If the snapshot creation happened after the nocow write but before the dirty
data flush, we would fail to flush the dirty data because of no space.
So we must keep track of when those nocow write operations start and when they
end, if there are nocow writers, the snapshot creators must wait. In order
to implement this function, I introduce btrfs_{start, end}_nocow_write(),
which is similar to mnt_{want,drop}_write().
These two functions are only used for nocow file write operations.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
We can not release the reserved metadata space for the first write if we
find the write position is pre-allocated. Because the kernel might write
the data on the disk before we do the second write but after the can-nocow
check, if we release the space for the first write, we might fail to update
the metadata because of no space.
Fix this problem by end nocow write if there is dirty data in the range whose
space is pre-allocated.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
The write range may not be sector-aligned, for example:
|--------|--------| <- write range, sector-unaligned, size: 2blocks
|--------|--------|--------| <- correct lock range, size: 3blocks
But according to the old code, we used the size of write range to calculate
the lock range directly, not considered the offset, we would get a wrong lock
range:
|--------|--------| <- write range, sector-unaligned, size: 2blocks
|--------|--------| <- wrong lock range, size: 2blocks
And besides that, the old code also had the same problem when calculating
the real write size. Correct them.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
While droping extent map structures from the extent cache that cover our
target range, we would remove each extent map structure from the red black
tree and then add either 1 or 2 new extent map structures if the former
extent map covered sections outside our target range.
This change simply attempts to replace the existing extent map structure
with a new one that covers the subsection we're not interested in, instead
of doing a red black remove operation followed by an insertion operation.
The number of elements in an inode's extent map tree can get very high for large
files under random writes. For example, while running the following test:
sysbench --test=fileio --file-num=1 --file-total-size=10G \
--file-test-mode=rndrw --num-threads=32 --file-block-size=32768 \
--max-requests=500000 --file-rw-ratio=2 [prepare|run]
I captured the following histogram capturing the number of extent_map items
in the red black tree while that test was running:
Count: 122462
Range: 1.000 - 172231.000; Mean: 96415.831; Median: 101855.000; Stddev: 49700.981
Percentiles: 90th: 160120.000; 95th: 166335.000; 99th: 171070.000
1.000 - 5.231: 452 |
5.231 - 187.392: 87 |
187.392 - 585.911: 206 |
585.911 - 1827.438: 623 |
1827.438 - 5695.245: 1962 #
5695.245 - 17744.861: 6204 ####
17744.861 - 55283.764: 21115 ############
55283.764 - 172231.000: 91813 #####################################################
Benchmark:
sysbench --test=fileio --file-num=1 --file-total-size=10G --file-test-mode=rndwr \
--num-threads=64 --file-block-size=32768 --max-requests=0 --max-time=60 \
--file-io-mode=sync --file-fsync-freq=0 [prepare|run]
Before this change: 122.1Mb/sec
After this change: 125.07Mb/sec
(averages of 5 test runs)
Test machine: quad core intel i5-3570K, 32Gb of ram, SSD
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
If we punch beyond the size of an inode, we'll correctly remove any prealloc extents,
but we'll also insert file extent items representing holes (disk bytenr == 0) that start
with a key offset that lies beyond the inode's size and are not contiguous with the last
file extent item.
Example:
$XFS_IO_PROG -f -c "truncate 118811" $SCRATCH_MNT/foo
$XFS_IO_PROG -c "fpunch 582007 864596" $SCRATCH_MNT/foo
$XFS_IO_PROG -c "pwrite -S 0x0d -b 39987 92267 39987" $SCRATCH_MNT/foo
btrfs-debug-tree output:
item 4 key (257 INODE_ITEM 0) itemoff 15885 itemsize 160
inode generation 6 transid 6 size 132254 block group 0 mode 100600 links 1
item 5 key (257 INODE_REF 256) itemoff 15872 itemsize 13
inode ref index 2 namelen 3 name: foo
item 6 key (257 EXTENT_DATA 0) itemoff 15819 itemsize 53
extent data disk byte 0 nr 0 gen 6
extent data offset 0 nr 90112 ram 122880
extent compression 0
item 7 key (257 EXTENT_DATA 90112) itemoff 15766 itemsize 53
extent data disk byte 12845056 nr 4096 gen 6
extent data offset 0 nr 45056 ram 45056
extent compression 2
item 8 key (257 EXTENT_DATA 585728) itemoff 15713 itemsize 53
extent data disk byte 0 nr 0 gen 6
extent data offset 0 nr 860160 ram 860160
extent compression 0
The last extent item, which represents a hole, is useless as it lies beyond the inode's
size.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
It is possible that many tasks sync the log tree at the same time, but
only one task can do the sync work, the others will wait for it. But those
wait tasks didn't get the result of the log sync, and returned 0 when they
ended the wait. It caused those tasks skipped the error handle, and the
serious problem was they told the users the file sync succeeded but in
fact they failed.
This patch fixes this problem by introducing a log context structure,
we insert it into the a global list. When the sync fails, we will set
the error number of every log context in the list, then the waiting tasks
get the error number of the log context and handle the error if need.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
This is an extension to my previous commit titled:
"Btrfs: faster file extent item replace operations"
(hash 1acae57b16)
Instead of inserting the new file extent item if we deleted existing
file extent items covering our target file range, also allow to insert
the new file extent item if we didn't find any existing items to delete
and replace_extent != 0, since in this case our caller would do another
tree search to insert the new file extent item anyway, therefore just
combine the two tree searches into a single one, saving cpu time, reducing
lock contention and reducing btree node/leaf COW operations.
This covers the case where applications keep doing tail append writes to
files, which for example is the case of Apache CouchDB (its database and
view index files are always open with O_APPEND).
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
If we truncate an uncompressed inline item, ram_bytes isn't updated to reflect
the new size. The fixe uses the size directly from the item header when
reading uncompressed inlines, and also fixes truncate to update the
size as it goes.
Reported-by: Jens Axboe <axboe@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
CC: stable@vger.kernel.org
When we ran the 274th case of xfstests with nodatacow mount option,
We met the following warning message:
WARNING: CPU: 1 PID: 14185 at fs/btrfs/extent-tree.c:3734 btrfs_free_reserved_data_space+0xa6/0xd0
It is caused by the race between the write back and nocow buffered
write:
Task1 Task2
__btrfs_buffered_write()
skip data reservation
reserve the metadata space
copy the data
dirty the pages
unlock the pages
write back the pages
release the data space
becasue there is no
noreserve flag
set the noreserve flag
This patch fixes this problem by unlocking the pages after
the noreserve flag is set.
Reported-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Looking into some performance related issues with large amounts of metadata
revealed that we can have some pretty huge swings in fsync() performance. If we
have a lot of delayed refs backed up (as you will tend to do with lots of
metadata) fsync() will wander off and try to run some of those delayed refs
which can result in reading from disk and such. Since the actual act of fsync()
doesn't create any delayed refs there is no need to make it throttle on delayed
ref stuff, that will be handled by other people. With this patch we get much
smoother fsync performance with large amounts of metadata. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
When writing to a file we drop existing file extent items that cover the
write range and then add a new file extent item that represents that write
range.
Before this change we were doing a tree lookup to remove the file extent
items, and then after we did another tree lookup to insert the new file
extent item.
Most of the time all the file extent items we need to drop are located
within a single leaf - this is the leaf where our new file extent item ends
up at. Therefore, in this common case just combine these 2 operations into
a single one.
By avoiding the second btree navigation for insertion of the new file extent
item, we reduce btree node/leaf lock acquisitions/releases, btree block/leaf
COW operations, CPU time on btree node/leaf key binary searches, etc.
Besides for file writes, this is an operation that happens for file fsync's
as well. However log btrees are much less likely to big as big as regular
fs btrees, therefore the impact of this change is smaller.
The following benchmark was performed against an SSD drive and a
HDD drive, both for random and sequential writes:
sysbench --test=fileio --file-num=4096 --file-total-size=8G \
--file-test-mode=[rndwr|seqwr] --num-threads=512 \
--file-block-size=8192 \ --max-requests=1000000 \
--file-fsync-freq=0 --file-io-mode=sync [prepare|run]
All results below are averages of 10 runs of the respective test.
** SSD sequential writes
Before this change: 225.88 Mb/sec
After this change: 277.26 Mb/sec
** SSD random writes
Before this change: 49.91 Mb/sec
After this change: 56.39 Mb/sec
** HDD sequential writes
Before this change: 68.53 Mb/sec
After this change: 69.87 Mb/sec
** HDD random writes
Before this change: 13.04 Mb/sec
After this change: 14.39 Mb/sec
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
fs/btrfs/file.c: In function ‘prepare_pages.isra.18’:
fs/btrfs/file.c:1265:6: warning: ‘err’ may be used uninitialized in this function [-Wuninitialized]
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
If the ordered extent's last byte was 1 less than our region's
start byte, we would unnecessarily wait for the completion of
that ordered extent, because it doesn't intersect our target
range.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
When we ran sysbench on the fs with compression, the following WARN_ONs were
triggered:
fs/btrfs/inode.c:7829 WARN_ON(BTRFS_I(inode)->outstanding_extents);
fs/btrfs/inode.c:7830 WARN_ON(BTRFS_I(inode)->reserved_extents);
fs/btrfs/inode.c:7832 WARN_ON(BTRFS_I(inode)->csum_bytes);
Steps to reproduce:
# mkfs.btrfs -f <dev>
# mount -o compress <dev> <mnt>
# cd <mnt>
# sysbench --test=fileio --num-threads=8 --file-total-size=8G \
> --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \
> --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \
> --file-test-mode=sync prepare
# cd -
# umount <mnt>
# mount -o compress <dev> <mnt>
# cd <mnt>
# sysbench --test=fileio --num-threads=8 --file-total-size=8G \
> --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \
> --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \
> --file-test-mode=sync run
# cd -
# umount <mnt>
The reason of this problem is:
Task0 Task1
btrfs_direct_IO
unlock(&inode->i_mutex)
lock(&inode->i_mutex)
reserve_space()
prepare_pages()
lock_extent()
clear_extent()
unlock_extent()
lock_extent()
test_extent(uptodate)
return false
copy_data()
set_delalloc_extent()
extent need compress
go back to buffered write
clear_extent(DELALLOC | DIRTY)
unlock_extent()
Task 0 and 1 wrote the same place, and task0 cleared the delalloc flag which
was set by task1, it made the dirty pages in that extents couldn't be flushed
into the disk, so the reserved space for that extent was not released at
the end.
This patch fixes the above bug by unlocking the extent after the delalloc.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
- the caller has gotten the inode object, needn't pass the file object.
And if so, we needn't define a inode pointer variant.
- the position should be aligned by the page size not sector size, so
we also needn't pass the root object into prepare_pages().
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Btrfs has always had these filler extent data items for holes in inodes. This
has made somethings very easy, like logging hole punches and sending hole
punches. However for large holey files these extent data items are pure
overhead. So add an incompatible feature to no longer add hole extents to
reduce the amount of metadata used by these sort of files. This has a few
changes for logging and send obviously since they will need to detect holes and
log/send the holes if there are any. I've tested this thoroughly with xfstests
and it doesn't cause any issues with and without the incompat format set.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <clm@fb.com>
Fix spacing issues detected via checkpatch.pl in accordance with the
kernel style guidelines.
Signed-off-by: Dulshani Gunawardhana <dulshani.gunawardhana89@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
I noticed that if the free space cache has an error writing out it's data it
won't actually error out, it will just carry on. This is because it doesn't
check the return value of btrfs_wait_ordered_range, which didn't actually return
anything. So fix this in order to keep us from making free space cache look
valid when it really isnt. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
fs/btrfs/compat.h only contained trivial macro wrappers of drop_nlink()
and inc_nlink(). This doesn't belong in mainline.
Signed-off-by: Zach Brown <zab@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Whoever wrote this was braindead. Also it doesn't work right if you have
VACANCY's since we assumed you would only have that at the end of the file,
which won't be the case in the near future. I tested this with generic/285 and
generic/286 as well as the btrfs tests that use fssum since it uses
seek_hole/seek_data to verify things are ok. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Pull btrfs fixes from Chris Mason:
"These are mostly bug fixes and a two small performance fixes. The
most important of the bunch are Josef's fix for a snapshotting
regression and Mark's update to fix compile problems on arm"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (25 commits)
Btrfs: create the uuid tree on remount rw
btrfs: change extent-same to copy entire argument struct
Btrfs: dir_inode_operations should use btrfs_update_time also
btrfs: Add btrfs: prefix to kernel log output
btrfs: refuse to remount read-write after abort
Btrfs: btrfs_ioctl_default_subvol: Revert back to toplevel subvolume when arg is 0
Btrfs: don't leak transaction in btrfs_sync_file()
Btrfs: add the missing mutex unlock in write_all_supers()
Btrfs: iput inode on allocation failure
Btrfs: remove space_info->reservation_progress
Btrfs: kill delay_iput arg to the wait_ordered functions
Btrfs: fix worst case calculator for space usage
Revert "Btrfs: rework the overcommit logic to be based on the total size"
Btrfs: improve replacing nocow extents
Btrfs: drop dir i_size when adding new names on replay
Btrfs: replay dir_index items before other items
Btrfs: check roots last log commit when checking if an inode has been logged
Btrfs: actually log directory we are fsync()'ing
Btrfs: actually limit the size of delalloc range
Btrfs: allocate the free space by the existed max extent size when ENOSPC
...
In btrfs_sync_file(), if the call to btrfs_log_dentry_safe() returns
a negative error (for e.g. -ENOMEM via btrfs_log_inode()), we would
return without ending/freeing the transaction.
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Pull btrfs updates from Chris Mason:
"This is against 3.11-rc7, but was pulled and tested against your tree
as of yesterday. We do have two small incrementals queued up, but I
wanted to get this bunch out the door before I hop on an airplane.
This is a fairly large batch of fixes, performance improvements, and
cleanups from the usual Btrfs suspects.
We've included Stefan Behren's work to index subvolume UUIDs, which is
targeted at speeding up send/receive with many subvolumes or snapshots
in place. It closes a long standing performance issue that was built
in to the disk format.
Mark Fasheh's offline dedup work is also here. In this case offline
means the FS is mounted and active, but the dedup work is not done
inline during file IO. This is a building block where utilities are
able to ask the FS to dedup a series of extents. The kernel takes
care of verifying the data involved really is the same. Today this
involves reading both extents, but we'll continue to evolve the
patches"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (118 commits)
Btrfs: optimize key searches in btrfs_search_slot
Btrfs: don't use an async starter for most of our workers
Btrfs: only update disk_i_size as we remove extents
Btrfs: fix deadlock in uuid scan kthread
Btrfs: stop refusing the relocation of chunk 0
Btrfs: fix memory leak of uuid_root in free_fs_info
btrfs: reuse kbasename helper
btrfs: return btrfs error code for dev excl ops err
Btrfs: allow partial ordered extent completion
Btrfs: convert all bug_ons in free-space-cache.c
Btrfs: add support for asserts
Btrfs: adjust the fs_devices->missing count on unmount
Btrf: cleanup: don't check for root_refs == 0 twice
Btrfs: fix for patch "cleanup: don't check the same thing twice"
Btrfs: get rid of one BUG() in write_all_supers()
Btrfs: allocate prelim_ref with a slab allocater
Btrfs: pass gfp_t to __add_prelim_ref() to avoid always using GFP_ATOMIC
Btrfs: fix race conditions in BTRFS_IOC_FS_INFO ioctl
Btrfs: fix race between removing a dev and writing sbs
Btrfs: remove ourselves from the cluster list under lock
...
Call generic_write_sync() from the deferred I/O completion handler if
O_DSYNC is set for a write request. Also make sure various callers
don't call generic_write_sync if the direct I/O code returns
-EIOCBQUEUED.
Based on an earlier patch from Jan Kara <jack@suse.cz> with updates from
Jeff Moyer <jmoyer@redhat.com> and Darrick J. Wong <darrick.wong@oracle.com>.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
btrfs_read_fs_root_no_name() already checks if btrfs_root_refs()
is zero and returns ENOENT in this case. There is no need to do
it again in three more places.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
I noticed while looking at a deadlock that we are always starting a transaction
in cow_file_range(). This isn't really needed since we only need a transaction
if we are doing an inline extent, or if the allocator needs to allocate a chunk.
So push down all the transaction start stuff to be closer to where we actually
need a transaction in all of these cases. This will hopefully reduce our write
latency when we are committing often. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
We can end up with inodes on the auto defrag list that exist on roots that are
going to be deleted. This is extra work we don't need to do, so just bail if
our root has 0 root refs. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
I noticed while running multi-threaded fsync tests that sometimes fsck would
complain about an improper gap. This happens because we fail to add a hole
extent to the file, which was happening when we'd split a hole EM because
btrfs_drop_extent_cache was just discarding the whole em instead of splitting
it. So this patch fixes this by allowing us to split a hole em properly, which
means that added holes actually get logged properly and we no longer see this
fsck error. Thankfully we're tolerant of these sort of problems so a user would
not see any adverse effects of this bug, other than fsck complaining. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Pull btrfs update from Chris Mason:
"These are the usual mixture of bugs, cleanups and performance fixes.
Miao has some really nice tuning of our crc code as well as our
transaction commits.
Josef is peeling off more and more problems related to early enospc,
and has a number of important bug fixes in here too"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (81 commits)
Btrfs: wait ordered range before doing direct io
Btrfs: only do the tree_mod_log_free_eb if this is our last ref
Btrfs: hold the tree mod lock in __tree_mod_log_rewind
Btrfs: make backref walking code handle skinny metadata
Btrfs: fix crash regarding to ulist_add_merge
Btrfs: fix several potential problems in copy_nocow_pages_for_inode
Btrfs: cleanup the code of copy_nocow_pages_for_inode()
Btrfs: fix oops when recovering the file data by scrub function
Btrfs: make the chunk allocator completely tree lockless
Btrfs: cleanup orphaned root orphan item
Btrfs: fix wrong mirror number tuning
Btrfs: cleanup redundant code in btrfs_submit_direct()
Btrfs: remove btrfs_sector_sum structure
Btrfs: check if we can nocow if we don't have data space
Btrfs: stop using try_to_writeback_inodes_sb_nr to flush delalloc
Btrfs: use a percpu to keep track of possibly pinned bytes
Btrfs: check for actual acls rather than just xattrs when caching no acl
Btrfs: move btrfs_truncate_page to btrfs_cont_expand instead of btrfs_truncate
Btrfs: optimize reada_for_balance
Btrfs: optimize read_block_for_search
...
For those file systems(btrfs/ext4/ocfs2/tmpfs) that support
SEEK_DATA/SEEK_HOLE functions, we end up handling the similar
matter in lseek_execute() to update the current file offset
to the desired offset if it is valid, ceph also does the
simliar things at ceph_llseek().
To reduce the duplications, this patch make lseek_execute()
public accessible so that we can call it directly from the
underlying file systems.
Thanks Dave Chinner for this suggestion.
[AV: call it vfs_setpos(), don't bring the removed 'inode' argument back]
v2->v1:
- Add kernel-doc comments for lseek_execute()
- Call lseek_execute() in ceph->llseek()
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chris Mason <chris.mason@fusionio.com>
Cc: Josef Bacik <jbacik@fusionio.com>
Cc: Ben Myers <bpm@sgi.com>
Cc: Ted Tso <tytso@mit.edu>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Sage Weil <sage@inktank.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We always just try and reserve data space when we write, but if we are out of
space but have prealloc'ed extents we should still successfully write. This
patch will try and see if we can write to prealloc'ed space and if we can go
ahead and allow the write to continue. With this patch we now pass xfstests
generic/274. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
This has plagued us forever and I'm so over working around it. When we truncate
down to a non-page aligned offset we will call btrfs_truncate_page to zero out
the end of the page and write it back to disk, this will keep us from exposing
stale data if we truncate back up from that point. The problem with this is it
requires data space to do this, and people don't really expect to get ENOSPC
from truncate() for these sort of things. This also tends to bite the orphan
cleanup stuff too which keeps people from mounting. To get around this we can
just move this into btrfs_cont_expand() to make sure if we are truncating up
from a non-page size aligned i_size we will zero out the rest of this page so
that we don't expose stale data. This will give ENOSPC if you try to truncate()
up or if you try to write past the end of isize, which is much more reasonable.
This fixes xfstests generic/083 failing to mount because of the orphan cleanup
failing. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
btrfs_read_fs_root_no_name() already checks if btrfs_root_refs()
is zero and returns ENOENT in this case. There is no need to do
it again in six places.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Pull btrfs update from Chris Mason:
"These are mostly fixes. The biggest exceptions are Josef's skinny
extents and Jan Schmidt's code to rebuild our quota indexes if they
get out of sync (or you enable quotas on an existing filesystem).
The skinny extents are off by default because they are a new variation
on the extent allocation tree format. btrfstune -x enables them, and
the new format makes the extent allocation tree about 30% smaller.
I rebased this a few days ago to rework Dave Sterba's crc checks on
the super block, but almost all of these go back to rc6, since I
though 3.9 was due any minute.
The biggest missing fix is the tracepoint bug that was hit late in
3.9. I ran into problems with that in overnight testing and I'm still
tracking it down. I'll definitely have that fixed for rc2."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (101 commits)
Btrfs: allow superblock mismatch from older mkfs
btrfs: enhance superblock checks
btrfs: fix misleading variable name for flags
btrfs: use unsigned long type for extent state bits
Btrfs: improve the loop of scrub_stripe
btrfs: read entire device info under lock
btrfs: remove unused gfp mask parameter from release_extent_buffer callchain
btrfs: handle errors returned from get_tree_block_key
btrfs: make static code static & remove dead code
Btrfs: deal with errors in write_dev_supers
Btrfs: remove almost all of the BUG()'s from tree-log.c
Btrfs: deal with free space cache errors while replaying log
Btrfs: automatic rescan after "quota enable" command
Btrfs: rescan for qgroups
Btrfs: split btrfs_qgroup_account_ref into four functions
Btrfs: allocate new chunks if the space is not enough for global rsv
Btrfs: separate sequence numbers for delayed ref tracking and tree mod log
btrfs: move leak debug code to functions
Btrfs: return free space in cow error path
Btrfs: set UUID in root_item for created trees
...
Big patch, but all it does is add statics to functions which
are in fact static, then remove the associated dead-code fallout.
removed functions:
btrfs_iref_to_path()
__btrfs_lookup_delayed_deletion_item()
__btrfs_search_delayed_insertion_item()
__btrfs_search_delayed_deletion_item()
find_eb_for_page()
btrfs_find_block_group()
range_straddles_pages()
extent_range_uptodate()
btrfs_file_extent_length()
btrfs_scrub_cancel_devid()
btrfs_start_transaction_lflush()
btrfs_print_tree() is left because it is used for debugging.
btrfs_start_transaction_lflush() and btrfs_reada_detach() are
left for symmetry.
ulist.c functions are left, another patch will take care of those.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
If argument 'trans' is unnecessary in the function where
fixup_low_keys() is called, 'trans' is deleted.
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
A user sent me a btrfs-image of a file system that was panicing on mount during
the log recovery. I had originally thought these problems were from a bug in
the free space cache code, but that was just a symptom of the problem. The
problem is if your application does something like this
[prealloc][prealloc][prealloc]
the internal extent maps will merge those all together into one extent map, even
though on disk they are 3 separate extents. So if you go to write into one of
these ranges the extent map will be right since we use the physical extent when
doing the write, but when we log the extents they will use the wrong sizes for
the remainder prealloc space. If this doesn't happen to trip up the free space
cache (which it won't in a lot of cases) then you will get bogus entries in your
extent tree which will screw stuff up later. The data and such will still work,
but everything else is broken. This patch fixes this by not allowing extents
that are on the modified list to be merged. This has the side effect that we
are no longer adding everything to the modified list all the time, which means
we now have to call btrfs_drop_extents every time we log an extent into the
tree. So this allows me to drop all this speciality code I was using to get
around calling btrfs_drop_extents. With this patch the testcase I've created no
longer creates a bogus file system after replaying the log. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
When logging changed extents I was logging ram_bytes as the current length,
which isn't correct, it's supposed to be the ram bytes of the original extent.
This is for compression where even if we split the extent we need to know the
ram bytes so when we uncompress the extent we know how big it will be. This was
still working out right with compression for some reason but I think we were
getting lucky. It was definitely off for prealloc which is why I noticed it,
btrfsck was complaining about it. With this patch btrfsck no longer complains
after a log replay. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Pull VFS updates from Al Viro,
Misc cleanups all over the place, mainly wrt /proc interfaces (switch
create_proc_entry to proc_create(), get rid of the deprecated
create_proc_read_entry() in favor of using proc_create_data() and
seq_file etc).
7kloc removed.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (204 commits)
don't bother with deferred freeing of fdtables
proc: Move non-public stuff from linux/proc_fs.h to fs/proc/internal.h
proc: Make the PROC_I() and PDE() macros internal to procfs
proc: Supply a function to remove a proc entry by PDE
take cgroup_open() and cpuset_open() to fs/proc/base.c
ppc: Clean up scanlog
ppc: Clean up rtas_flash driver somewhat
hostap: proc: Use remove_proc_subtree()
drm: proc: Use remove_proc_subtree()
drm: proc: Use minor->index to label things, not PDE->name
drm: Constify drm_proc_list[]
zoran: Don't print proc_dir_entry data in debug
reiserfs: Don't access the proc_dir_entry in r_open(), r_start() r_show()
proc: Supply an accessor for getting the data from a PDE's parent
airo: Use remove_proc_subtree()
rtl8192u: Don't need to save device proc dir PDE
rtl8187se: Use a dir under /proc/net/r8180/
proc: Add proc_mkdir_data()
proc: Move some bits from linux/proc_fs.h to linux/{of.h,signal.h,tty.h}
proc: Move PDE_NET() to fs/proc/proc_net.c
...
Pull btrfs fixes from Chris Mason:
"We've had a busy two weeks of bug fixing. The biggest patches in here
are some long standing early-enospc problems (Josef) and a very old
race where compression and mmap combine forces to lose writes (me).
I'm fairly sure the mmap bug goes all the way back to the introduction
of the compression code, which is proof that fsx doesn't trigger every
possible mmap corner after all.
I'm sure you'll notice one of these is from this morning, it's a small
and isolated use-after-free fix in our scrub error reporting. I
double checked it here."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: don't drop path when printing out tree errors in scrub
Btrfs: fix wrong return value of btrfs_lookup_csum()
Btrfs: fix wrong reservation of csums
Btrfs: fix double free in the btrfs_qgroup_account_ref()
Btrfs: limit the global reserve to 512mb
Btrfs: hold the ordered operations mutex when waiting on ordered extents
Btrfs: fix space accounting for unlink and rename
Btrfs: fix space leak when we fail to reserve metadata space
Btrfs: fix EIO from btrfs send in is_extent_unchanged for punched holes
Btrfs: fix race between mmap writes and compression
Btrfs: fix memory leak in btrfs_create_tree()
Btrfs: fix locking on ROOT_REPLACE operations in tree mod log
Btrfs: fix missing qgroup reservation before fallocating
Btrfs: handle a bogus chunk tree nicely
Btrfs: update to use fs_state bit
Steps to reproduce:
mkfs.btrfs <disk>
mount <disk> <mnt>
btrfs quota enable <mnt>
btrfs sub create <mnt>/subv
btrfs qgroup limit 10M <mnt>/subv
fallocate --length 20M <mnt>/subv/data
For the above example, fallocating will return successfully which
is not expected, we try to fix it by doing qgroup reservation before
fallocating.
Signed-off-by: Wang Shilong <wangsl-fnst@cn.fujitsu.com>
Reviewed-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Pull btrfs fixes from Chris Mason:
"Eric's rcu barrier patch fixes a long standing problem with our
unmount code hanging on to devices in workqueue helpers. Liu Bo
nailed down a difficult assertion for in-memory extent mappings."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix warning of free_extent_map
Btrfs: fix warning when creating snapshots
Btrfs: return as soon as possible when edquot happens
Btrfs: return EIO if we have extent tree corruption
btrfs: use rcu_barrier() to wait for bdev puts at unmount
Btrfs: remove btrfs_try_spin_lock
Btrfs: get better concurrency for snapshot-aware defrag work
Users report that an extent map's list is still linked when it's actually
going to be freed from cache.
The story is that
a) when we're going to drop an extent map and may split this large one into
smaller ems, and if this large one is flagged as EXTENT_FLAG_LOGGING which means
that it's on the list to be logged, then the smaller ems split from it will also
be flagged as EXTENT_FLAG_LOGGING, and this is _not_ expected.
b) we'll keep ems from unlinking the list and freeing when they are flagged with
EXTENT_FLAG_LOGGING, because the log code holds one reference.
The end result is the warning, but the truth is that we set the flag
EXTENT_FLAG_LOGGING only during fsync.
So clear flag EXTENT_FLAG_LOGGING for extent maps split from a large one.
Reported-by: Johannes Hirte <johannes.hirte@fem.tu-ilmenau.de>
Reported-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Pull btrfs update from Chris Mason:
"The biggest feature in the pull is the new (and still experimental)
raid56 code that David Woodhouse started long ago. I'm still working
on the parity logging setup that will avoid inconsistent parity after
a crash, so this is only for testing right now. But, I'd really like
to get it out to a broader audience to hammer out any performance
issues or other problems.
scrub does not yet correct errors on raid5/6 either.
Josef has another pass at fsync performance. The big change here is
to combine waiting for metadata with waiting for data, which is a big
latency win. It is also step one toward using atomics from the
hardware during a commit.
Mark Fasheh has a new way to use btrfs send/receive to send only the
metadata changes. SUSE is using this to make snapper more efficient
at finding changes between snapshosts.
Snapshot-aware defrag is also included.
Otherwise we have a large number of fixes and cleanups. Eric Sandeen
wins the award for removing the most lines, and I'm hoping we steal
this idea from XFS over and over again."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (118 commits)
btrfs: fixup/remove module.h usage as required
Btrfs: delete inline extents when we find them during logging
btrfs: try harder to allocate raid56 stripe cache
Btrfs: cleanup to make the function btrfs_delalloc_reserve_metadata more logic
Btrfs: don't call btrfs_qgroup_free if just btrfs_qgroup_reserve fails
Btrfs: remove reduplicate check about root in the function btrfs_clean_quota_tree
Btrfs: return ENOMEM rather than use BUG_ON when btrfs_alloc_path fails
Btrfs: fix missing deleted items in btrfs_clean_quota_tree
btrfs: use only inline_pages from extent buffer
Btrfs: fix wrong reserved space when deleting a snapshot/subvolume
Btrfs: fix wrong reserved space in qgroup during snap/subv creation
Btrfs: remove unnecessary dget_parent/dput when creating the pending snapshot
btrfs: remove a printk from scan_one_device
Btrfs: fix NULL pointer after aborting a transaction
Btrfs: fix memory leak of log roots
Btrfs: copy everything if we've created an inline extent
btrfs: cleanup for open-coded alignment
Btrfs: do not change inode flags in rename
Btrfs: use reserved space for creating a snapshot
clear chunk_alloc flag on retryable failure
...
Pull vfs pile (part one) from Al Viro:
"Assorted stuff - cleaning namei.c up a bit, fixing ->d_name/->d_parent
locking violations, etc.
The most visible changes here are death of FS_REVAL_DOT (replaced with
"has ->d_weak_revalidate()") and a new helper getting from struct file
to inode. Some bits of preparation to xattr method interface changes.
Misc patches by various people sent this cycle *and* ocfs2 fixes from
several cycles ago that should've been upstream right then.
PS: the next vfs pile will be xattr stuff."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (46 commits)
saner proc_get_inode() calling conventions
proc: avoid extra pde_put() in proc_fill_super()
fs: change return values from -EACCES to -EPERM
fs/exec.c: make bprm_mm_init() static
ocfs2/dlm: use GFP_ATOMIC inside a spin_lock
ocfs2: fix possible use-after-free with AIO
ocfs2: Fix oops in ocfs2_fast_symlink_readpage() code path
get_empty_filp()/alloc_file() leave both ->f_pos and ->f_version zero
target: writev() on single-element vector is pointless
export kernel_write(), convert open-coded instances
fs: encode_fh: return FILEID_INVALID if invalid fid_type
kill f_vfsmnt
vfs: kill FS_REVAL_DOT by adding a d_weak_revalidate dentry op
nfsd: handle vfs_getattr errors in acl protocol
switch vfs_getattr() to struct path
default SET_PERSONALITY() in linux/elf.h
ceph: prepopulate inodes only when request is aborted
d_hash_and_lookup(): export, switch open-coded instances
9p: switch v9fs_set_create_acl() to inode+fid, do it before d_instantiate()
9p: split dropping the acls from v9fs_set_create_acl()
...
Though most of the btrfs codes are using ALIGN macro for page alignment,
there are still some codes using open-coded alignment like the
following:
------
u64 mask = ((u64)root->stripesize - 1);
u64 ret = (val + mask) & ~mask;
------
Or even hidden one:
------
num_bytes = (end - start + blocksize) & ~(blocksize - 1);
------
Sometimes these open-coded alignment is not so easy to understand for
newbie like me.
This commit changes the open-coded alignment to the ALIGN macro for a
better readability.
Also there is a previous patch from David Sterba with similar changes,
but the patch is for 3.2 kernel and seems not merged.
http://www.spinics.net/lists/linux-btrfs/msg12747.html
Cc: David Sterba <dave@jikos.cz>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
If we remount the fs to close the auto defragment or make the fs R/O,
we should stop the auto defragment.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Miao made the ordered operations stuff run async, which introduced a
deadlock where we could get somebody (sync) racing in and committing the
transaction while a commit was already happening. The new committer would
try and flush ordered operations which would hang waiting for the commit to
finish because it is done asynchronously and no longer inherits the callers
trans handle. To fix this we need to make the ordered operations list a per
transaction list. We can get new inodes added to the ordered operation list
by truncating them and then having another process writing to them, so this
makes it so that anybody trying to add an ordered operation _must_ start a
transaction in order to add itself to the list, which will keep new inodes
from getting added to the ordered operations list after we start committing.
This should fix the deadlock and also keeps us from doing a lot more work
than we need to during commit. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
There is no lock to protect fs_info->fs_state, it will introduce
some problems, such as the value may be covered by the other task
when several tasks modify it. For example:
Task0 - CPU0 Task1 - CPU1
mov %fs_state rax
or $0x1 rax
mov %fs_state rax
or $0x2 rax
mov rax %fs_state
mov rax %fs_state
The expected value is 3, but in fact, it is 2.
Though this problem doesn't happen now (because there is only one
flag currently), the code is error prone, if we add other flags,
the above problem will happen to a certainty.
Now we use bit operation for it to fix the above problem.
In this way, we can make the code more robust and be easy to
add new flags.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
The header file will then be installed under /usr/include/linux so that
userspace applications can refer to Btrfs ioctls by name and use the same
structs used internally in the kernel.
Signed-off-by: Filipe Brandenburger <filbranden@google.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Since we don't actually copy the extent information from the source tree in
the fast case we don't need to wait for ordered io to be completed in order
to fsync, we just need to wait for the io to be completed. So when we're
logging our file just attach all of the ordered extents to the log, and then
when the log syncs just wait for IO_DONE on the ordered extents and then
write the super. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Pull btrfs fixes from Chris Mason:
"We've got corner cases for updating i_size that ceph was hitting,
error handling for quotas when we run out of space, a very subtle
snapshot deletion race, a crash while removing devices, and one
deadlock between subvolume creation and the sb_internal code (thanks
lockdep)."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: move d_instantiate outside the transaction during mksubvol
Btrfs: fix EDQUOT handling in btrfs_delalloc_reserve_metadata
Btrfs: fix possible stale data exposure
Btrfs: fix missing i_size update
Btrfs: fix race between snapshot deletion and getting inode
Btrfs: fix missing release of the space/qgroup reservation in start_transaction()
Btrfs: fix wrong sync_writers decrement in btrfs_file_aio_write()
Btrfs: do not merge logged extents if we've removed them from the tree
btrfs: don't try to notify udev about missing devices
While running snapshot testscript created by Mitch and David,
the race between autodefrag and snapshot deletion can lead to
corruption of dead_root list so that we can get crash on
btrfs_clean_old_snapshots().
And besides autodefrag, scrub also does the same thing, ie. read
root first and get inode.
Here is the story(take autodefrag as an example):
(1) when we delete a snapshot or subvolume, it will set its root's
refs to zero and do a iput() on its own inode, and if this inode happens
to be the only active in-meory one in root's inode rbtree, it will add
itself to the global dead_roots list for later cleanup.
(2) after (1), the autodefrag thread may read another inode for defrag
and the inode is just in the deleted snapshot/subvolume, but all of these
are without checking if the root is still valid(refs > 0). So the end up
result is adding the deleted snapshot/subvolume's root to the global
dead_roots list AGAIN.
Fortunately, we already have a srcu lock to avoid the race, ie. subvol_srcu.
So all we need to do is to take the lock to protect 'read root and get inode',
since we synchronize to wait for the rcu grace period before adding something
to the global dead_roots list.
Reported-by: Mitch Harder <mitch.harder@sabayonlinux.org>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
If the checks at the beginning of btrfs_file_aio_write() fail, we needn't
decrease ->sync_writers, because we have not increased it. Fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Pull btrfs fixes from Chris Mason:
"It turns out that we had two crc bugs when running fsx-linux in a
loop. Many thanks to Josef, Miao Xie, and Dave Sterba for nailing it
all down. Miao also has a new OOM fix in this v2 pull as well.
Ilya fixed a regression Liu Bo found in the balance ioctls for pausing
and resuming a running balance across drives.
Josef's orphan truncate patch fixes an obscure corruption we'd see
during xfstests.
Arne's patches address problems with subvolume quotas. If the user
destroys quota groups incorrectly the FS will refuse to mount.
The rest are smaller fixes and plugs for memory leaks."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (30 commits)
Btrfs: fix repeated delalloc work allocation
Btrfs: fix wrong max device number for single profile
Btrfs: fix missed transaction->aborted check
Btrfs: Add ACCESS_ONCE() to transaction->abort accesses
Btrfs: put csums on the right ordered extent
Btrfs: use right range to find checksum for compressed extents
Btrfs: fix panic when recovering tree log
Btrfs: do not allow logged extents to be merged or removed
Btrfs: fix a regression in balance usage filter
Btrfs: prevent qgroup destroy when there are still relations
Btrfs: ignore orphan qgroup relations
Btrfs: reorder locks and sanity checks in btrfs_ioctl_defrag
Btrfs: fix unlock order in btrfs_ioctl_rm_dev
Btrfs: fix unlock order in btrfs_ioctl_resize
Btrfs: fix "mutually exclusive op is running" error code
Btrfs: bring back balance pause/resume logic
btrfs: update timestamps on truncate()
btrfs: fix btrfs_cont_expand() freeing IS_ERR em
Btrfs: fix a bug when llseek for delalloc bytes behind prealloc extents
Btrfs: fix off-by-one in lseek
...
xfstests case 285 complains.
It it because btrfs did not try to find unwritten delalloc
bytes(only dirty pages, not yet writeback) behind prealloc
extents, it ends up finding nothing while we're with SEEK_DATA.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Pull btrfs update from Chris Mason:
"A big set of fixes and features.
In terms of line count, most of the code comes from Stefan, who added
the ability to replace a single drive in place. This is different
from how btrfs normally replaces drives, and is much much much faster.
Josef is plowing through our synchronous write performance. This pull
request does not include the DIO_OWN_WAITING patch that was discussed
on the list, but it has a number of other improvements to cut down our
latencies and CPU time during fsync/O_DIRECT writes.
Miao Xie has a big series of fixes and is spreading out ordered
operations over more CPUs. This improves performance and reduces
contention.
I've put in fixes for error handling around hash collisions. These
are going back to individual stable kernels as I test against them.
Otherwise we have a lot of fixes and cleanups, thanks everyone!
raid5/6 is being rebased against the device replacement code. I'll
have it posted this Friday along with a nice series of benchmarks."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (115 commits)
Btrfs: fix a bug of per-file nocow
Btrfs: fix hash overflow handling
Btrfs: don't take inode delalloc mutex if we're a free space inode
Btrfs: fix autodefrag and umount lockup
Btrfs: fix permissions of empty files not affected by umask
Btrfs: put raid properties into global table
Btrfs: fix BUG() in scrub when first superblock reading gives EIO
Btrfs: do not call file_update_time in aio_write
Btrfs: only unlock and relock if we have to
Btrfs: use tokens where we can in the tree log
Btrfs: optimize leaf_space_used
Btrfs: don't memset new tokens
Btrfs: only clear dirty on the buffer if it is marked as dirty
Btrfs: move checks in set_page_dirty under DEBUG
Btrfs: log changed inodes based on the extent map tree
Btrfs: add path->really_keep_locks
Btrfs: do not mark ems as prealloc if we are writing to them
Btrfs: keep track of the extents original block length
Btrfs: inline csums if we're fsyncing
Btrfs: don't bother copying if we're only logging the inode
...
But the kernel decided to call it "origin" instead. Fix most of the
sites.
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This starts a transaction and dirties the inode everytime we call it, which
is super expensive if you have a write heavy workload. We will be updating
the inode when the IO completes and we reserve the space for the inode
update when we reserve space for the write, so there is no chance of loss of
information or enospc issues. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
We don't really need to copy extents from the source tree since we have all
of the information already available to us in the extent_map tree. So
instead just write the extents straight to the log tree and don't bother to
copy the extent items from the source tree.
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
If we've written to a prealloc extent we need to know the original block len
for the extent. We can't figure this out currently since ->block_len is
just set to the extent length. So introduce ->orig_block_len so that we
know how many bytes were in the original extent for proper extent logging
that future patches will need. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
The tree logging stuff needs the csums to be on the ordered extents in order
to log them properly, so mark that we're sync and inline the csum creation
so we don't have to wait on the csumming to be done when logging extents
that are still in flight. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Since we can pre-allocate the space past EOF, we should be able to reclaim
that space if we need. This patch implements it by removing the EOF check.
Though the manual of fallocate command says we can use truncate command to
reclaim the pre-allocated space which past EOF, but because truncate command
changes the file size, we must run several commands to reclaim the space if we
don't want to change the file size, so it is not a good choice.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Steps to reproduce:
# mkfs.btrfs <disk>
# mount <disk> <mnt>
# dd if=/dev/zero of=<mnt>/<file> bs=512 seek=5 count=8
# fallocate -p -o 2048 -l 16384 <mnt>/<file>
# dd if=/dev/zero of=<mnt>/<file> bs=4096 seek=3 count=8 conv=notrunc,nocreat
# umount <mnt>
# dmesg
WARNING: at fs/btrfs/inode.c:7140 btrfs_destroy_inode+0x2eb/0x330
The reason is that we inputed a range which is beyond the end of the file. And
because the end of this range was not page-aligned, we had to truncate the last
page in this range, this operation is similar to a buffered file write. In other
words, we reserved enough space and clear the data which was in the hole range
on that page. But when we expanded that test file, write the data into the same
page, we forgot that we have reserved enough space for the buffered write of
that page because in most cases there is no page that is beyond the end of
the file. As a result, we reserved the space twice.
In fact, we needn't truncate the page if it is beyond the end of the file, just
release the allocated space in that range. Fix the above problem by this way.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
(start + len) is the start of the adjacent extent, not the end of the current
extent, so we should not use it to check the hole is on the same page or not.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
alloc_end is not the real end of the current extent, it is the start of the
next adjoining extent. So we needn't +1 when calculating the size the space
that is about to be reserved.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
The kernel developers have implemented some often-used align macros, we should
use them instead of the complex code.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
If we freeze the fs, the auto defragment should not run. Fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
This patch restructure btrfs_run_defrag_inodes() and make the code of the auto
defragment more readable.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
We forget to get the defrag lock when we re-add the defragable inode,
Fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
The auto defrag allocation is in the fast path of the IO, so use slabs
to improve the speed of the allocation.
And besides that, it can do check for leaked objects when the module is removed.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
- 'nr' is no more used.
- btrfs_btree_balance_dirty() and __btrfs_btree_balance_dirty() can share
a bunch of code.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Even if the hole punching is executed, the modification time of the
file is not updated.
So, current time is set to inode.
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
btrfs_wait_ordered_range expects for 'len' instead of 'end'.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
There is no reason to pass the nr_pages_dirtied argument, because
nr_pages_dirtied value from the caller is unused in
balance_dirty_pages_ratelimited_nr().
Signed-off-by: Namjae Jeon <linkinjeon@gmail.com>
Signed-off-by: Vivek Trivedi <vtrivedi018@gmail.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull btrfs update from Chris Mason:
"This is a large pull, with the bulk of the updates coming from:
- Hole punching
- send/receive fixes
- fsync performance
- Disk format extension allowing more hardlinks inside a single
directory (btrfs-progs patch required to enable the compat bit for
this one)
I'm cooking more unrelated RAID code, but I wanted to make sure this
original batch makes it in. The largest updates here are relatively
old and have been in testing for some time."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (121 commits)
btrfs: init ref_index to zero in add_inode_ref
Btrfs: remove repeated eb->pages check in, disk-io.c/csum_dirty_buffer
Btrfs: fix page leakage
Btrfs: do not warn_on when we cannot alloc a page for an extent buffer
Btrfs: don't bug on enomem in readpage
Btrfs: cleanup pages properly when ENOMEM in compression
Btrfs: make filesystem read-only when submitting barrier fails
Btrfs: detect corrupted filesystem after write I/O errors
Btrfs: make compress and nodatacow mount options mutually exclusive
btrfs: fix message printing
Btrfs: don't bother committing delayed inode updates when fsyncing
btrfs: move inline function code to header file
Btrfs: remove unnecessary IS_ERR in bio_readpage_error()
btrfs: remove unused function btrfs_insert_some_items()
Btrfs: don't commit instead of overcommitting
Btrfs: confirmation of value is added before trace_btrfs_get_extent() is called
Btrfs: be smarter about dropping things from the tree log
Btrfs: don't lookup csums for prealloc extents
Btrfs: cache extent state when writing out dirty metadata pages
Btrfs: do not hold the file extent leaf locked when adding extent item
...
Move actual pte filling for non-linear file mappings into the new special
vma operation: ->remap_pages().
Filesystems must implement this method to get non-linear mapping support,
if it uses filemap_fault() then generic_file_remap_pages() can be used.
Now device drivers can implement this method and obtain nonlinear vma support.
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Carsten Otte <cotte@de.ibm.com>
Cc: Chris Metcalf <cmetcalf@tilera.com> #arch/tile
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Eric Paris <eparis@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Morris <james.l.morris@oracle.com>
Cc: Jason Baron <jbaron@redhat.com>
Cc: Kentaro Takeda <takedakn@nttdata.co.jp>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Venkatesh Pallipadi <venki@google.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I saw the warning in btrfs_drop_extent_cache where our end is less than our
start while running xfstests 68 in a loop. This is because we
unconditionally do drop_end = min(end, extent_end) in
__btrfs_drop_extents(), even though we may not have found an extent in the
range we were looking to drop. So keep track of wether or not we found
something, and if we didn't just use our end. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
This reverts commit 0885ef5b56
After applying the above patch, the performance slowed down because the dirty
page flush can only be done by one task, so revert it.
The following is the test result of sysbench:
Before After
24MB/s 39MB/s
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
We're going to use this flag EXTENT_DEFRAG to indicate which range
belongs to defragment so that we can implement snapshow-aware defrag:
We set the EXTENT_DEFRAG flag when dirtying the extents that need
defragmented, so later on writeback thread can differentiate between
normal writeback and writeback started by defragmentation.
Original-Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
When we ran fsstress(a program in xfstests), the filesystem hung up when it
is full. It was because the space reserved in btrfs_fallocate() was wrong,
btrfs_fallocate() just used the size of the pre-allocation to reserve the
space, didn't took the block size aligning into account, so the size of
the reserved space was less than the allocated space, it caused the over
reserve problem and made the filesystem hung up when invoking cow_file_range().
Fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
We forget to protect ->log_batch when syncing a file, this patch fix
this problem by atomic operation. And ->log_batch is used to check
if there are parallel sync operations or not, so it is unnecessary to
reset it to 0 after the sync operation of the current log tree complete.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Sometimes we need choose the method of the reservation according to the type
of the block reservation, such as the reservation for the delayed inode update.
Now we identify the type just by comparing the address of the reservation
variants, it is very ugly if it is a temporary one because we need compare it
with all the common reservation variants. So we add a new "type" field to keep
the type the reservation variants.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
I noticed this when I was doing the fsync stuff, we allocate split extents if we
drop an extent range that is in the middle of an existing extent. This BUG()'s
if we fail to allocate memory, but the fact is this is just a cache, we will
just regenerate the cache if we need it, the important part is that we free the
range we are given. This can be done without allocations, so if we fail to
allocate splits just skip the splitting stage and free our em and look for more
extents to drop. This also makes btrfs_drop_extent_cache a void since nobody
was checking the return value anyway. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
I audited all users of btrfs_drop_extents and found that nobody actually uses
the hint_byte argument. I'm sure it was used for something at some point but
it's not used now, and the way the pinning works the disk bytenr would never be
immediately useful anyway so lets just remove it. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
At least for the vm workload. Currently on fsync we will
1) Truncate all items in the log tree for the given inode if they exist
and
2) Copy all items for a given inode into the log
The problem with this is that for things like VMs you can have lots of
extents from the fragmented writing behavior, and worst yet you may have
only modified a few extents, not the entire thing. This patch fixes this
problem by tracking which transid modified our extent, and then when we do
the tree logging we find all of the extents we've modified in our current
transaction, sort them and commit them. We also only truncate up to the
xattrs of the inode and copy that stuff in normally, and then just drop any
extents in the range we have that exist in the log already. Here are some
numbers of a 50 meg fio job that does random writes and fsync()s after every
write
Original Patched
SATA drive 82KB/s 140KB/s
Fusion drive 431KB/s 2532KB/s
So around 2-6 times faster depending on your hardware. There are a few
corner cases, for example if you truncate at all we have to do it the old
way since there is no way to be sure what is in the log is ok. This
probably could be done smarter, but if you write-fsync-truncate-write-fsync
you deserve what you get. All this work is in RAM of course so if your
inode gets evicted from cache and you read it in and fsync it we'll do it
the slow way if we are still in the same transaction that we last modified
the inode in.
The biggest cool part of this is that it requires no changes to the recovery
code, so if you fsync with this patch and crash and load an old kernel, it
will run the recovery and be a-ok. I have tested this pretty thoroughly
with an fsync tester and everything comes back fine, as well as xfstests.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
While working on my fsync patch my fsync tester kept hitting mismatching
md5sums when I would randomly write to a prealloc'ed region, syncfs() and
then write to the prealloced region some more and then fsync() and then
immediately reboot. This is because the tree logging code will skip writing
csums for file extents who's generation is less than the current running
transaction. When we mark extents as written we haven't been updating their
generation so they were always being skipped. This wouldn't happen if you
were to preallocate and then write in the same transaction, but if you for
example prealloced a VM you could definitely run into this problem. This
patch makes my fsync tester happy again. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
We convert btrfs_file_aio_write() to use new freeze check. We also add proper
freeze protection to btrfs_page_mkwrite(). We also add freeze protection to
the transaction mechanism to avoid starting transactions on frozen filesystem.
At minimum this is necessary to stop iput() of unlinked file to change frozen
filesystem during truncation.
Checks in cleaner_kthread() and transaction_kthread() can be safely removed
since btrfs_freeze() will lock the mutexes and thus block the threads (and they
shouldn't have anything to do anyway).
CC: linux-btrfs@vger.kernel.org
CC: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull btrfs updates from Chris Mason:
"I held off on my rc5 pull because I hit an oops during log recovery
after a crash. I wanted to make sure it wasn't a regression because
we have some logging fixes in here.
It turns out that a commit during the merge window just made it much
more likely to trigger directory logging instead of full commits,
which exposed an old bug.
The new backref walking code got some additional fixes. This should
be the final set of them.
Josef fixed up a corner where our O_DIRECT writes and buffered reads
could expose old file contents (not stale, just not the most recent).
He and Liu Bo fixed crashes during tree log recover as well.
Ilya fixed errors while we resume disk balancing operations on
readonly mounts."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: run delayed directory updates during log replay
Btrfs: hold a ref on the inode during writepages
Btrfs: fix tree log remove space corner case
Btrfs: fix wrong check during log recovery
Btrfs: use _IOR for BTRFS_IOC_SUBVOL_GETFLAGS
Btrfs: resume balance on rw (re)mounts properly
Btrfs: restore restriper state on all mounts
Btrfs: fix dio write vs buffered read race
Btrfs: don't count I/O statistic read errors for missing devices
Btrfs: resolve tree mod log locking issue in btrfs_next_leaf
Btrfs: fix tree mod log rewind of ADD operations
Btrfs: leave critical region in btrfs_find_all_roots as soon as possible
Btrfs: always put insert_ptr modifications into the tree mod log
Btrfs: fix tree mod log for root replacements at leaf level
Btrfs: support root level changes in __resolve_indirect_ref
Btrfs: avoid waiting for delayed refs when we must not
Miao pointed out there's a problem with mixing dio writes and buffered
reads. If the read happens between us invalidating the page range and
actually locking the extent we can bring in pages into page cache. Then
once the write finishes if somebody tries to read again it will just find
uptodate pages and we'll read stale data. So we need to lock the extent and
check for uptodate bits in the range. If there are uptodate bits we need to
unlock and invalidate again. This will keep this race from happening since
we will hold the extent locked until we create the ordered extent, and then
teh read side always waits for ordered extents. There was also a race in
how we updated i_size, previously we were relying on the generic DIO stuff
to adjust the i_size after the DIO had completed, but this happens outside
of the extent lock which means reads could come in and not see the updated
i_size. So instead move this work into where we create the extents, and
then this way the update ordered i_size stuff works properly in the endio
handlers. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Pull vfs changes from Al Viro.
"A lot of misc stuff. The obvious groups:
* Miklos' atomic_open series; kills the damn abuse of
->d_revalidate() by NFS, which was the major stumbling block for
all work in that area.
* ripping security_file_mmap() and dealing with deadlocks in the
area; sanitizing the neighborhood of vm_mmap()/vm_munmap() in
general.
* ->encode_fh() switched to saner API; insane fake dentry in
mm/cleancache.c gone.
* assorted annotations in fs (endianness, __user)
* parts of Artem's ->s_dirty work (jff2 and reiserfs parts)
* ->update_time() work from Josef.
* other bits and pieces all over the place.
Normally it would've been in two or three pull requests, but
signal.git stuff had eaten a lot of time during this cycle ;-/"
Fix up trivial conflicts in Documentation/filesystems/vfs.txt (the
'truncate_range' inode method was removed by the VM changes, the VFS
update adds an 'update_time()' method), and in fs/btrfs/ulist.[ch] (due
to sparse fix added twice, with other changes nearby).
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (95 commits)
nfs: don't open in ->d_revalidate
vfs: retry last component if opening stale dentry
vfs: nameidata_to_filp(): don't throw away file on error
vfs: nameidata_to_filp(): inline __dentry_open()
vfs: do_dentry_open(): don't put filp
vfs: split __dentry_open()
vfs: do_last() common post lookup
vfs: do_last(): add audit_inode before open
vfs: do_last(): only return EISDIR for O_CREAT
vfs: do_last(): check LOOKUP_DIRECTORY
vfs: do_last(): make ENOENT exit RCU safe
vfs: make follow_link check RCU safe
vfs: do_last(): use inode variable
vfs: do_last(): inline walk_component()
vfs: do_last(): make exit RCU safe
vfs: split do_lookup()
Btrfs: move over to use ->update_time
fs: introduce inode operation ->update_time
reiserfs: get rid of resierfs_sync_super
reiserfs: mark the superblock as dirty a bit later
...
Btrfs had been doing it's own file_update_time so we could catch ENOSPC
properly, so just update our btrfs_update_time to work with the new stuff and
then we'll be fancy later. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
We have this check down in the actual logging code, but this is after we
start a transaction and all that good stuff. So move the helper
inode_in_log() out so we can call it in fsync() and avoid starting a
transaction altogether and just exit if we've already fsync()'ed this file
recently. You would notice this issue if you fsync()'ed a file over and
over again until the transaction committed. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Two files in the different subvolumes may have the same inode id, so
The rb-tree which is used to manage the defragment object must take it
into account. This patch fix this problem.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Miao pointed this out while I was working on an orphan problem that messing
with a bitfield where different ranges are protected by different locks
doesn't work out right. Turns out we've been doing this forever where we
have different parts of the bit field protected by either no lock at all or
different locks which could cause all sorts of weird problems including the
issue I was hitting. So instead make a runtime_flags thing that we use the
normal bit operations on that are all atomic so we can keep having our
no/different locking for the different flags and then make force_compress
it's own thing so it can be treated normally. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
We already do the btrfs_wait_ordered_range which will do this for us, so
just remove this call so we don't call it twice. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
We've been keeping around the inode sequence number in hopes that somebody
would use it, but nobody uses it and people actually use i_version which
serves the same purpose, so use i_version where we used the incore inode's
sequence number and that way the sequence is updated properly across the
board, and not just in file write. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
We're spending huge amounts of time on lock contention during
end_io processing because we unconditionally assume we are overwriting
an existing extent in the file for each IO.
This checks to see if we are outside i_size, and if so, it uses a
less expensive readonly search of the btree to look for existing
extents.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
btrfs currently handles most errors with BUG_ON. This patch is a work-in-
progress but aims to handle most errors other than internal logic
errors and ENOMEM more gracefully.
This iteration prevents most crashes but can run into lockups with
the page lock on occasion when the timing "works out."
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
lock_extent and unlock_extent are always called with GFP_NOFS, drop the
argument and use GFP_NOFS consistently.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Quoth Chris:
"This is later than I wanted because I got backed up running through
btrfs bugs from the Oracle QA teams. But they are all bug fixes that
we've queued and tested since rc1.
Nothing in particular stands out, this just reflects bug fixing and QA
done in parallel by all the btrfs developers. The most user visible
of these is:
Btrfs: clear the extent uptodate bits during parent transid failures
Because that helps deal with out of date drives (say an iscsi disk
that has gone away and come back). The old code wasn't always
properly retrying the other mirror for this type of failure."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (24 commits)
Btrfs: fix compiler warnings on 32 bit systems
Btrfs: increase the global block reserve estimates
Btrfs: clear the extent uptodate bits during parent transid failures
Btrfs: add extra sanity checks on the path names in btrfs_mksubvol
Btrfs: make sure we update latest_bdev
Btrfs: improve error handling for btrfs_insert_dir_item callers
Btrfs: be less strict on finding next node in clear_extent_bit
Btrfs: fix a bug on overcommit stuff
Btrfs: kick out redundant stuff in convert_extent_bit
Btrfs: skip states when they does not contain bits to clear
Btrfs: check return value of lookup_extent_mapping() correctly
Btrfs: fix deadlock on page lock when doing auto-defragment
Btrfs: fix return value check of extent_io_ops
btrfs: honor umask when creating subvol root
btrfs: silence warning in raid array setup
btrfs: fix structs where bitfields and spinlock/atomic share 8B word
btrfs: delalloc for page dirtied out-of-band in fixup worker
Btrfs: fix memory leak in load_free_space_cache()
btrfs: don't check DUP chunks twice
Btrfs: fix trim 0 bytes after a device delete
...
Given that ENXIO only means "offset beyond EOF" for either SEEK_DATA or SEEK_HOLE inquiry
in a desired file range, so we should return the internal error unchanged if btrfs_get_extent_fiemap()
call failed, rather than ENXIO.
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
btrfs_fallocate tries to allocate space only if ranges in the file don't
already exist. But the enospc checks it does are not allowed with
extents locked.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (62 commits)
Btrfs: use larger system chunks
Btrfs: add a delalloc mutex to inodes for delalloc reservations
Btrfs: space leak tracepoints
Btrfs: protect orphan block rsv with spin_lock
Btrfs: add allocator tracepoints
Btrfs: don't call btrfs_throttle in file write
Btrfs: release space on error in page_mkwrite
Btrfs: fix btrfsck error 400 when truncating a compressed
Btrfs: do not use btrfs_end_transaction_throttle everywhere
Btrfs: add balance progress reporting
Btrfs: allow for resuming restriper after it was paused
Btrfs: allow for canceling restriper
Btrfs: allow for pausing restriper
Btrfs: add skip_balance mount option
Btrfs: recover balance on mount
Btrfs: save balance parameters to disk
Btrfs: soft profile changing mode (aka soft convert)
Btrfs: implement online profile changing
Btrfs: do not reduce profile in do_chunk_alloc()
Btrfs: virtual address space subset filter
...
Fix up trivial conflict in fs/btrfs/ioctl.c due to the use of the new
mnt_drop_write_file() helper.
Btrfs_throttle will make us wait if there is a currently committing transaction
until we can open new transactions, which is ridiculous since we don't actually
start any transactions within the file write path anyway, so all this does is
introduce big latencies if we have a sync/fsync heavy workload going on while
somebody else is trying to do work. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Tell the page allocator that pages allocated for a buffered write are
expected to become dirty soon.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a for_cow parameter to add_delayed_*_ref and pass the appropriate value
from every call site. The for_cow parameter will later on be used to
determine if a ref will change anything with respect to qgroups.
Delayed refs coming from relocation are always counted as for_cow, as they
don't change subvol quota.
Also pass in the fs_info for later use.
btrfs_find_all_roots() will use this as an optimization, as changes that are
for_cow will not change anything with respect to which root points to a
certain leaf. Thus, we don't need to add the current sequence number to
those delayed refs.
Signed-off-by: Arne Jansen <sensille@gmx.net>
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
When doing 1KB sequential writes to the same page,
balance_dirty_pages_ratelimited_nr() should be called once instead of 4
times, the latter makes the dirtier tasks be throttled much too heavy.
Fix it with proper de-accounting on clear_page_dirty_for_io().
CC: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: unplug every once and a while
Btrfs: deal with NULL srv_rsv in the delalloc inode reservation code
Btrfs: only set cache_generation if we setup the block group
Btrfs: don't panic if orphan item already exists
Btrfs: fix leaked space in truncate
Btrfs: fix how we do delalloc reservations and how we free reservations on error
Btrfs: deal with enospc from dirtying inodes properly
Btrfs: fix num_workers_starting bug and other bugs in async thread
BTRFS: Establish i_ops before calling d_instantiate
Btrfs: add a cond_resched() into the worker loop
Btrfs: fix ctime update of on-disk inode
btrfs: keep orphans for subvolume deletion
Btrfs: fix inaccurate available space on raid0 profile
Btrfs: fix wrong disk space information of the files
Btrfs: fix wrong i_size when truncating a file to a larger size
Btrfs: fix btrfs_end_bio to deal with write errors to a single mirror
* 'for-linus-3.2' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
btrfs: lower the dirty balance poll interval
Tests show that the original large intervals can easily make the dirty
limit exceeded on 100 concurrent dd's. So adapt to as large as the
next check point selected by the dirty throttling algorithm.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Now that we're properly keeping track of delayed inode space we've been getting
a lot of warnings out of btrfs_dirty_inode() when running xfstest 83. This is
because a bunch of people call mark_inode_dirty, which is void so we can't
return ENOSPC. This needs to be fixed in a few areas
1) file_update_time - this updates the mtime and such when writing to a file,
which will call mark_inode_dirty. So copy file_update_time into btrfs so we can
call btrfs_dirty_inode directly and return an error if we get one appropriately.
2) fix symlinks to use btrfs_setattr for ->setattr. For some reason we weren't
setting ->setattr for symlinks, even though we should have been. This catches
one of the cases where we were getting errors in mark_inode_dirty.
3) Fix btrfs_setattr and btrfs_setsize to call btrfs_dirty_inode directly
instead of mark_inode_dirty. This lets us return errors properly for truncate
and chown/anything related to setattr.
4) Add a new btrfs_fs_dirty_inode which will just call btrfs_dirty_inode and
print an error if we have one. The only remaining user we can't control for
this is touch_atime(), but we don't really want to keep people from walking
down the tree if we don't have space to save the atime update, so just complain
but don't worry about it.
With this patch xfstests 83 complains a handful of times instead of hundreds of
times. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (114 commits)
Btrfs: check for a null fs root when writing to the backup root log
Btrfs: fix race during transaction joins
Btrfs: fix a potential btrfs_bio leak on scrub fixups
Btrfs: rename btrfs_bio multi -> bbio for consistency
Btrfs: stop leaking btrfs_bios on readahead
Btrfs: stop the readahead threads on failed mount
Btrfs: fix extent_buffer leak in the metadata IO error handling
Btrfs: fix the new inspection ioctls for 32 bit compat
Btrfs: fix delayed insertion reservation
Btrfs: ClearPageError during writepage and clean_tree_block
Btrfs: be smarter about committing the transaction in reserve_metadata_bytes
Btrfs: make a delayed_block_rsv for the delayed item insertion
Btrfs: add a log of past tree roots
btrfs: separate superblock items out of fs_info
Btrfs: use the global reserve when truncating the free space cache inode
Btrfs: release metadata from global reserve if we have to fallback for unlink
Btrfs: make sure to flush queued bios if write_cache_pages waits
Btrfs: fix extent pinning bugs in the tree log
Btrfs: make sure btrfs_remove_free_space doesn't leak EAGAIN
Btrfs: don't wait as long for more batches during SSD log commit
...
The i_mutex lock use of generic _file_llseek hurts. Independent processes
accessing the same file synchronize over a single lock, even though
they have no need for synchronization at all.
Under high utilization this can cause llseek to scale very poorly on larger
systems.
This patch does some rethinking of the llseek locking model:
First the 64bit f_pos is not necessarily atomic without locks
on 32bit systems. This can already cause races with read() today.
This was discussed on linux-kernel in the past and deemed acceptable.
The patch does not change that.
Let's look at the different seek variants:
SEEK_SET: Doesn't really need any locking.
If there's a race one writer wins, the other loses.
For 32bit the non atomic update races against read()
stay the same. Without a lock they can also happen
against write() now. The read() race was deemed
acceptable in past discussions, and I think if it's
ok for read it's ok for write too.
=> Don't need a lock.
SEEK_END: This behaves like SEEK_SET plus it reads
the maximum size too. Reading the maximum size would have the
32bit atomic problem. But luckily we already have a way to read
the maximum size without locking (i_size_read), so we
can just use that instead.
Without i_mutex there is no synchronization with write() anymore,
however since the write() update is atomic on 64bit it just behaves
like another racy SEEK_SET. On non atomic 32bit it's the same
as SEEK_SET.
=> Don't need a lock, but need to use i_size_read()
SEEK_CUR: This has a read-modify-write race window
on the same file. One could argue that any application
doing unsynchronized seeks on the same file is already broken.
But for the sake of not adding a regression here I'm
using the file->f_lock to synchronize this. Using this
lock is much better than the inode mutex because it doesn't
synchronize between processes.
=> So still need a lock, but can use a f_lock.
This patch implements this new scheme in generic_file_llseek.
I dropped generic_file_llseek_unlocked and changed all callers.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Johannes pointed out we were allocating only kernel pages for doing writes,
which is kind of a big deal if you are on 32bit and have more than a gig of ram.
So fix our allocations to use the mapping's gfp but still clear __GFP_FS so we
don't re-enter. Thanks,
Reported-by: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Josef Bacik <josef@redhat.com>
Lukas found a problem where if he tries to fallocate over the same region twice
and the first fallocate took up all the space we would fail with ENOSPC. This
is because we reserve the total space we want to use for fallocate, regardless
of wether or not we will have to actually preallocate. So instead move the
check into the loop where we actually have to do the preallocate. Thanks,
Tested-by: Lukas Czerner <lczerner@redhat.com>
Signed-off-by: Josef Bacik <josef@redhat.com>
A user reported a problem where ceph was getting into 100% cpu usage while doing
some writing. It turns out it's because we were doing a short write on a not
uptodate page, which means we'd fall back at one page at a time and fault the
page in. The problem is our position is on the page boundary, so our fault in
logic wasn't actually reading the page, so we'd just spin forever or until the
page got read in by somebody else. This will force a readpage if we end up
doing a short copy. Alexandre could reproduce this easily with ceph and reports
it fixes his problem. I also wrote a reproducer that no longer hangs my box
with this patch. Thanks,
Reported-and-tested-by: Alexandre Oliva <aoliva@redhat.com>
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The recent reworking of btrfs' lseek lead to incorrect
values being returned. This adds checks for seeking
beyond EOF in SEEK_HOLE and makes sure the error
values come back correct.
Andi Kleen also sent in similar patches.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Reported-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* 'for-linus' of git://github.com/chrismason/linux:
Btrfs: add dummy extent if dst offset excceeds file end in
Btrfs: calc file extent num_bytes correctly in file clone
btrfs: xattr: fix attribute removal
Btrfs: fix wrong nbytes information of the inode
Btrfs: fix the file extent gap when doing direct IO
Btrfs: fix unclosed transaction handle in btrfs_cont_expand
Btrfs: fix misuse of trans block rsv
Btrfs: reset to appropriate block rsv after orphan operations
Btrfs: skip locking if searching the commit root in csum lookup
btrfs: fix warning in iput for bad-inode
Btrfs: fix an oops when deleting snapshots
When we write some data to the place that is beyond the end of the file
in direct I/O mode, a data hole will be created. And Btrfs should insert
a file extent item that point to this hole into the fs tree. But unfortunately
Btrfs forgets doing it.
The following is a simple way to reproduce it:
# mkfs.btrfs /dev/sdc2
# mount /dev/sdc2 /test4
# touch /test4/a
# dd if=/dev/zero of=/test4/a seek=8 count=1 bs=4K oflag=direct conv=nocreat,notrunc
# umount /test4
# btrfsck /dev/sdc2
root 5 inode 257 errors 100
Reported-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
xfstests exposed a problem with preallocate when it fallocates a range that
already has an extent. We don't set the new i_size properly because we see that
we already have an extent. This isn't right and we should update i_size if the
space already exists. With this patch we now pass xfstests 075. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
There were some unlocks on error missing in a recent patch to
btrfs_file_llseek().
Signed-off-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable: (31 commits)
Btrfs: don't call writepages from within write_full_page
Btrfs: Remove unused variable 'last_index' in file.c
Btrfs: clean up for find_first_extent_bit()
Btrfs: clean up for wait_extent_bit()
Btrfs: clean up for insert_state()
Btrfs: remove unused members from struct extent_state
Btrfs: clean up code for merging extent maps
Btrfs: clean up code for extent_map lookup
Btrfs: clean up search_extent_mapping()
Btrfs: remove redundant code for dir item lookup
Btrfs: make acl functions really no-op if acl is not enabled
Btrfs: remove remaining ref-cache code
Btrfs: remove a BUG_ON() in btrfs_commit_transaction()
Btrfs: use wait_event()
Btrfs: check the nodatasum flag when writing compressed files
Btrfs: copy string correctly in INO_LOOKUP ioctl
Btrfs: don't print the leaf if we had an error
btrfs: make btrfs_set_root_node void
Btrfs: fix oops while writing data to SSD partitions
Btrfs: Protect the readonly flag of block group
...
Fix up trivial conflicts (due to acl and writeback cleanups) in
- fs/btrfs/acl.c
- fs/btrfs/ctree.h
- fs/btrfs/extent_io.c
The variable 'last_index' is calculated in the __btrfs_buffered_write
function and passed as a parameter to the prepare_pages function,
but is not used anywhere in the prepare_pages function.
Remove instances of 'last_index' in these functions.
Signed-off-by: Mitch Harder <mitch.harder@sabayonlinux.org>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Don't need to check the return value of __btrfs_add_inode_defrag(),
since it will always return 0.
Signed-off-by: Wanlong Gao <gaowanlong@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
Btrfs: make sure reserve_metadata_bytes doesn't leak out strange errors
Btrfs: use the commit_root for reading free_space_inode crcs
Btrfs: reduce extent_state lock contention for metadata
Btrfs: remove lockdep magic from btrfs_next_leaf
Btrfs: make a lockdep class for each root
Btrfs: switch the btrfs tree locks to reader/writer
Btrfs: fix deadlock when throttling transactions
Btrfs: stop using highmem for extent_buffers
Btrfs: fix BUG_ON() caused by ENOSPC when relocating space
Btrfs: tag pages for writeback in sync
Btrfs: fix enospc problems with delalloc
Btrfs: don't flush delalloc arbitrarily
Btrfs: use find_or_create_page instead of grab_cache_page
Btrfs: use a worker thread to do caching
Btrfs: fix how we merge extent states and deal with cached states
Btrfs: use the normal checksumming infrastructure for free space cache
Btrfs: serialize flushers in reserve_metadata_bytes
Btrfs: do transaction space reservation before joining the transaction
Btrfs: try to only do one btrfs_search_slot in do_setxattr
So I had this brilliant idea to use atomic counters for outstanding and reserved
extents, but this turned out to be a bad idea. Consider this where we have 1
outstanding extent and 1 reserved extent
Reserver Releaser
atomic_dec(outstanding) now 0
atomic_read(outstanding)+1 get 1
atomic_read(reserved) get 1
don't actually reserve anything because
they are the same
atomic_cmpxchg(reserved, 1, 0)
atomic_inc(outstanding)
atomic_add(0, reserved)
free reserved space for 1 extent
Then the reserver now has no actual space reserved for it, and when it goes to
finish the ordered IO it won't have enough space to do it's allocation and you
get those lovely warnings.
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
grab_cache_page will use mapping_gfp_mask(), which for all inodes is set to
GFP_HIGHUSER_MOVABLE. So instead use find_or_create_page in all cases where we
need GFP_NOFS so we don't deadlock. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Btrfs needs to be able to control how filemap_write_and_wait_range() is called
in fsync to make it less of a painful operation, so push down taking i_mutex and
the calling of filemap_write_and_wait() down into the ->fsync() handlers. Some
file systems can drop taking the i_mutex altogether it seems, like ext3 and
ocfs2. For correctness sake I just pushed everything down in all cases to make
sure that we keep the current behavior the same for everybody, and then each
individual fs maintainer can make up their mind about what to do from there.
Thanks,
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
In order to handle SEEK_HOLE/SEEK_DATA we need to implement our own llseek.
Basically for the normal SEEK_*'s we will just defer to the generic helper, and
for SEEK_HOLE/SEEK_DATA we will use our fiemap helper to figure out the nearest
hole or data. Currently this helper doesn't check for delalloc bytes for
prealloc space, so for now treat prealloc as data until that is fixed. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This patch fixes many callers of btrfs_alloc_path() which BUG_ON allocation
failure. All the sites that are fixed in this patch were checked by me to
be fairly trivial to fix because of at least one of two criteria:
- Callers of the function catch errors from it already so bubbling the
error up will be handled.
- Callers of the function might BUG_ON any nonzero return code in which
case there is no behavior changed (but we still got to remove a BUG_ON)
The following functions were updated:
btrfs_lookup_extent, alloc_reserved_tree_block, btrfs_remove_block_group,
btrfs_lookup_csums_range, btrfs_csum_file_blocks, btrfs_mark_extent_written,
btrfs_inode_by_name, btrfs_new_inode, btrfs_symlink,
insert_reserved_file_extent, and run_delalloc_nocow
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
commit 4cb5300bc ("Btrfs: add mount -o auto_defrag") accesses inode
number directly while it should use the helper with the new inode
number allocator.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This will detect small random writes into files and
queue the up for an auto defrag process. It isn't well suited to
database workloads yet, but works for smaller files such as rpm, sqlite
or bdb databases.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We use trans_mutex for lots of things, here's a basic list
1) To serialize trans_handles joining the currently running transaction
2) To make sure that no new trans handles are started while we are committing
3) To protect the dead_roots list and the transaction lists
Really the serializing trans_handles joining is not too hard, and can really get
bogged down in acquiring a reference to the transaction. So replace the
trans_mutex with a trans_lock spinlock and use it to do the following
1) Protect fs_info->running_transaction. All trans handles have to do is check
this, and then take a reference of the transaction and keep on going.
2) Protect the fs_info->trans_list. This doesn't get used too much, basically
it just holds the current transactions, which will usually just be the currently
committing transaction and the currently running transaction at most.
3) Protect the dead roots list. This is only ever processed by splicing the
list so this is relatively simple.
4) Protect the fs_info->reloc_ctl stuff. This is very lightweight and was using
the trans_mutex before, so this is a pretty straightforward change.
5) Protect fs_info->no_trans_join. Because we don't hold the trans_lock over
the entirety of the commit we need to have a way to block new people from
creating a new transaction while we're doing our work. So we set no_trans_join
and in join_transaction we test to see if that is set, and if it is we do a
wait_on_commit.
6) Make the transaction use count atomic so we don't need to take locks to
modify it when we're dropping references.
7) Add a commit_lock to the transaction to make sure multiple people trying to
commit the same transaction don't race and commit at the same time.
8) Make open_ioctl_trans an atomic so we don't have to take any locks for ioctl
trans.
I have tested this with xfstests, but obviously it is a pretty hairy change so
lots of testing is greatly appreciated. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
parameter tree root it's not used since commit
5f39d397df ("Btrfs: Create extent_buffer
interface for large blocksizes")
Signed-off-by: David Sterba <dsterba@suse.cz>