Add a bvec array to struct xdr_buf, and have the client allocate it
when we need to receive data into pages.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
If the server is slow, we can find ourselves with quite a lot of entries
on the receive queue. Converting the search from an O(n) to O(log(n))
can make a significant difference, particularly since we have to hold
a number of locks while searching.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Treat socket write space handling in the same way we now treat transport
congestion: by denying the XPRT_LOCK until the transport signals that it
has free buffer space.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
The theory was that we would need to grab the socket lock anyway, so we
might as well use it to gate the allocation of RPC slots for a TCP
socket.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Both RDMA and UDP transports require the request to get a "congestion control"
credit before they can be transmitted. Right now, this is done when
the request locks the socket. We'd like it to happen when a request attempts
to be transmitted for the first time.
In order to support retransmission of requests that already hold such
credits, we also want to ensure that they get queued first, so that we
don't deadlock with requests that have yet to obtain a credit.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
One of the intentions with the priority queues was to ensure that no
single process can hog the transport. The field task->tk_owner therefore
identifies the RPC call's origin, and is intended to allow the RPC layer
to organise queues for fairness.
This commit therefore modifies the transmit queue to group requests
by task->tk_owner, and ensures that we round robin among those groups.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
When we shift to using the transmit queue, then the task that holds the
write lock will not necessarily be the same as the one being transmitted.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
When storing a struct rpc_rqst on the slot allocation list, we currently
use the same field 'rq_list' as we use to store the request on the
receive queue. Since the structure is never on both lists at the same
time, this is OK.
However, for clarity, let's make that a union with different names for
the different lists so that we can more easily distinguish between
the two states.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Allow the caller in clnt.c to call into the code to wait for a reply
after calling xprt_transmit(). Again, the reason is that the backchannel
code does not need this functionality.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Separate out the action of adding a request to the reply queue so that the
backchannel code can simply skip calling it altogether.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
This simplifies allocation of the generic RPC slot and xprtrdma
specific per-RPC resources.
It also makes xprtrdma more like the socket-based transports:
->buf_alloc and ->buf_free are now responsible only for send and
receive buffers.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Refactor: xprtrdma needs to have better control over when RPCs are
awoken from the backlog queue, so replace xprt_free_slot with a
transport op callout.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
alloc_slot is a transport-specific op, but initializing an rpc_rqst
is common to all transports. In addition, the only part of initial-
izing an rpc_rqst that needs serialization is getting a fresh XID.
Move rpc_rqst initialization to common code in preparation for
adding a transport-specific alloc_slot to xprtrdma.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
If recording xprt->stat.max_slots is moved into xprt_alloc_slot,
then xprt->num_reqs is never manipulated outside
xprt->reserve_lock. There's no longer a need for xprt->num_reqs to
be atomic.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Since commit 33849792cb ("xprtrdma: Detect unreachable NFS/RDMA
servers more reliably"), the xprtrdma transport now has a ->timer
callout. But xprtrdma does not need to compute RTT data, only UDP
needs that. Move the xprt_update_rtt call into the UDP transport
implementation.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This further reduces contention with the transport_lock, and allows us
to convert to using a non-bh-safe spinlock, since the list is now never
accessed from a bh context.
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Instead add a mechanism to ensure that the request doesn't disappear
from underneath us while copying from the socket. We do this by
preventing xprt_release() from freeing the XDR buffers until the
flag RPC_TASK_MSG_RECV has been cleared from the request.
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Reviewed-by: Chuck Lever <chuck.lever@oracle.com>
After transport instance creation, these function pointers never
change. Mark them as constant to prevent their use as an attack
vector for code injections.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
When the NFSv4 server tells us the lease period, we usually want
to adjust down the timeout parameters on the TCP connection to
ensure that we don't miss lease renewals due to a faulty connection.
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Currently there's a hidden and indirect mechanism for finding the
rpcrdma_req that goes with an rpc_rqst. It depends on getting from
the rq_buffer pointer in struct rpc_rqst to the struct
rpcrdma_regbuf that controls that buffer, and then to the struct
rpcrdma_req it goes with.
This was done back in the day to avoid the need to add a per-rqst
pointer or to alter the buf_free API when support for RPC-over-RDMA
was introduced.
I'm about to change the way regbuf's work to support larger inline
thresholds. Now is a good time to replace this indirect mechanism
with something that is more straightforward. I guess this should be
considered a clean up.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
For xprtrdma, the RPC Call and Reply buffers are involved in real
I/O operations.
To start with, the DMA direction of the I/O for a Call is opposite
that of a Reply.
In the current arrangement, the Reply buffer address is on a
four-byte alignment just past the call buffer. Would be friendlier
on some platforms if that was at a DMA cache alignment instead.
Because the current arrangement allocates a single memory region
which contains both buffers, the RPC Reply buffer often contains a
page boundary in it when the Call buffer is large enough (which is
frequent).
It would be a little nicer for setting up DMA operations (and
possible registration of the Reply buffer) if the two buffers were
separated, well-aligned, and contained as few page boundaries as
possible.
Now, I could just pad out the single memory region used for the pair
of buffers. But frequently that would mean a lot of unused space to
ensure the Reply buffer did not have a page boundary.
Add a separate pointer to rpc_rqst that points right to the RPC
Reply buffer. This makes no difference to xprtsock, but it will help
xprtrdma in subsequent patches.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
xprtrdma needs to allocate the Call and Reply buffers separately.
TBH, the reliance on using a single buffer for the pair of XDR
buffers is transport implementation-specific.
Instead of passing just the rq_buffer into the buf_free method, pass
the task structure and let buf_free take care of freeing both
XDR buffers at once.
There's a micro-optimization here. In the common case, both
xprt_release and the transport's buf_free method were checking if
rq_buffer was NULL. Now the check is done only once per RPC.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
xprtrdma needs to allocate the Call and Reply buffers separately.
TBH, the reliance on using a single buffer for the pair of XDR
buffers is transport implementation-specific.
Transports that want to allocate separate Call and Reply buffers
will ignore the "size" argument anyway. Don't bother passing it.
The buf_alloc method can't return two pointers. Instead, make the
method's return value an error code, and set the rq_buffer pointer
in the method itself.
This gives call_allocate an opportunity to terminate an RPC instead
of looping forever when a permanent problem occurs. If a request is
just bogus, or the transport is in a state where it can't allocate
resources for any request, there needs to be a way to kill the RPC
right there and not loop.
This immediately fixes a rare problem in the backchannel send path,
which loops if the server happens to send a CB request whose
call+reply size is larger than a page (which it shouldn't do yet).
One more issue: looks like xprt_inject_disconnect was incorrectly
placed in the failure path in call_allocate. It needs to be in the
success path, as it is for other call-sites.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: there is some XDR initialization logic that is common
to the forward channel and backchannel. Move it to an XDR header
so it can be shared.
rpc_rqst::rq_buffer points to a buffer containing big-endian data.
Update its annotation as part of the clean up.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
The spec allows backchannels for multiple clients to share the same tcp
connection. When that happens, we need to use the same xprt for all of
them. Similarly, we need the same xps.
This fixes list corruption introduced by the multipath code.
Cc: stable@vger.kernel.org
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Acked-by: Trond Myklebust <trondmy@primarydata.com>
RPC-over-RDMA transports have a limit on how large a backward
direction (backchannel) RPC message can be. Ensure that the NFSv4.x
CREATE_SESSION operation advertises this limit to servers.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
In order to support multipathing/trunking we will need the ability to
track multiple transports. This patch sets up a basic structure for
doing so.
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Forechannel transports get their own "bc_up" method to create an
endpoint for the backchannel service.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
[Anna Schumaker: Add forward declaration of struct net to xprt.h]
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
On NFSv4.1 mount points, the Linux NFS client uses this transport
endpoint to receive backward direction calls and route replies back
to the NFSv4.1 server.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Acked-by: "J. Bruce Fields" <bfields@fieldses.org>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
xprt_{setup,destroy}_backchannel() won't be adequate for RPC/RMDA
bi-direction. In particular, receive buffers have to be pre-
registered and posted in order to receive incoming backchannel
requests.
Add a virtual function call to allow the insertion of appropriate
backchannel setup and destruction methods for each transport.
In addition, freeing a backchannel request is a little different
for RPC/RDMA. Introduce an rpc_xprt_op to handle the difference.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
It has been exceptionally useful to exercise the logic that handles
local immediate errors and RDMA connection loss. To enable
developers to test this regularly and repeatably, add logic to
simulate connection loss every so often.
Fault injection is disabled by default. It is enabled with
$ sudo echo xxx > /sys/kernel/debug/sunrpc/inject_fault/disconnect
where "xxx" is a large positive number of transport method calls
before a disconnect. A value of several thousand is usually a good
number that allows reasonable forward progress while still causing a
lot of connection drops.
These hooks are disabled when SUNRPC_DEBUG is turned off.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
RDMA xprts don't have a sock_xprt, but an rdma_xprt, so the
xs_swapper_enable/disable functions will likely oops when fed an RDMA
xprt. Turn these functions into rpc_xprt_ops so that that doesn't
occur. For now the RDMA versions are no-ops that just return -EINVAL
on an attempt to swapon.
Cc: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Jeff Layton <jeff.layton@primarydata.com>
Reviewed-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Split xs_swapper into enable/disable functions and eliminate the
"enable" flag.
Currently, it's racy if you have multiple swapon/swapoff operations
running in parallel over the same xprt. Also fix it so that we only
set it to a memalloc socket on a 0->1 transition and only clear it
on a 1->0 transition.
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Jeff Layton <jeff.layton@primarydata.com>
Reviewed-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
We need to allow the server to send a new request immediately after we've
replied to the previous one. Right now, there is a window between the
send and the release of the old request in rpc_put_task(), where the
server could send us a new backchannel RPC call, and we have no
request to service it.
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Instead we rely on SO_REUSEPORT to provide the reconnection semantics
that we need for NFSv2/v3.
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
The socket lock is currently held by the task that is requesting the
connection be established. While that is efficient in the case where
the connection happens quickly, it is racy in the case where it doesn't.
What we really want is for the connect helper to be able to block access
to the socket while it is being set up.
This patch does so by arranging to transfer the socket lock from the
task that is requesting the connect attempt, and then releasing that
lock once everything is done.
This scheme also gives us automatic protection against collisions with
the RPC close code, so we can kill the cancel_delayed_work_sync()
call in xs_close().
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>