task. Otherwise random values of above variables cause a
mess when a new task is enqueued:
enqueue_task_fair
enqueue_entity
enqueue_entity_load_avg
and make fork balancing imbalance due to incorrect load_avg_contrib.
Further more, Morten Rasmussen notice some tasks were not launched at
once after created. So Paul and Peter suggest giving a start value for
new task runnable avg time same as sched_slice().
PeterZ said:
> So the 'problem' is that our running avg is a 'floating' average; ie. it
> decays with time. Now we have to guess about the future of our newly
> spawned task -- something that is nigh impossible seeing these CPU
> vendors keep refusing to implement the crystal ball instruction.
>
> So there's two asymptotic cases we want to deal well with; 1) the case
> where the newly spawned program will be 'nearly' idle for its lifetime;
> and 2) the case where its cpu-bound.
>
> Since we have to guess, we'll go for worst case and assume its
> cpu-bound; now we don't want to make the avg so heavy adjusting to the
> near-idle case takes forever. We want to be able to quickly adjust and
> lower our running avg.
>
> Now we also don't want to make our avg too light, such that it gets
> decremented just for the new task not having had a chance to run yet --
> even if when it would run, it would be more cpu-bound than not.
>
> So what we do is we make the initial avg of the same duration as that we
> guess it takes to run each task on the system at least once -- aka
> sched_slice().
>
> Of course we can defeat this with wakeup/fork bombs, but in the 'normal'
> case it should be good enough.
Paul also contributed most of the code comments in this commit.
Signed-off-by: Alex Shi <alex.shi@intel.com>
Reviewed-by: Gu Zheng <guz.fnst@cn.fujitsu.com>
Reviewed-by: Paul Turner <pjt@google.com>
[peterz; added explanation of sched_slice() usage]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1371694737-29336-4-git-send-email-alex.shi@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Remove CONFIG_FAIR_GROUP_SCHED that covers the runnable info, then
we can use runnable load variables.
Also remove 2 CONFIG_FAIR_GROUP_SCHED setting which is not in reverted
patch(introduced in 9ee474f), but also need to revert.
Signed-off-by: Alex Shi <alex.shi@intel.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/51CA76A3.3050207@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
default_cfs_period(), do_sched_cfs_period_timer(), do_sched_cfs_slack_timer()
already defined previously, no need to declare again.
Signed-off-by: Michael Wang <wangyun@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/51AD8808.7020608@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Directly use rq to save some code.
Signed-off-by: Michael Wang <wangyun@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/51AD87EB.1070605@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 78becc2709 ("sched: Use an accessor to read the rq clock")
introduces rq_clock(), which obsoletes the use of the "rq" variable
in expire_cfs_rq_runtime() and triggers this build warning:
kernel/sched/fair.c: In function 'expire_cfs_rq_runtime':
kernel/sched/fair.c:2159:13: warning: unused variable 'rq' [-Wunused-variable]
Signed-off-by: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Paul Turner <pjt@google.com>
Cc: peterz@infradead.org
Link: http://lkml.kernel.org/r/1369904660-14169-1-git-send-email-kamalesh@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Read the runqueue clock through an accessor. This
prepares for adding a debugging infrastructure to
detect missing or redundant calls to update_rq_clock()
between a scheduler's entry and exit point.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul Turner <pjt@google.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1365724262-20142-6-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In this function we are making use of rq->clock right before the
update of the rq clock, let's just call update_rq_clock() just
before that to avoid using a stale rq clock value.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul Turner <pjt@google.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1365724262-20142-5-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Because we may update the execution time in
sched_group_set_shares()->update_cfs_shares()->reweight_entity()->update_curr()
before reweighting the entity while setting the group shares and this requires
an uptodate version of the runqueue clock.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul Turner <pjt@google.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1365724262-20142-3-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It is a few instructions more efficent to and slightly more
readable to use this_rq()-> instead of cpu_rq(smp_processor_id())-> .
Size comparison of kernel/sched/fair.o:
text data bss dec hex filename
27972 122 26 28120 6dd8 fair.o.before
27956 122 26 28104 6dc8 fair.o.after
Signed-off-by: Nathan Zimmer <nzimmer@sgi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1368116643-87971-1-git-send-email-nzimmer@sgi.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
These inlines are only used by kernel/sched/fair.c so they do
not need to be present in the main kernel/sched/sched.h file.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/1366398650-31599-3-git-send-email-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The full dynticks tree needs the latest RCU and sched
upstream updates in order to fix some dependencies.
Merge a common upstream merge point that has these
updates.
Conflicts:
include/linux/perf_event.h
kernel/rcutree.h
kernel/rcutree_plugin.h
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
On my SMP platform which is made of 5 cores in 2 clusters, I
have the nr_busy_cpu field of sched_group_power struct that is
not null when the platform is fully idle - which makes the
scheduler unhappy.
The root cause is:
During the boot sequence, some CPUs reach the idle loop and set
their NOHZ_IDLE flag while waiting for others CPUs to boot. But
the nr_busy_cpus field is initialized later with the assumption
that all CPUs are in the busy state whereas some CPUs have
already set their NOHZ_IDLE flag.
More generally, the NOHZ_IDLE flag must be initialized when new
sched_domains are created in order to ensure that NOHZ_IDLE and
nr_busy_cpus are aligned.
This condition can be ensured by adding a synchronize_rcu()
between the destruction of old sched_domains and the creation of
new ones so the NOHZ_IDLE flag will not be updated with old
sched_domain once it has been initialized. But this solution
introduces a additionnal latency in the rebuild sequence that is
called during cpu hotplug.
As suggested by Frederic Weisbecker, another solution is to have
the same rcu lifecycle for both NOHZ_IDLE and sched_domain
struct. A new nohz_idle field is added to sched_domain so both
status and sched_domain will share the same RCU lifecycle and
will be always synchronized. In addition, there is no more need
to protect nohz_idle against concurrent access as it is only
modified by 2 exclusive functions called by local cpu.
This solution has been prefered to the creation of a new struct
with an extra pointer indirection for sched_domain.
The synchronization is done at the cost of :
- An additional indirection and a rcu_dereference for accessing nohz_idle.
- We use only the nohz_idle field of the top sched_domain.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: linaro-kernel@lists.linaro.org
Cc: peterz@infradead.org
Cc: fweisbec@gmail.com
Cc: pjt@google.com
Cc: rostedt@goodmis.org
Cc: efault@gmx.de
Link: http://lkml.kernel.org/r/1366729142-14662-1-git-send-email-vincent.guittot@linaro.org
[ Fixed !NO_HZ build bug. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 88b8dac0 makes load_balance() consider other cpus in its
group. But, in that, there is no code for preventing to
re-select dst-cpu. So, same dst-cpu can be selected over and
over.
This patch add functionality to load_balance() in order to
exclude cpu which is selected once. We prevent to re-select
dst_cpu via env's cpus, so now, env's cpus is a candidate not
only for src_cpus, but also dst_cpus.
With this patch, we can remove lb_iterations and
max_lb_iterations, because we decide whether we can go ahead or
not via env's cpus.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Tested-by: Jason Low <jason.low2@hp.com>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Davidlohr Bueso <davidlohr.bueso@hp.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1366705662-3587-7-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This name doesn't represent specific meaning.
So rename it to imply it's purpose.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Tested-by: Jason Low <jason.low2@hp.com>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Davidlohr Bueso <davidlohr.bueso@hp.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1366705662-3587-6-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, LBF_ALL_PINNED is cleared after affinity check is
passed. So, if task migration is skipped by small load value or
small imbalance value in move_tasks(), we don't clear
LBF_ALL_PINNED. At last, we trigger 'redo' in load_balance().
Imbalance value is often so small that any tasks cannot be moved
to other cpus and, of course, this situation may be continued
after we change the target cpu. So this patch move up affinity
check code and clear LBF_ALL_PINNED before evaluating load value
in order to mitigate useless redoing overhead.
In addition, re-order some comments correctly.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Tested-by: Jason Low <jason.low2@hp.com>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Davidlohr Bueso <davidlohr.bueso@hp.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1366705662-3587-5-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 88b8dac0 makes load_balance() consider other cpus in its
group, regardless of idle type. When we do NEWLY_IDLE balancing,
we should not consider it, because a motivation of NEWLY_IDLE
balancing is to turn this cpu to non idle state if needed. This
is not the case of other cpus. So, change code not to consider
other cpus for NEWLY_IDLE balancing.
With this patch, assign 'if (pulled_task) this_rq->idle_stamp =
0' in idle_balance() is corrected, because NEWLY_IDLE balancing
doesn't consider other cpus. Assigning to 'this_rq->idle_stamp'
is now valid.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Tested-by: Jason Low <jason.low2@hp.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Davidlohr Bueso <davidlohr.bueso@hp.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1366705662-3587-4-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
After commit 88b8dac0, dst-cpu can be changed in load_balance(),
then we can't know cpu_idle_type of dst-cpu when load_balance()
return positive. So, add explicit cpu_idle_type checking.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Tested-by: Jason Low <jason.low2@hp.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Davidlohr Bueso <davidlohr.bueso@hp.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1366705662-3587-3-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
cur_ld_moved is reset if env.flags hit LBF_NEED_BREAK.
So, there is possibility that we miss doing resched_cpu().
Correct it as changing position of resched_cpu()
before checking LBF_NEED_BREAK.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Tested-by: Jason Low <jason.low2@hp.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Davidlohr Bueso <davidlohr.bueso@hp.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1366705662-3587-2-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The current update of the rq's load can be erroneous when RT
tasks are involved.
The update of the load of a rq that becomes idle, is done only
if the avg_idle is less than sysctl_sched_migration_cost. If RT
tasks and short idle duration alternate, the runnable_avg will
not be updated correctly and the time will be accounted as idle
time when a CFS task wakes up.
A new idle_enter function is called when the next task is the
idle function so the elapsed time will be accounted as run time
in the load of the rq, whatever the average idle time is. The
function update_rq_runnable_avg is removed from idle_balance.
When a RT task is scheduled on an idle CPU, the update of the
rq's load is not done when the rq exit idle state because CFS's
functions are not called. Then, the idle_balance, which is
called just before entering the idle function, updates the rq's
load and makes the assumption that the elapsed time since the
last update, was only running time.
As a consequence, the rq's load of a CPU that only runs a
periodic RT task, is close to LOAD_AVG_MAX whatever the running
duration of the RT task is.
A new idle_exit function is called when the prev task is the
idle function so the elapsed time will be accounted as idle time
in the rq's load.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: linaro-kernel@lists.linaro.org
Cc: peterz@infradead.org
Cc: pjt@google.com
Cc: fweisbec@gmail.com
Cc: efault@gmx.de
Link: http://lkml.kernel.org/r/1366302867-5055-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A comment in function rebalance_domains() mentions
arch_init_sched_domains(), but that function does not exist
anymore. The proper function is init_sched_domains().
Signed-off-by: Libin <huawei.libin@huawei.com>
Cc: <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1364814841-49156-1-git-send-email-huawei.libin@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
At this point tsk_cache_hot is always true, so no need to check it.
Signed-off-by: Zhang Hang <bob.zhanghang@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/51650107.9040606@huawei.com
[ Also remove unnecessary schedstat #ifdefs. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are planning to convert the dynticks Kconfig options layout
into a choice menu. The user must be able to easily pick
any of the following implementations: constant periodic tick,
idle dynticks, full dynticks.
As this implies a mutual exclusion, the two dynticks implementions
need to converge on the selection of a common Kconfig option in order
to ease the sharing of a common infrastructure.
It would thus seem pretty natural to reuse CONFIG_NO_HZ to
that end. It already implements all the idle dynticks code
and the full dynticks depends on all that code for now.
So ideally the choice menu would propose CONFIG_NO_HZ_IDLE and
CONFIG_NO_HZ_EXTENDED then both would select CONFIG_NO_HZ.
On the other hand we want to stay backward compatible: if
CONFIG_NO_HZ is set in an older config file, we want to
enable CONFIG_NO_HZ_IDLE by default.
But we can't afford both at the same time or we run into
a circular dependency:
1) CONFIG_NO_HZ_IDLE and CONFIG_NO_HZ_EXTENDED both select
CONFIG_NO_HZ
2) If CONFIG_NO_HZ is set, we default to CONFIG_NO_HZ_IDLE
We might be able to support that from Kconfig/Kbuild but it
may not be wise to introduce such a confusing behaviour.
So to solve this, create a new CONFIG_NO_HZ_COMMON option
which gathers the common code between idle and full dynticks
(that common code for now is simply the idle dynticks code)
and select it from their referring Kconfig.
Then we'll later create CONFIG_NO_HZ_IDLE and map CONFIG_NO_HZ
to it for backward compatibility.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
As default_scale_{freq,smt}_power() and update_rt_power() are
used in kernel/sched/fair.c only, annotate them as static
functions.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/5135A7AF.8010900@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler changes from Ingo Molnar:
"Main changes:
- scheduler side full-dynticks (user-space execution is undisturbed
and receives no timer IRQs) preparation changes that convert the
cputime accounting code to be full-dynticks ready, from Frederic
Weisbecker.
- Initial sched.h split-up changes, by Clark Williams
- select_idle_sibling() performance improvement by Mike Galbraith:
" 1 tbench pair (worst case) in a 10 core + SMT package:
pre 15.22 MB/sec 1 procs
post 252.01 MB/sec 1 procs "
- sched_rr_get_interval() ABI fix/change. We think this detail is not
used by apps (so it's not an ABI in practice), but lets keep it
under observation.
- misc RT scheduling cleanups, optimizations"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
sched/rt: Add <linux/sched/rt.h> header to <linux/init_task.h>
cputime: Remove irqsave from seqlock readers
sched, powerpc: Fix sched.h split-up build failure
cputime: Restore CPU_ACCOUNTING config defaults for PPC64
sched/rt: Move rt specific bits into new header file
sched/rt: Add a tuning knob to allow changing SCHED_RR timeslice
sched: Move sched.h sysctl bits into separate header
sched: Fix signedness bug in yield_to()
sched: Fix select_idle_sibling() bouncing cow syndrome
sched/rt: Further simplify pick_rt_task()
sched/rt: Do not account zero delta_exec in update_curr_rt()
cputime: Safely read cputime of full dynticks CPUs
kvm: Prepare to add generic guest entry/exit callbacks
cputime: Use accessors to read task cputime stats
cputime: Allow dynamic switch between tick/virtual based cputime accounting
cputime: Generic on-demand virtual cputime accounting
cputime: Move default nsecs_to_cputime() to jiffies based cputime file
cputime: Librarize per nsecs resolution cputime definitions
cputime: Avoid multiplication overflow on utime scaling
context_tracking: Export context state for generic vtime
...
Fix up conflict in kernel/context_tracking.c due to comment additions.
If the previous CPU is cache affine and idle, select it.
The current implementation simply traverses the sd_llc domain,
taking the first idle CPU encountered, which walks buddy pairs
hand in hand over the package, inflicting excruciating pain.
1 tbench pair (worst case) in a 10 core + SMT package:
pre 15.22 MB/sec 1 procs
post 252.01 MB/sec 1 procs
Signed-off-by: Mike Galbraith <bitbucket@online.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1359371965.5783.127.camel@marge.simpson.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
a4c96ae319 "sched: Unthrottle rt runqueues in
__disable_runtime()" turned the unthrottle_offline_cfs_rqs
function into a static symbol, which now triggers a warning
about it being potentially unused:
kernel/sched/fair.c:2055:13: warning: 'unthrottle_offline_cfs_rqs' defined but not used [-Wunused-function]
Marking it __maybe_unused shuts up the gcc warning and lets the
compiler safely drop the function body when it's not being used.
To reproduce, build the ARM bcm2835_defconfig.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Peter Boonstoppel <pboonstoppel@nvidia.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Turner <pjt@google.com>
Cc: linux-arm-kernel@list.infradead.org
Link: http://lkml.kernel.org/r/1359123276-15833-6-git-send-email-arnd@arndb.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The caller of sched_sliced() should pass se.cfs_rq and se as the
arguments, however in sched_rr_get_interval() we gave it
rq.cfs_rq and se, which made the following computation obviously
wrong.
The change was introduced by commit:
77034937dc sched: fix crash in sys_sched_rr_get_interval()
... 5 years ago, while it had been the correct 'cfs_rq_of' before
the commit. The change seems to be irrelevant to the commit
msg, which was to return a 0 timeslice for tasks that are on an
idle runqueue. So I believe that was just a plain typo.
Signed-off-by: Zhu Yanhai <gaoyang.zyh@taobao.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Turner <pjt@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1357621012-15039-1-git-send-email-gaoyang.zyh@taobao.com
[ Since this is an ABI and an old bug, we'll test this via a
slow upstream route, to hopefully discover any app breakage. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
task_numa_placement() oopsed on NULL p->mm when task_numa_fault() got
called in the handling of break_ksm() for ksmd. That might be a
peculiar case, which perhaps KSM could takes steps to avoid? but it's
more robust if task_numa_placement() allows for such a possibility.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Michal Hocko reported that the following build error occurs if
CONFIG_NUMA_BALANCING is set without THP support
kernel/sched/fair.c: In function ‘task_numa_work’:
kernel/sched/fair.c:932:55: error: call to ‘__build_bug_failed’ declared with attribute error: BUILD_BUG failed
The problem is that HPAGE_PMD_SHIFT triggers a BUILD_BUG() on
!CONFIG_TRANSPARENT_HUGEPAGE. This patch addresses the problem.
Reported-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.18 (GNU/Linux)
iQIcBAABAgAGBQJQx0kQAAoJEHzG/DNEskfi4fQP/R5PRovayroZALBMLnVJDaLD
Ttr9p40VNXbiJ+MfRgatJjSSJZ4Jl+fC3NEqBhcwVZhckZZb9R2s0WtrSQo5+ZbB
vdRfiuKoCaKM4cSZ08C12uTvsF6xjhjd27CTUlMkyOcDoKxMEFKelv0hocSxe4Wo
xqlv3eF+VsY7kE1BNbgBP06SX4tDpIHRxXfqJPMHaSKQmre+cU0xG2GcEu3QGbHT
DEDTI788YSaWLmBfMC+kWoaQl1+bV/FYvavIAS8/o4K9IKvgR42VzrXmaFaqrbgb
72ksa6xfAi57yTmZHqyGmts06qYeBbPpKI+yIhCMInxA9CY3lPbvHppRf0RQOyzj
YOi4hovGEMJKE+BCILukhJcZ9jCTtS3zut6v1rdvR88f4y7uhR9RfmRfsxuW7PNj
3Rmh191+n0lVWDmhOs2psXuCLJr3LEiA0dFffN1z8REUTtTAZMsj8Rz+SvBNAZDR
hsJhERVeXB6X5uQ5rkLDzbn1Zic60LjVw7LIp6SF2OYf/YKaF8vhyWOA8dyCEu8W
CGo7AoG0BO8tIIr8+LvFe8CweypysZImx4AjCfIs4u9pu/v11zmBvO9NO5yfuObF
BreEERYgTes/UITxn1qdIW4/q+Nr0iKO3CTqsmu6L1GfCz3/XzPGs3U26fUhllqi
Ka0JKgnWvsa6ez6FSzKI
=ivQa
-----END PGP SIGNATURE-----
Merge tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma
Pull Automatic NUMA Balancing bare-bones from Mel Gorman:
"There are three implementations for NUMA balancing, this tree
(balancenuma), numacore which has been developed in tip/master and
autonuma which is in aa.git.
In almost all respects balancenuma is the dumbest of the three because
its main impact is on the VM side with no attempt to be smart about
scheduling. In the interest of getting the ball rolling, it would be
desirable to see this much merged for 3.8 with the view to building
scheduler smarts on top and adapting the VM where required for 3.9.
The most recent set of comparisons available from different people are
mel: https://lkml.org/lkml/2012/12/9/108
mingo: https://lkml.org/lkml/2012/12/7/331
tglx: https://lkml.org/lkml/2012/12/10/437
srikar: https://lkml.org/lkml/2012/12/10/397
The results are a mixed bag. In my own tests, balancenuma does
reasonably well. It's dumb as rocks and does not regress against
mainline. On the other hand, Ingo's tests shows that balancenuma is
incapable of converging for this workloads driven by perf which is bad
but is potentially explained by the lack of scheduler smarts. Thomas'
results show balancenuma improves on mainline but falls far short of
numacore or autonuma. Srikar's results indicate we all suffer on a
large machine with imbalanced node sizes.
My own testing showed that recent numacore results have improved
dramatically, particularly in the last week but not universally.
We've butted heads heavily on system CPU usage and high levels of
migration even when it shows that overall performance is better.
There are also cases where it regresses. Of interest is that for
specjbb in some configurations it will regress for lower numbers of
warehouses and show gains for higher numbers which is not reported by
the tool by default and sometimes missed in treports. Recently I
reported for numacore that the JVM was crashing with
NullPointerExceptions but currently it's unclear what the source of
this problem is. Initially I thought it was in how numacore batch
handles PTEs but I'm no longer think this is the case. It's possible
numacore is just able to trigger it due to higher rates of migration.
These reports were quite late in the cycle so I/we would like to start
with this tree as it contains much of the code we can agree on and has
not changed significantly over the last 2-3 weeks."
* tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma: (50 commits)
mm/rmap, migration: Make rmap_walk_anon() and try_to_unmap_anon() more scalable
mm/rmap: Convert the struct anon_vma::mutex to an rwsem
mm: migrate: Account a transhuge page properly when rate limiting
mm: numa: Account for failed allocations and isolations as migration failures
mm: numa: Add THP migration for the NUMA working set scanning fault case build fix
mm: numa: Add THP migration for the NUMA working set scanning fault case.
mm: sched: numa: Delay PTE scanning until a task is scheduled on a new node
mm: sched: numa: Control enabling and disabling of NUMA balancing if !SCHED_DEBUG
mm: sched: numa: Control enabling and disabling of NUMA balancing
mm: sched: Adapt the scanning rate if a NUMA hinting fault does not migrate
mm: numa: Use a two-stage filter to restrict pages being migrated for unlikely task<->node relationships
mm: numa: migrate: Set last_nid on newly allocated page
mm: numa: split_huge_page: Transfer last_nid on tail page
mm: numa: Introduce last_nid to the page frame
sched: numa: Slowly increase the scanning period as NUMA faults are handled
mm: numa: Rate limit setting of pte_numa if node is saturated
mm: numa: Rate limit the amount of memory that is migrated between nodes
mm: numa: Structures for Migrate On Fault per NUMA migration rate limiting
mm: numa: Migrate pages handled during a pmd_numa hinting fault
mm: numa: Migrate on reference policy
...
This reverts commit f269ae0469.
It turns out it causes a very noticeable interactivity regression with
CONFIG_SCHED_AUTOGROUP (test-case: "make -j32" of the kernel in a
terminal window, while scrolling in a browser - the autogrouping means
that the two end up in separate cgroups, and the browser should be
smooth as silk despite the high load).
Says Paul Turner:
"It seems that the update-throttling on the wake-side is reducing the
interactive tasks' ability to preempt. While I suspect the right
longer term answer here is force these updates only in the
cross-cgroup case; this is less trivial. For this release I believe
the right answer is either going to be a revert or restore the updates
on the enqueue-side."
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Bisected-by: Mike Galbraith <efault@gmx.de>
Acked-by: Paul Turner <pjt@google.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Due to the fact that migrations are driven by the CPU a task is running
on there is no point tracking NUMA faults until one task runs on a new
node. This patch tracks the first node used by an address space. Until
it changes, PTE scanning is disabled and no NUMA hinting faults are
trapped. This should help workloads that are short-lived, do not care
about NUMA placement or have bound themselves to a single node.
This takes advantage of the logic in "mm: sched: numa: Implement slow
start for working set sampling" to delay when the checks are made. This
will take advantage of processes that set their CPU and node bindings
early in their lifetime. It will also potentially allow any initial load
balancing to take place.
Signed-off-by: Mel Gorman <mgorman@suse.de>
This patch adds Kconfig options and kernel parameters to allow the
enabling and disabling of automatic NUMA balancing. The existance
of such a switch was and is very important when debugging problems
related to transparent hugepages and we should have the same for
automatic NUMA placement.
Signed-off-by: Mel Gorman <mgorman@suse.de>
The PTE scanning rate and fault rates are two of the biggest sources of
system CPU overhead with automatic NUMA placement. Ideally a proper policy
would detect if a workload was properly placed, schedule and adjust the
PTE scanning rate accordingly. We do not track the necessary information
to do that but we at least know if we migrated or not.
This patch scans slower if a page was not migrated as the result of a
NUMA hinting fault up to sysctl_numa_balancing_scan_period_max which is
now higher than the previous default. Once every minute it will reset
the scanner in case of phase changes.
This is hilariously crude and the numbers are arbitrary. Workloads will
converge quite slowly in comparison to what a proper policy should be able
to do. On the plus side, we will chew up less CPU for workloads that have
no need for automatic balancing.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Currently the rate of scanning for an address space is controlled
by the individual tasks. The next scan is simply determined by
2*p->numa_scan_period.
The 2*p->numa_scan_period is arbitrary and never changes. At this point
there is still no proper policy that decides if a task or process is
properly placed. It just scans and assumes the next NUMA fault will
place it properly. As it is assumed that pages will get properly placed
over time, increase the scan window each time a fault is incurred. This
is a big assumption as noted in the comments.
It should be noted that changing to p->numa_scan_period will increase
system CPU usage because now the scanning rate has effectively doubled.
If that is a problem then the min_rate should be made 200ms instead of
restoring the 2* logic.
Signed-off-by: Mel Gorman <mgorman@suse.de>
If there are a large number of NUMA hinting faults and all of them
are resulting in migrations it may indicate that memory is just
bouncing uselessly around. NUMA balancing cost is likely exceeding
any benefit from locality. Rate limit the PTE updates if the node
is migration rate-limited. As noted in the comments, this distorts
the NUMA faulting statistics.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Add a 1 second delay before starting to scan the working set of
a task and starting to balance it amongst nodes.
[ note that before the constant per task WSS sampling rate patch
the initial scan would happen much later still, in effect that
patch caused this regression. ]
The theory is that short-run tasks benefit very little from NUMA
placement: they come and go, and they better stick to the node
they were started on. As tasks mature and rebalance to other CPUs
and nodes, so does their NUMA placement have to change and so
does it start to matter more and more.
In practice this change fixes an observable kbuild regression:
# [ a perf stat --null --repeat 10 test of ten bzImage builds to /dev/shm ]
!NUMA:
45.291088843 seconds time elapsed ( +- 0.40% )
45.154231752 seconds time elapsed ( +- 0.36% )
+NUMA, no slow start:
46.172308123 seconds time elapsed ( +- 0.30% )
46.343168745 seconds time elapsed ( +- 0.25% )
+NUMA, 1 sec slow start:
45.224189155 seconds time elapsed ( +- 0.25% )
45.160866532 seconds time elapsed ( +- 0.17% )
and it also fixes an observable perf bench (hackbench) regression:
# perf stat --null --repeat 10 perf bench sched messaging
-NUMA:
-NUMA: 0.246225691 seconds time elapsed ( +- 1.31% )
+NUMA no slow start: 0.252620063 seconds time elapsed ( +- 1.13% )
+NUMA 1sec delay: 0.248076230 seconds time elapsed ( +- 1.35% )
The implementation is simple and straightforward, most of the patch
deals with adding the /proc/sys/kernel/numa_balancing_scan_delay_ms tunable
knob.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
[ Wrote the changelog, ran measurements, tuned the default. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Previously, to probe the working set of a task, we'd use
a very simple and crude method: mark all of its address
space PROT_NONE.
That method has various (obvious) disadvantages:
- it samples the working set at dissimilar rates,
giving some tasks a sampling quality advantage
over others.
- creates performance problems for tasks with very
large working sets
- over-samples processes with large address spaces but
which only very rarely execute
Improve that method by keeping a rotating offset into the
address space that marks the current position of the scan,
and advance it by a constant rate (in a CPU cycles execution
proportional manner). If the offset reaches the last mapped
address of the mm then it then it starts over at the first
address.
The per-task nature of the working set sampling functionality in this tree
allows such constant rate, per task, execution-weight proportional sampling
of the working set, with an adaptive sampling interval/frequency that
goes from once per 100ms up to just once per 8 seconds. The current
sampling volume is 256 MB per interval.
As tasks mature and converge their working set, so does the
sampling rate slow down to just a trickle, 256 MB per 8
seconds of CPU time executed.
This, beyond being adaptive, also rate-limits rarely
executing systems and does not over-sample on overloaded
systems.
[ In AutoNUMA speak, this patch deals with the effective sampling
rate of the 'hinting page fault'. AutoNUMA's scanning is
currently rate-limited, but it is also fundamentally
single-threaded, executing in the knuma_scand kernel thread,
so the limit in AutoNUMA is global and does not scale up with
the number of CPUs, nor does it scan tasks in an execution
proportional manner.
So the idea of rate-limiting the scanning was first implemented
in the AutoNUMA tree via a global rate limit. This patch goes
beyond that by implementing an execution rate proportional
working set sampling rate that is not implemented via a single
global scanning daemon. ]
[ Dan Carpenter pointed out a possible NULL pointer dereference in the
first version of this patch. ]
Based-on-idea-by: Andrea Arcangeli <aarcange@redhat.com>
Bug-Found-By: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
[ Wrote changelog and fixed bug. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
NOTE: This patch is based on "sched, numa, mm: Add fault driven
placement and migration policy" but as it throws away all the policy
to just leave a basic foundation I had to drop the signed-offs-by.
This patch creates a bare-bones method for setting PTEs pte_numa in the
context of the scheduler that when faulted later will be faulted onto the
node the CPU is running on. In itself this does nothing useful but any
placement policy will fundamentally depend on receiving hints on placement
from fault context and doing something intelligent about it.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
While per-entity load-tracking is generally useful, beyond computing shares
distribution, e.g. runnable based load-balance (in progress), governors,
power-management, etc.
These facilities are not yet consumers of this data. This may be trivially
reverted when the information is required; but avoid paying the overhead for
calculations we will not use until then.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141507.422162369@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
__update_entity_runnable_avg forms the core of maintaining an entity's runnable
load average. In this function we charge the accumulated run-time since last
update and handle appropriate decay. In some cases, e.g. a waking task, this
time interval may be much larger than our period unit.
Fortunately we can exploit some properties of our series to perform decay for a
blocked update in constant time and account the contribution for a running
update in essentially-constant* time.
[*]: For any running entity they should be performing updates at the tick which
gives us a soft limit of 1 jiffy between updates, and we can compute up to a
32 jiffy update in a single pass.
C program to generate the magic constants in the arrays:
#include <math.h>
#include <stdio.h>
#define N 32
#define WMULT_SHIFT 32
const long WMULT_CONST = ((1UL << N) - 1);
double y;
long runnable_avg_yN_inv[N];
void calc_mult_inv() {
int i;
double yn = 0;
printf("inverses\n");
for (i = 0; i < N; i++) {
yn = (double)WMULT_CONST * pow(y, i);
runnable_avg_yN_inv[i] = yn;
printf("%2d: 0x%8lx\n", i, runnable_avg_yN_inv[i]);
}
printf("\n");
}
long mult_inv(long c, int n) {
return (c * runnable_avg_yN_inv[n]) >> WMULT_SHIFT;
}
void calc_yn_sum(int n)
{
int i;
double sum = 0, sum_fl = 0, diff = 0;
/*
* We take the floored sum to ensure the sum of partial sums is never
* larger than the actual sum.
*/
printf("sum y^n\n");
printf(" %8s %8s %8s\n", "exact", "floor", "error");
for (i = 1; i <= n; i++) {
sum = (y * sum + y * 1024);
sum_fl = floor(y * sum_fl+ y * 1024);
printf("%2d: %8.0f %8.0f %8.0f\n", i, sum, sum_fl,
sum_fl - sum);
}
printf("\n");
}
void calc_conv(long n) {
long old_n;
int i = -1;
printf("convergence (LOAD_AVG_MAX, LOAD_AVG_MAX_N)\n");
do {
old_n = n;
n = mult_inv(n, 1) + 1024;
i++;
} while (n != old_n);
printf("%d> %ld\n", i - 1, n);
printf("\n");
}
void main() {
y = pow(0.5, 1/(double)N);
calc_mult_inv();
calc_conv(1024);
calc_yn_sum(N);
}
[ Compile with -lm ]
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141507.277808946@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that our measurement intervals are small (~1ms) we can amortize the posting
of update_shares() to be about each period overflow. This is a large cost
saving for frequently switching tasks.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141507.200772172@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that running entities maintain their own load-averages the work we must do
in update_shares() is largely restricted to the periodic decay of blocked
entities. This allows us to be a little less pessimistic regarding our
occupancy on rq->lock and the associated rq->clock updates required.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141507.133999170@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that the machinery in place is in place to compute contributed load in a
bottom up fashion; replace the shares distribution code within update_shares()
accordingly.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141507.061208672@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With bandwidth control tracked entities may cease execution according to user
specified bandwidth limits. Charging this time as either throttled or blocked
however, is incorrect and would falsely skew in either direction.
What we actually want is for any throttled periods to be "invisible" to
load-tracking as they are removed from the system for that interval and
contribute normally otherwise.
Do this by moderating the progression of time to omit any periods in which the
entity belonged to a throttled hierarchy.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.998912151@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Entities of equal weight should receive equitable distribution of cpu time.
This is challenging in the case of a task_group's shares as execution may be
occurring on multiple cpus simultaneously.
To handle this we divide up the shares into weights proportionate with the load
on each cfs_rq. This does not however, account for the fact that the sum of
the parts may be less than one cpu and so we need to normalize:
load(tg) = min(runnable_avg(tg), 1) * tg->shares
Where runnable_avg is the aggregate time in which the task_group had runnable
children.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.930124292@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Unlike task entities who have a fixed weight, group entities instead own a
fraction of their parenting task_group's shares as their contributed weight.
Compute this fraction so that we can correctly account hierarchies and shared
entity nodes.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.855074415@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Maintain a global running sum of the average load seen on each cfs_rq belonging
to each task group so that it may be used in calculating an appropriate
shares:weight distribution.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.792901086@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a running entity blocks we migrate its tracked load to
cfs_rq->blocked_runnable_avg. In the sleep case this occurs while holding
rq->lock and so is a natural transition. Wake-ups however, are potentially
asynchronous in the presence of migration and so special care must be taken.
We use an atomic counter to track such migrated load, taking care to match this
with the previously introduced decay counters so that we don't migrate too much
load.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.726077467@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since we are now doing bottom up load accumulation we need explicit
notification when a task has been re-parented so that the old hierarchy can be
updated.
Adds: migrate_task_rq(struct task_struct *p, int next_cpu)
(The alternative is to do this out of __set_task_cpu, but it was suggested that
this would be a cleaner encapsulation.)
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.660023400@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are currently maintaining:
runnable_load(cfs_rq) = \Sum task_load(t)
For all running children t of cfs_rq. While this can be naturally updated for
tasks in a runnable state (as they are scheduled); this does not account for
the load contributed by blocked task entities.
This can be solved by introducing a separate accounting for blocked load:
blocked_load(cfs_rq) = \Sum runnable(b) * weight(b)
Obviously we do not want to iterate over all blocked entities to account for
their decay, we instead observe that:
runnable_load(t) = \Sum p_i*y^i
and that to account for an additional idle period we only need to compute:
y*runnable_load(t).
This means that we can compute all blocked entities at once by evaluating:
blocked_load(cfs_rq)` = y * blocked_load(cfs_rq)
Finally we maintain a decay counter so that when a sleeping entity re-awakens
we can determine how much of its load should be removed from the blocked sum.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.585389902@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For a given task t, we can compute its contribution to load as:
task_load(t) = runnable_avg(t) * weight(t)
On a parenting cfs_rq we can then aggregate:
runnable_load(cfs_rq) = \Sum task_load(t), for all runnable children t
Maintain this bottom up, with task entities adding their contributed load to
the parenting cfs_rq sum. When a task entity's load changes we add the same
delta to the maintained sum.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.514678907@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since runqueues do not have a corresponding sched_entity we instead embed a
sched_avg structure directly.
Signed-off-by: Ben Segall <bsegall@google.com>
Reviewed-by: Paul Turner <pjt@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.442637130@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Instead of tracking averaging the load parented by a cfs_rq, we can track
entity load directly. With the load for a given cfs_rq then being the sum
of its children.
To do this we represent the historical contribution to runnable average
within each trailing 1024us of execution as the coefficients of a
geometric series.
We can express this for a given task t as:
runnable_sum(t) = \Sum u_i * y^i, runnable_avg_period(t) = \Sum 1024 * y^i
load(t) = weight_t * runnable_sum(t) / runnable_avg_period(t)
Where: u_i is the usage in the last i`th 1024us period (approximately 1ms)
~ms and y is chosen such that y^k = 1/2. We currently choose k to be 32 which
roughly translates to about a sched period.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.372695337@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As per the recent discussion with Mike and Linus, make it easier to
test with/without this feature. No change in default behavior.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-izoxq4haeg4mTognnDbwcevt@git.kernel.org
Pull scheduler changes from Ingo Molnar:
"Continued quest to clean up and enhance the cputime code by Frederic
Weisbecker, in preparation for future tickless kernel features.
Other than that, smallish changes."
Fix up trivial conflicts due to additions next to each other in arch/{x86/}Kconfig
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
cputime: Make finegrained irqtime accounting generally available
cputime: Gather time/stats accounting config options into a single menu
ia64: Reuse system and user vtime accounting functions on task switch
ia64: Consolidate user vtime accounting
vtime: Consolidate system/idle context detection
cputime: Use a proper subsystem naming for vtime related APIs
sched: cpu_power: enable ARCH_POWER
sched/nohz: Clean up select_nohz_load_balancer()
sched: Fix load avg vs. cpu-hotplug
sched: Remove __ARCH_WANT_INTERRUPTS_ON_CTXSW
sched: Fix nohz_idle_balance()
sched: Remove useless code in yield_to()
sched: Add time unit suffix to sched sysctl knobs
sched/debug: Limit sd->*_idx range on sysctl
sched: Remove AFFINE_WAKEUPS feature flag
s390: Remove leftover account_tick_vtime() header
cputime: Consolidate vtime handling on context switch
sched: Move cputime code to its own file
cputime: Generalize CONFIG_VIRT_CPU_ACCOUNTING
tile: Remove SD_PREFER_LOCAL leftover
...
This reverts commit 970e178985.
Nikolay Ulyanitsky reported thatthe 3.6-rc5 kernel has a 15-20%
performance drop on PostgreSQL 9.2 on his machine (running "pgbench").
Borislav Petkov was able to reproduce this, and bisected it to this
commit 970e178985 ("sched: Improve scalability via 'CPU buddies' ...")
apparently because the new single-idle-buddy model simply doesn't find
idle CPU's to reschedule on aggressively enough.
Mike Galbraith suspects that it is likely due to the user-mode spinlocks
in PostgreSQL not reacting well to preemption, but we don't really know
the details - I'll just revert the commit for now.
There are hopefully other approaches to improve scheduler scalability
without it causing these kinds of downsides.
Reported-by: Nikolay Ulyanitsky <lystor@gmail.com>
Bisected-by: Borislav Petkov <bp@alien8.de>
Acked-by: Mike Galbraith <efault@gmx.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no load_balancer to be selected now. It just sets the
state of the nohz tick to stop.
So rename the function, pass the 'cpu' as a parameter and then
remove the useless call from tick_nohz_restart_sched_tick().
[ s/set_nohz_tick_stopped/nohz_balance_enter_idle/g
s/clear_nohz_tick_stopped/nohz_balance_exit_idle/g ]
Signed-off-by: Alex Shi <alex.shi@intel.com>
Acked-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Venkatesh Pallipadi <venki@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1347261059-24747-1-git-send-email-alex.shi@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On tickless systems, one CPU runs load balance for all idle CPUs.
The cpu_load of this CPU is updated before starting the load balance
of each other idle CPUs. We should instead update the cpu_load of
the balance_cpu.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Venkatesh Pallipadi <venki@google.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1347509486-8688-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fix two kernel-doc warnings in kernel/sched/fair.c:
Warning(kernel/sched/fair.c:3660): Excess function parameter 'cpus' description in 'update_sg_lb_stats'
Warning(kernel/sched/fair.c:3806): Excess function parameter 'cpus' description in 'update_sd_lb_stats'
Signed-off-by: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/50303714.3090204@xenotime.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
migrate_tasks() uses _pick_next_task_rt() to get tasks from the
real-time runqueues to be migrated. When rt_rq is throttled
_pick_next_task_rt() won't return anything, in which case
migrate_tasks() can't move all threads over and gets stuck in an
infinite loop.
Instead unthrottle rt runqueues before migrating tasks.
Additionally: move unthrottle_offline_cfs_rqs() to rq_offline_fair()
Signed-off-by: Peter Boonstoppel <pboonstoppel@nvidia.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/5FBF8E85CA34454794F0F7ECBA79798F379D3648B7@HQMAIL04.nvidia.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since power saving code was removed from sched now, the implement
code is out of service in this function, and even pollute other logical.
like, 'want_sd' never has chance to be set '0', that remove the effect
of SD_WAKE_AFFINE here.
So, clean up the obsolete code, includes SD_PREFER_LOCAL.
Signed-off-by: Alex Shi <alex.shi@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/5028F431.6000306@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
As we already have dst_rq in lb_env, using or changing "this_rq" do not
make sense.
This patch will replace "this_rq" with dst_rq in load_balance, and we
don't need to change "this_rq" while process LBF_SOME_PINNED any more.
Signed-off-by: Michael Wang <wangyun@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/501F8357.3070102@linux.vnet.ibm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
It should be sched_nr_latency so fix it before it annoys me more.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1344435364-18632-1-git-send-email-bp@amd64.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Peter Portante reported that for large cgroup hierarchies (and or on
large CPU counts) we get immense lock contention on rq->lock and stuff
stops working properly.
His workload was a ton of processes, each in their own cgroup,
everybody idling except for a sporadic wakeup once every so often.
It was found that:
schedule()
idle_balance()
load_balance()
local_irq_save()
double_rq_lock()
update_h_load()
walk_tg_tree(tg_load_down)
tg_load_down()
Results in an entire cgroup hierarchy walk under rq->lock for every
new-idle balance and since new-idle balance isn't throttled this
results in a lot of work while holding the rq->lock.
This patch does two things, it removes the work from under rq->lock
based on the good principle of race and pray which is widely employed
in the load-balancer as a whole. And secondly it throttles the
update_h_load() calculation to max once per jiffy.
I considered excluding update_h_load() for new-idle balance
all-together, but purely relying on regular balance passes to update
this data might not work out under some rare circumstances where the
new-idle busiest isn't the regular busiest for a while (unlikely, but
a nightmare to debug if someone hits it and suffers).
Cc: pjt@google.com
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Reported-by: Peter Portante <pportant@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-aaarrzfpnaam7pqrekofu8a6@git.kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
With this patch struct ld_env will have a pointer of the load balancing
cpumask and we don't need to pass a cpumask around anymore.
Signed-off-by: Michael Wang <wangyun@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/4FFE8665.3080705@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Current load balance scheme requires only one cpu in a
sched_group (balance_cpu) to look at other peer sched_groups for
imbalance and pull tasks towards itself from a busy cpu. Tasks
thus pulled by balance_cpu could later get picked up by cpus
that are in the same sched_group as that of balance_cpu.
This scheme however fails to pull tasks that are not allowed to
run on balance_cpu (but are allowed to run on other cpus in its
sched_group). That can affect fairness and in some worst case
scenarios cause starvation.
Consider a two core (2 threads/core) system running tasks as
below:
Core0 Core1
/ \ / \
C0 C1 C2 C3
| | | |
v v v v
F0 T1 F1 [idle]
T2
F0 = SCHED_FIFO task (pinned to C0)
F1 = SCHED_FIFO task (pinned to C2)
T1 = SCHED_OTHER task (pinned to C1)
T2 = SCHED_OTHER task (pinned to C1 and C2)
F1 could become a cpu hog, which will starve T2 unless C1 pulls
it. Between C0 and C1 however, C0 is required to look for
imbalance between cores, which will fail to pull T2 towards
Core0. T2 will starve eternally in this case. The same scenario
can arise in presence of non-rt tasks as well (say we replace F1
with high irq load).
We tackle this problem by having balance_cpu move pinned tasks
to one of its sibling cpus (where they can run). We first check
if load balance goal can be met by ignoring pinned tasks,
failing which we retry move_tasks() with a new env->dst_cpu.
This patch modifies load balance semantics on who can move load
towards a given cpu in a given sched_domain.
Before this patch, a given_cpu or a ilb_cpu acting on behalf of
an idle given_cpu is responsible for moving load to given_cpu.
With this patch applied, balance_cpu can in addition decide on
moving some load to a given_cpu.
There is a remote possibility that excess load could get moved
as a result of this (balance_cpu and given_cpu/ilb_cpu deciding
*independently* and at *same* time to move some load to a
given_cpu). However we should see less of such conflicting
decisions in practice and moreover subsequent load balance
cycles should correct the excess load moved to given_cpu.
Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Prashanth Nageshappa <prashanth@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/4FE06CDB.2060605@linux.vnet.ibm.com
[ minor edits ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While load balancing, if all tasks on the source runqueue are pinned,
we retry after excluding the corresponding source cpu. However, loop counters
env.loop and env.loop_break are not reset before retrying, which can lead
to failure in moving the tasks. In this patch we reset env.loop and
env.loop_break to their inital values before we retry.
Signed-off-by: Prashanth Nageshappa <prashanth@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/4FE06EEF.2090709@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Members of 'struct lb_env' are not in appropriate order to reuse compiler
added padding on 64bit architectures. In this patch we reorder those struct
members and help reduce the size of the structure from 96 bytes to 80
bytes on 64 bit architectures.
Suggested-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Prashanth Nageshappa <prashanth@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/4FE06DDE.7000403@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Traversing an entire package is not only expensive, it also leads to tasks
bouncing all over a partially idle and possible quite large package. Fix
that up by assigning a 'buddy' CPU to try to motivate. Each buddy may try
to motivate that one other CPU, if it's busy, tough, it may then try its
SMT sibling, but that's all this optimization is allowed to cost.
Sibling cache buddies are cross-wired to prevent bouncing.
4 socket 40 core + SMT Westmere box, single 30 sec tbench runs, higher is better:
clients 1 2 4 8 16 32 64 128
..........................................................................
pre 30 41 118 645 3769 6214 12233 14312
post 299 603 1211 2418 4697 6847 11606 14557
A nice increase in performance.
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1339471112.7352.32.camel@marge.simpson.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fix lots of new kernel-doc warnings in kernel/sched/fair.c:
Warning(kernel/sched/fair.c:3625): No description found for parameter 'env'
Warning(kernel/sched/fair.c:3625): Excess function parameter 'sd' description in 'update_sg_lb_stats'
Warning(kernel/sched/fair.c:3735): No description found for parameter 'env'
Warning(kernel/sched/fair.c:3735): Excess function parameter 'sd' description in 'update_sd_pick_busiest'
Warning(kernel/sched/fair.c:3735): Excess function parameter 'this_cpu' description in 'update_sd_pick_busiest'
.. more warnings
Signed-off-by: Randy Dunlap <rdunlap@xenotime.net>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Often when we run into mis-shapen topologies the balance iteration
fails to update the cpu power properly and we'll end up in /0 traps.
Always initialize the cpu-power to a semi-sane value so that we can
at least boot the machine, even if the load-balancer might not
function correctly.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-3lbhyj25sr169ha7z3qht5na@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Weird topologies can lead to asymmetric domain setups. This needs
further consideration since these setups are typically non-minimal
too.
For now, make it work by adding an extra mask selecting which CPUs
are allowed to iterate up.
The topology that triggered it is the one from David Rientjes:
10 20 20 30
20 10 20 20
20 20 10 20
30 20 20 10
resulting in boxes that wouldn't even boot.
Reported-by: David Rientjes <rientjes@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-3p86l9cuaqnxz7uxsojmz5rm@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since nr_cpus_allowed is used outside of sched/rt.c and wants to be
used outside of there more, move it to a more natural site.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-kr61f02y9brwzkh6x53pdptm@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We could re-read rq->rt_avg after we validated it was smaller than
total, invalidating the check and resulting in an unintended negative.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: David Rientjes <rientjes@google.com>
Link: http://lkml.kernel.org/r/1337688268.9698.29.camel@twins
Signed-off-by: Ingo Molnar <mingo@kernel.org>
SD_OVERLAP exists to allow overlapping groups, overlapping groups
appear in NUMA topologies that aren't fully connected.
The typical result of not fully connected NUMA is that each cpu (or
rather node) will have different spans for a particular distance.
However due to how sched domains are traversed -- only the first cpu
in the mask goes one level up -- the next level only cares about the
spans of the cpus that went up.
Due to this two things were observed to be broken:
- build_overlap_sched_groups() -- since its possible the cpu we're
building the groups for exists in multiple (or all) groups, the
selection criteria of the first group didn't ensure there was a cpu
for which is was true that cpumask_first(span) == cpu. Thus load-
balancing would terminate.
- update_group_power() -- assumed that the cpu span of the first
group of the domain was covered by all groups of the child domain.
The above explains why this isn't true, so deal with it.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: David Rientjes <rientjes@google.com>
Link: http://lkml.kernel.org/r/1337788843.9783.14.camel@laptop
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It's been broken forever (i.e. it's not scheduling in a power
aware fashion), as reported by Suresh and others sending
patches, and nobody cares enough to fix it properly ...
so remove it to make space free for something better.
There's various problems with the code as it stands today, first
and foremost the user interface which is bound to topology
levels and has multiple values per level. This results in a
state explosion which the administrator or distro needs to
master and almost nobody does.
Furthermore large configuration state spaces aren't good, it
means the thing doesn't just work right because it's either
under so many impossibe to meet constraints, or even if
there's an achievable state workloads have to be aware of
it precisely and can never meet it for dynamic workloads.
So pushing this kind of decision to user-space was a bad idea
even with a single knob - it's exponentially worse with knobs
on every node of the topology.
There is a proposal to replace the user interface with a single
3 state knob:
sched_balance_policy := { performance, power, auto }
where 'auto' would be the preferred default which looks at things
like Battery/AC mode and possible cpufreq state or whatever the hw
exposes to show us power use expectations - but there's been no
progress on it in the past many months.
Aside from that, the actual implementation of the various knobs
is known to be broken. There have been sporadic attempts at
fixing things but these always stop short of reaching a mergable
state.
Therefore this wholesale removal with the hopes of spurring
people who care to come forward once again and work on a
coherent replacement.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/1326104915.2442.53.camel@twins
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Group imbalance is meant to deal with situations where affinity masks
and sched domains don't align well, such as 3 cpus from one group and
6 from another. In this case the domain based balancer will want to
put an equal amount of tasks on each side even though they don't have
equal cpus.
Currently group_imb is set whenever two cpus of a group have a weight
difference of at least one avg task and the heaviest cpu has at least
two tasks. A group with imbalance set will always be picked as busiest
and a balance pass will be forced.
The problem is that even if there are no affinity masks this stuff can
trigger and cause weird balancing decisions, eg. the observed
behaviour was that of 6 cpus, 5 had 2 and 1 had 3 tasks, due to the
difference of 1 avg load (they all had the same weight) and nr_running
being >1 the group_imbalance logic triggered and did the weird thing
of pulling more load instead of trying to move the 1 excess task to
the other domain of 6 cpus that had 5 cpu with 2 tasks and 1 cpu with
1 task.
Curb the group_imbalance stuff by making the nr_running condition
weaker by also tracking the min_nr_running and using the difference in
nr_running over the set instead of the absolute max nr_running.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-9s7dedozxo8kjsb9kqlrukkf@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While investigating why the load-balancer did funny I found that the
rq->cpu_load[] tables were completely screwy.. a bit more digging
revealed that the updates that got through were missing ticks followed
by a catchup of 2 ticks.
The catchup assumes the cpu was idle during that time (since only nohz
can cause missed ticks and the machine is idle etc..) this means that
esp. the higher indices were significantly lower than they ought to
be.
The reason for this is that its not correct to compare against jiffies
on every jiffy on any other cpu than the cpu that updates jiffies.
This patch cludges around it by only doing the catch-up stuff from
nohz_idle_balance() and doing the regular stuff unconditionally from
the tick.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: pjt@google.com
Cc: Venkatesh Pallipadi <venki@google.com>
Link: http://lkml.kernel.org/n/tip-tp4kj18xdd5aj4vvj0qg55s2@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Patches c22402a2f ("sched/fair: Let minimally loaded cpu balance the
group") and 0ce90475 ("sched/fair: Add some serialization to the
sched_domain load-balance walk") are horribly broken so revert them.
The problem is that while it sounds good to have the minimally loaded
cpu do the pulling of more load, the way we walk the domains there is
absolutely no guarantee this cpu will actually get to the domain. In
fact its very likely it wont. Therefore the higher up the tree we get,
the less likely it is we'll balance at all.
The first of mask always walks up, while sucky in that it accumulates
load on the first cpu and needs extra passes to spread it out at least
guarantees a cpu gets up that far and load-balancing happens at all.
Since its now always the first and idle cpus should always be able to
balance so they get a task as fast as possible we can also do away
with the added serialization.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-rpuhs5s56aiv1aw7khv9zkw6@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since the sched_domain walk is completely unserialized (!SD_SERIALIZE)
it is possible that multiple cpus in the group get elected to do the
next level. Avoid this by adding some serialization.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-vqh9ai6s0ewmeakjz80w4qz6@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently we let the leftmost (or first idle) cpu ascend the
sched_domain tree and perform load-balancing. The result is that the
busiest cpu in the group might be performing this function and pull
more load to itself. The next load balance pass will then try to
equalize this again.
Change this to pick the least loaded cpu to perform higher domain
balancing.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-v8zlrmgmkne3bkcy9dej1fvm@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since there's a PID space limit of 30bits (see
futex.h:FUTEX_TID_MASK) and allocating that many tasks (assuming a
lower bound of 2 pages per task) would still take 8T of memory it
seems reasonable to say that unsigned int is sufficient for
rq->nr_running.
When we do get anywhere near that amount of tasks I suspect other
things would go funny, load-balancer load computations would really
need to be hoisted to 128bit etc.
So save a few bytes and convert rq->nr_running and friends to
unsigned int.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-y3tvyszjdmbibade5bw8zl81@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commits 367456c756 ("sched: Ditch per cgroup task lists for
load-balancing") and 5d6523ebd ("sched: Fix load-balance wreckage")
left some more wreckage.
By setting loop_max unconditionally to ->nr_running load-balancing
could take a lot of time on very long runqueues (hackbench!). So keep
the sysctl as max limit of the amount of tasks we'll iterate.
Furthermore, the min load filter for migration completely fails with
cgroups since inequality in per-cpu state can easily lead to such
small loads :/
Furthermore the change to add new tasks to the tail of the queue
instead of the head seems to have some effect.. not quite sure I
understand why.
Combined these fixes solve the huge hackbench regression reported by
Tim when hackbench is ran in a cgroup.
Reported-by: Tim Chen <tim.c.chen@linux.intel.com>
Acked-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/1335365763.28150.267.camel@twins
[ got rid of the CONFIG_PREEMPT tuning and made small readability edits ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler fixes from Ingo Molnar.
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
cpusets: Remove an unused variable
sched/rt: Improve pick_next_highest_task_rt()
sched: Fix select_fallback_rq() vs cpu_active/cpu_online
sched/x86/smp: Do not enable IRQs over calibrate_delay()
sched: Fix compiler warning about declared inline after use
MAINTAINERS: Update email address for SCHEDULER and PERF EVENTS
kernel/sched/fair.c:420: warning: 'account_cfs_rq_runtime' declared inline after being called
kernel/sched/fair.c:420: warning: previous declaration of 'account_cfs_rq_runtime' was here
kernel/sched/fair.c:1165: warning: 'return_cfs_rq_runtime' declared inlineafter being called
kernel/sched/fair.c:1165: warning: previous declaration of 'return_cfs_rq_runtime' was here
Reported-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20120321200717.49BB4A024E@akpm.mtv.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler changes for v3.4 from Ingo Molnar
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits)
printk: Make it compile with !CONFIG_PRINTK
sched/x86: Fix overflow in cyc2ns_offset
sched: Fix nohz load accounting -- again!
sched: Update yield() docs
printk/sched: Introduce special printk_sched() for those awkward moments
sched/nohz: Correctly initialize 'next_balance' in 'nohz' idle balancer
sched: Cleanup cpu_active madness
sched: Fix load-balance wreckage
sched: Clean up parameter passing of proc_sched_autogroup_set_nice()
sched: Ditch per cgroup task lists for load-balancing
sched: Rename load-balancing fields
sched: Move load-balancing arguments into helper struct
sched/rt: Do not submit new work when PI-blocked
sched/rt: Prevent idle task boosting
sched/wait: Add __wake_up_all_locked() API
sched/rt: Document scheduler related skip-resched-check sites
sched/rt: Use schedule_preempt_disabled()
sched/rt: Add schedule_preempt_disabled()
sched/rt: Do not throttle when PI boosting
sched/rt: Keep period timer ticking when rt throttling is active
...
The 'next_balance' field of 'nohz' idle balancer must be initialized
to jiffies. Since jiffies is initialized to negative 300 seconds the
'nohz' idle balancer does not run for the first 300s (5mins) after
bootup. If no new processes are spawed or no idle cycles happen, the
load on the cpus will remain unbalanced for that duration.
Signed-off-by: Diwakar Tundlam <dtundlam@nvidia.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1DD7BFEDD3147247B1355BEFEFE4665237994F30EF@HQMAIL04.nvidia.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Commit 367456c ("sched: Ditch per cgroup task lists for
load-balancing") completely wrecked load-balancing due to
a few silly mistakes.
Correct those and remove more pointless code.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-zk04ihygwxn7qqrlpaf73b0r@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Per cgroup load-balance has numerous problems, chief amongst them that
there is no real sane order in them. So stop pretending it makes sense
and enqueue all tasks on a single list.
This also allows us to more easily fix the fwd progress issue
uncovered by the lock-break stuff. Rotate the list on failure to
migreate and limit the total iterations to nr_running (which with
releasing the lock isn't strictly accurate but close enough).
Also add a filter that skips very light tasks on the first attempt
around the list, this attempts to avoid shooting whole cgroups around
without affecting over balance.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: pjt@google.com
Link: http://lkml.kernel.org/n/tip-tx8yqydc7eimgq7i4rkc3a4g@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Passing large sets of similar arguments all around the load-balancer
gets tiresom when you want to modify something. Stick them all in a
helper structure and pass the structure around.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: pjt@google.com
Link: http://lkml.kernel.org/n/tip-5slqz0vhsdzewrfk9eza1aon@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
So here's a boot tested patch on top of Jason's series that does
all the cleanups I talked about and turns jump labels into a
more intuitive to use facility. It should also address the
various misconceptions and confusions that surround jump labels.
Typical usage scenarios:
#include <linux/static_key.h>
struct static_key key = STATIC_KEY_INIT_TRUE;
if (static_key_false(&key))
do unlikely code
else
do likely code
Or:
if (static_key_true(&key))
do likely code
else
do unlikely code
The static key is modified via:
static_key_slow_inc(&key);
...
static_key_slow_dec(&key);
The 'slow' prefix makes it abundantly clear that this is an
expensive operation.
I've updated all in-kernel code to use this everywhere. Note
that I (intentionally) have not pushed through the rename
blindly through to the lowest levels: the actual jump-label
patching arch facility should be named like that, so we want to
decouple jump labels from the static-key facility a bit.
On non-jump-label enabled architectures static keys default to
likely()/unlikely() branches.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Jason Baron <jbaron@redhat.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: a.p.zijlstra@chello.nl
Cc: mathieu.desnoyers@efficios.com
Cc: davem@davemloft.net
Cc: ddaney.cavm@gmail.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20120222085809.GA26397@elte.hu
Signed-off-by: Ingo Molnar <mingo@elte.hu>
select_idle_sibling() is called from select_task_rq_fair(), which
already has the RCU read lock held.
Signed-off-by: Nikunj A. Dadhania <nikunj@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120217030409.11748.12491.stgit@abhimanyu
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Commit 1ac9bc69 ("sched/tracing: Add a new tracepoint for sleeptime")
added a new sched:sched_stat_sleeptime tracepoint.
It's broken: the first sample we get on a task might be bad because
of a stale sleep_start value that wasn't reset at the last task switch
because the tracepoint was not active.
It also breaks the existing schedstat samples due to the side
effects of:
- se->statistics.sleep_start = 0;
...
- se->statistics.block_start = 0;
Nor do I see means to fix it without adding overhead to the scheduler
fast path, which I'm not willing to for the sake of redundant
instrumentation.
Most importantly, sleep time information can already be constructed
by tracing context switches and wakeups, and taking the timestamp
difference between the schedule-out, the wakeup and the schedule-in.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Andrew Vagin <avagin@openvz.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/n/tip-pc4c9qhl8q6vg3bs4j6k0rbd@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This also fixes the following compilation warning on !SMP:
CC kernel/sched/fair.o
kernel/sched/fair.c:218:36: warning: 'max_load_balance_interval' defined but not used [-Wunused-variable]
Signed-off-by: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/4F2754A0.9090306@ct.jp.nec.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
With a lot of small tasks, the softirq sched is nearly never called
when no_hz is enabled. In this case load_balance() is mainly called
with the newly_idle mode which doesn't update the cpu_power.
Add a next_update field which ensure a maximum update period when
there is short activity.
Having stale cpu_power information can skew the load-balancing
decisions, this is cured by the guaranteed update.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1323717668-2143-1-git-send-email-vincent.guittot@linaro.org
With the recent nohz scheduler changes, rq's nohz flag
'NOHZ_TICK_STOPPED' and its associated state doesn't get cleared
immediately after the cpu exits idle. This gets cleared as part
of the next tick seen on that cpu.
For the cpu offline support, we need to clear this state
manually. Fix it by registering a cpu notifier, which clears the
nohz idle load balance state for this rq explicitly during the
CPU_DYING notification.
There won't be any nohz updates for that cpu, after the
CPU_DYING notification. But lets be extra paranoid and skip
updating the nohz state in the select_nohz_load_balancer() if
the cpu is not in active state anymore.
Reported-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Reviewed-and-tested-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Tested-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1327026538.16150.40.camel@sbsiddha-desk.sc.intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Eric and David reported dead machines and traced it to commit
a195f004 ("sched: Fix load-balance lock-breaking"), it turns out
there's still a scenario where we can end up re-trying forever.
Since there is no strict forward progress guarantee in the
load-balance iteration we can get stuck re-retrying the same
task-set over and over.
Creating a forward progress guarantee with the existing
structure is somewhat non-trivial, for now simply terminate the
retry loop after a few tries.
Reported-by: Eric Dumazet <eric.dumazet@gmail.com>
Tested-by: Eric Dumazet <eric.dumazet@gmail.com>
Reported-by: David Ahern <dsahern@gmail.com>
[ logic cleanup as suggested by Eric ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1326297936.2442.157.camel@twins
Signed-off-by: Ingo Molnar <mingo@elte.hu>
If CONFIG_SCHEDSTATS is defined, the kernel maintains
information about how long the task was sleeping or
in the case of iowait, blocking in the kernel before
getting woken up.
This will be useful for sleep time profiling.
Note: this information is only provided for sched_fair.
Other scheduling classes may choose to provide this in
the future.
Note: the delay includes the time spent on the runqueue
as well.
Signed-off-by: Arun Sharma <asharma@fb.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Andrew Vagin <avagin@openvz.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/1324512940-32060-2-git-send-email-asharma@fb.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
There is a small race between try_to_wake_up() and sched_move_task(),
which is trying to move the process being woken up.
try_to_wake_up() on CPU0 sched_move_task() on CPU1
--------------------------------+---------------------------------
raw_spin_lock_irqsave(p->pi_lock)
task_waking_fair()
->p.se.vruntime -= cfs_rq->min_vruntime
ttwu_queue()
->send reschedule IPI to CPU1
raw_spin_unlock_irqsave(p->pi_lock)
task_rq_lock()
-> tring to aquire both p->pi_lock and
rq->lock with IRQ disabled
task_move_group_fair()
-> p.se.vruntime
-= (old)cfs_rq->min_vruntime
+= (new)cfs_rq->min_vruntime
task_rq_unlock()
(via IPI)
sched_ttwu_pending()
raw_spin_lock(rq->lock)
ttwu_do_activate()
...
enqueue_entity()
child.se->vruntime += cfs_rq->min_vruntime
raw_spin_unlock(rq->lock)
As a result, vruntime of the process becomes far bigger than min_vruntime,
if (new)cfs_rq->min_vruntime >> (old)cfs_rq->min_vruntime.
This patch fixes this problem by just ignoring such process in
task_move_group_fair(), because the vruntime has already been normalized in
task_waking_fair().
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20111215143741.df82dd50.nishimura@mxp.nes.nec.co.jp
Signed-off-by: Ingo Molnar <mingo@elte.hu>
There is a small race between do_fork() and sched_move_task(), which is
trying to move the child.
do_fork() sched_move_task()
--------------------------------+---------------------------------
copy_process()
sched_fork()
task_fork_fair()
-> vruntime of the child is initialized
based on that of the parent.
-> we can see the child in "tasks" file now.
task_rq_lock()
task_move_group_fair()
-> child.se.vruntime
-= (old)cfs_rq->min_vruntime
+= (new)cfs_rq->min_vruntime
task_rq_unlock()
wake_up_new_task()
...
enqueue_entity()
child.se.vruntime += cfs_rq->min_vruntime
As a result, vruntime of the child becomes far bigger than min_vruntime,
if (new)cfs_rq->min_vruntime >> (old)cfs_rq->min_vruntime.
This patch fixes this problem by just ignoring such process in
task_move_group_fair(), because the vruntime has already been normalized in
task_fork_fair().
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20111215143607.2ee12c5d.nishimura@mxp.nes.nec.co.jp
Signed-off-by: Ingo Molnar <mingo@elte.hu>
There is a small race between task_fork_fair() and sched_move_task(),
which is trying to move the parent.
task_fork_fair() sched_move_task()
--------------------------------+---------------------------------
cfs_rq = task_cfs_rq(current)
-> cfs_rq is the "old" one.
curr = cfs_rq->curr
-> curr is set to the parent.
task_rq_lock()
dequeue_task()
->parent.se.vruntime -= (old)cfs_rq->min_vruntime
enqueue_task()
->parent.se.vruntime += (new)cfs_rq->min_vruntime
task_rq_unlock()
raw_spin_lock_irqsave(rq->lock)
se->vruntime = curr->vruntime
-> vruntime of the child is set to that of the parent
which has already been updated by sched_move_task().
se->vruntime -= (old)cfs_rq->min_vruntime.
raw_spin_unlock_irqrestore(rq->lock)
As a result, vruntime of the child becomes far bigger than expected,
if (new)cfs_rq->min_vruntime >> (old)cfs_rq->min_vruntime.
This patch fixes this problem by setting "cfs_rq" and "curr" after
holding the rq->lock.
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: Paul Turner <pjt@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20111215143655.662676b0.nishimura@mxp.nes.nec.co.jp
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The current lock break relies on contention on the rq locks, something
which might never come because we've got IRQs disabled. Or will be
very likely because on anything with more than 2 cpus a synchronized
load-balance pass will very likely cause contention on the rq locks.
Also the sched_nr_migrate thing fails when it gets trapped the loops
of either the cgroup muck in load_balance_fair() or the move_tasks()
load condition.
Instead, use the new lb_flags field to propagate break/abort
conditions for all these loops and create a new loop outside the irq
disabled on the break being required.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-tsceb6w61q0gakmsccix6xxi@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Replace the all_pinned argument with a flags field so that we can add
some extra controls throughout that entire call chain.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-33kevm71m924ok1gpxd720v3@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Mike reported a 13% drop in netperf TCP_RR performance due to the
new remote wakeup code. Suresh too noticed some performance issues
with it.
Reducing the IPIs to only cross cache domains solves the observed
performance issues.
Reported-by: Suresh Siddha <suresh.b.siddha@intel.com>
Reported-by: Mike Galbraith <efault@gmx.de>
Acked-by: Suresh Siddha <suresh.b.siddha@intel.com>
Acked-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Dave Kleikamp <dave.kleikamp@oracle.com>
Link: http://lkml.kernel.org/r/1323338531.17673.7.camel@twins
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Yong Zhang reported:
> [ INFO: suspicious RCU usage. ]
> kernel/sched/fair.c:5091 suspicious rcu_dereference_check() usage!
This is due to the sched_domain stuff being RCU protected and
commit 0b005cf5 ("sched, nohz: Implement sched group, domain
aware nohz idle load balancing") overlooking this fact.
The sd variable only lives inside the for_each_domain() block,
so we only need to wrap that.
Reported-by: Yong Zhang <yong.zhang0@gmail.com>
Tested-by: Yong Zhang <yong.zhang0@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1323264728.32012.107.camel@twins
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Intention is to set the NOHZ_BALANCE_KICK flag for the 'ilb_cpu'. Not
for the 'cpu' which is the local cpu. Fix the typo.
Reported-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1323199594.1984.18.camel@sbsiddha-desk.sc.intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
cpu bit in the nohz.idle_cpu_mask are reset in the first busy tick after
exiting idle. So during nohz_idle_balance(), intention is to double
check if the cpu that is part of the idle_cpu_mask is indeed idle before
going ahead in performing idle balance for that cpu.
Fix the cpu typo in the idle_cpu() check during nohz_idle_balance().
Reported-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1323199177.1984.12.camel@sbsiddha-desk.sc.intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
nr_busy_cpus in the sched_group_power indicates whether the group
is semi idle or not. This helps remove the is_semi_idle_group() and simplify
the find_new_ilb() in the context of finding an optimal cpu that can do
idle load balancing.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20111202010832.656983582@sbsiddha-desk.sc.intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When there are many logical cpu's that enter and exit idle often, members of
the global nohz data structure are getting modified very frequently causing
lot of cache-line contention.
Make the nohz idle load balancing more scalabale by using the sched domain
topology and 'nr_busy_cpu's in the struct sched_group_power.
Idle load balance is kicked on one of the idle cpu's when there is atleast
one idle cpu and:
- a busy rq having more than one task or
- a busy rq's scheduler group that share package resources (like HT/MC
siblings) and has more than one member in that group busy or
- for the SD_ASYM_PACKING domain, if the lower numbered cpu's in that
domain are idle compared to the busy ones.
This will help in kicking the idle load balancing request only when
there is a potential imbalance. And once it is mostly balanced, these kicks will
be minimized.
These changes helped improve the workload that is context switch intensive
between number of task pairs by 2x on a 8 socket NHM-EX based system.
Reported-by: Tim Chen <tim.c.chen@intel.com>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Introduce nr_busy_cpus in the struct sched_group_power [Not in sched_group
because sched groups are duplicated for the SD_OVERLAP scheduler domain]
and for each cpu that enters and exits idle, this parameter will
be updated in each scheduler group of the scheduler domain that this cpu
belongs to.
To avoid the frequent update of this state as the cpu enters
and exits idle, the update of the stat during idle exit is
delayed to the first timer tick that happens after the cpu becomes busy.
This is done using NOHZ_IDLE flag in the struct rq's nohz_flags.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20111202010832.555984323@sbsiddha-desk.sc.intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Introduce nohz_flags in the struct rq, which will track these two flags
for now.
NOHZ_TICK_STOPPED keeps track of the tick stopped status that gets set when
the tick is stopped. It will be used to update the nohz idle load balancer data
structures during the first busy tick after the tick is restarted. At this
first busy tick after tickless idle, NOHZ_TICK_STOPPED flag will be reset.
This will minimize the nohz idle load balancer status updates that currently
happen for every tickless exit, making it more scalable when there
are many logical cpu's that enter and exit idle often.
NOHZ_BALANCE_KICK will track the need for nohz idle load balance
on this rq. This will replace the nohz_balance_kick in the rq, which was
not being updated atomically.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20111202010832.499438999@sbsiddha-desk.sc.intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This is another case where we are on our way to schedule(),
so can save a useless clock update and resulting microscopic
vruntime update.
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1321971686.6855.18.camel@marge.simson.net
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Instead of going through the scheduler domain hierarchy multiple times
(for giving priority to an idle core over an idle SMT sibling in a busy
core), start with the highest scheduler domain with the SD_SHARE_PKG_RESOURCES
flag and traverse the domain hierarchy down till we find an idle group.
This cleanup also addresses an issue reported by Mike where the recent
changes returned the busy thread even in the presence of an idle SMT
sibling in single socket platforms.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Tested-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1321556904.15339.25.camel@sbsiddha-desk.sc.intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This tracepoint shows how long a task is sleeping in uninterruptible state.
E.g. it may show how long and where a mutex is waited for.
Signed-off-by: Andrew Vagin <avagin@openvz.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1322471015-107825-8-git-send-email-avagin@openvz.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
There's too many sched*.[ch] files in kernel/, give them their own
directory.
(No code changed, other than Makefile glue added.)
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>