This patch removes the old crypto_grab_skcipher helper and replaces
it with crypto_grab_skcipher2.
As this is the final entry point into givcipher this patch also
removes all traces of the top-level givcipher interface, including
all implicit IV generators such as chainiv.
The bottom-level givcipher interface remains until the drivers
using it are converted.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* Implement ECDH under kpp API
* Provide ECC software support for curve P-192 and
P-256.
* Add kpp test for ECDH with data generated by OpenSSL
Signed-off-by: Salvatore Benedetto <salvatore.benedetto@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* Implement MPI based Diffie-Hellman under kpp API
* Test provided uses data generad by OpenSSL
Signed-off-by: Salvatore Benedetto <salvatore.benedetto@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add key-agreement protocol primitives (kpp) API which allows to
implement primitives required by protocols such as DH and ECDH.
The API is composed mainly by the following functions
* set_secret() - It allows the user to set his secret, also
referred to as his private key, along with the parameters
known to both parties involved in the key-agreement session.
* generate_public_key() - It generates the public key to be sent to
the other counterpart involved in the key-agreement session. The
function has to be called after set_params() and set_secret()
* generate_secret() - It generates the shared secret for the session
Other functions such as init() and exit() are provided for allowing
cryptographic hardware to be inizialized properly before use
Signed-off-by: Salvatore Benedetto <salvatore.benedetto@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds the implementation of SHA3 algorithm
in software and it's based on original implementation
pushed in patch https://lwn.net/Articles/518415/ with
additional changes to match the padding rules specified
in SHA-3 specification.
Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
Signed-off-by: Raveendra Padasalagi <raveendra.padasalagi@broadcom.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Now block cipher engines need to implement and maintain their own queue/thread
for processing requests, moreover currently helpers provided for only the queue
itself (in crypto_enqueue_request() and crypto_dequeue_request()) but they
don't help with the mechanics of driving the hardware (things like running the
request immediately, DMA map it or providing a thread to process the queue in)
even though a lot of that code really shouldn't vary that much from device to
device.
Thus this patch provides a mechanism for pushing requests to the hardware
as it becomes free that drivers could use. And this framework is patterned
on the SPI code and has worked out well there.
(https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/
drivers/spi/spi.c?id=ffbbdd21329f3e15eeca6df2d4bc11c04d9d91c0)
Signed-off-by: Baolin Wang <baolin.wang@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The generic crc32 implementation is currently called crc32. This
is a problem because it clashes with the lib implementation of crc32.
This patch renames the crypto crc32 to crc32_generic so that it is
consistent with crc32c. An alias for the driver is also added.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds PKCS#1 v1.5 standard RSA padding as a separate template.
This way an RSA cipher with padding can be obtained by instantiating
"pkcs1pad(rsa)". The reason for adding this is that RSA is almost
never used without this padding (or OAEP) so it will be needed for
either certificate work in the kernel or the userspace, and I also hear
that it is likely implemented by hardware RSA in which case hardware
implementations of the whole of pkcs1pad(rsa) can be provided.
Signed-off-by: Andrew Zaborowski <andrew.zaborowski@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Hook keywrap source code into Kconfig and Makefile
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Setkey function has been split into set_priv_key and set_pub_key.
Akcipher requests takes sgl for src and dst instead of void *.
Users of the API i.e. two existing RSA implementation and
test mgr code have been updated accordingly.
Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch introduces the crypto skcipher interface which aims
to replace both blkcipher and ablkcipher.
It's very similar to the existing ablkcipher interface. The
main difference is the removal of the givcrypt interface. In
order to make the transition easier for blkcipher users, there
is a helper SKCIPHER_REQUEST_ON_STACK which can be used to place
a request on the stack for synchronous transforms.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The Kconfig option NULL2 has been added as CRYPTO_MANAGER now
depends indirectly on NULL2. However, the Makefile was not updated
to use the new option, resulting in potential build failures when
only NULL2 is enabled.
Fixes: 149a39717d ("crypto: aead - Add type-safe geniv init/exit helpers")
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The core of the Jitter RNG is intended to be compiled with -O0. To
ensure that the Jitter RNG can be compiled on all architectures,
separate out the RNG core into a stand-alone C file that can be compiled
with -O0 which does not depend on any kernel include file.
As no kernel includes can be used in the C file implementing the core
RNG, any dependencies on kernel code must be extracted.
A second file provides the link to the kernel and the kernel crypto API
that can be compiled with the regular compile options of the kernel.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add a new rsa generic SW implementation.
This implements only cryptographic primitives.
Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com>
Added select on ASN1.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add Public Key Encryption API.
Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com>
Made CRYPTO_AKCIPHER invisible like other type config options.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Replace the global -O0 compiler flag from the Makefile with GCC
pragmas to mark only the functions required to be compiled without
optimizations.
This patch also adds a comment describing the rationale for the
functions chosen to be compiled without optimizations.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This AEAD uses a chacha20 ablkcipher and a poly1305 ahash to construct the
ChaCha20-Poly1305 AEAD as defined in RFC7539. It supports both synchronous and
asynchronous operations, even if we currently have no async chacha20 or poly1305
drivers.
Signed-off-by: Martin Willi <martin@strongswan.org>
Acked-by: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Poly1305 is a fast message authenticator designed by Daniel J. Bernstein.
It is further defined in RFC7539 as a building block for the ChaCha20-Poly1305
AEAD for use in IETF protocols.
This is a portable C implementation of the algorithm without architecture
specific optimizations, based on public domain code by Daniel J. Bernstein and
Andrew Moon.
Signed-off-by: Martin Willi <martin@strongswan.org>
Acked-by: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
ChaCha20 is a high speed 256-bit key size stream cipher algorithm designed by
Daniel J. Bernstein. It is further specified in RFC7539 for use in IETF
protocols as a building block for the ChaCha20-Poly1305 AEAD.
This is a portable C implementation without any architecture specific
optimizations. It uses a 16-byte IV, which includes the 12-byte ChaCha20 nonce
prepended by the initial block counter. Some algorithms require an explicit
counter value, for example the mentioned AEAD construction.
Signed-off-by: Martin Willi <martin@strongswan.org>
Acked-by: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The CPU Jitter RNG provides a source of good entropy by
collecting CPU executing time jitter. The entropy in the CPU
execution time jitter is magnified by the CPU Jitter Random
Number Generator. The CPU Jitter Random Number Generator uses
the CPU execution timing jitter to generate a bit stream
which complies with different statistical measurements that
determine the bit stream is random.
The CPU Jitter Random Number Generator delivers entropy which
follows information theoretical requirements. Based on these
studies and the implementation, the caller can assume that
one bit of data extracted from the CPU Jitter Random Number
Generator holds one bit of entropy.
The CPU Jitter Random Number Generator provides a decentralized
source of entropy, i.e. every caller can operate on a private
state of the entropy pool.
The RNG does not have any dependencies on any other service
in the kernel. The RNG only needs a high-resolution time
stamp.
Further design details, the cryptographic assessment and
large array of test results are documented at
http://www.chronox.de/jent.html.
CC: Andreas Steffen <andreas.steffen@strongswan.org>
CC: Theodore Ts'o <tytso@mit.edu>
CC: Sandy Harris <sandyinchina@gmail.com>
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds a new AEAD IV generator echainiv. It is intended
to replace the existing skcipher IV generator eseqiv.
If the underlying AEAD algorithm is using the old AEAD interface,
then echainiv will simply use its IV generator.
Otherwise, echainiv will encrypt a counter just like eseqiv but
it'll first xor it against a previously stored IV similar to
chainiv.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Enable compilation of the AEAD AF_ALG support and provide a Kconfig
option to compile the AEAD AF_ALG support.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Enable compilation of the RNG AF_ALG support and provide a Kconfig
option to compile the RNG AF_ALG support.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch introduces the multi-buffer crypto daemon which is responsible
for submitting crypto jobs in a work queue to the responsible multi-buffer
crypto algorithm. The idea of the multi-buffer algorihtm is to put
data streams from multiple jobs in a wide (AVX2) register and then
take advantage of SIMD instructions to do crypto computation on several
buffers simultaneously.
The multi-buffer crypto daemon is also responsbile for flushing the
remaining buffers to complete the computation if no new buffers arrive
for a while.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch removes the build-time test that ensures at least one RNG
is set. Instead we will simply not build drbg if no options are set
through Kconfig.
This also fixes a typo in the name of the Kconfig option CRYTPO_DRBG
(should be CRYPTO_DRBG).
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
We added the soft module dependency of crc32c module alias
to generic crc32c module so other hardware accelerated crc32c
modules could get loaded and used before the generic version.
We also renamed the crypto/crc32c.c containing the generic
crc32c crypto computation to crypto/crc32c_generic.c according
to convention.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Disabling compiler optimizations can be fragile, since a new
optimization could be added to -O0 or -Os that breaks the assumptions
the code is making.
Instead of disabling compiler optimizations, use a dummy inline assembly
(based on RELOC_HIDE) to block the problematic kinds of optimization,
while still allowing other optimizations to be applied to the code.
The dummy inline assembly is added after every OR, and has the
accumulator variable as its input and output. The compiler is forced to
assume that the dummy inline assembly could both depend on the
accumulator variable and change the accumulator variable, so it is
forced to compute the value correctly before the inline assembly, and
cannot assume anything about its value after the inline assembly.
This change should be enough to make crypto_memneq work correctly (with
data-independent timing) even if it is inlined at its call sites. That
can be done later in a followup patch.
Compile-tested on x86_64.
Signed-off-by: Cesar Eduardo Barros <cesarb@cesarb.eti.br>
Acked-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Pull crypto update from Herbert Xu:
- Made x86 ablk_helper generic for ARM
- Phase out chainiv in favour of eseqiv (affects IPsec)
- Fixed aes-cbc IV corruption on s390
- Added constant-time crypto_memneq which replaces memcmp
- Fixed aes-ctr in omap-aes
- Added OMAP3 ROM RNG support
- Add PRNG support for MSM SoC's
- Add and use Job Ring API in caam
- Misc fixes
[ NOTE! This pull request was sent within the merge window, but Herbert
has some questionable email sending setup that makes him public enemy
#1 as far as gmail is concerned. So most of his emails seem to be
trapped by gmail as spam, resulting in me not seeing them. - Linus ]
* git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (49 commits)
crypto: s390 - Fix aes-cbc IV corruption
crypto: omap-aes - Fix CTR mode counter length
crypto: omap-sham - Add missing modalias
padata: make the sequence counter an atomic_t
crypto: caam - Modify the interface layers to use JR API's
crypto: caam - Add API's to allocate/free Job Rings
crypto: caam - Add Platform driver for Job Ring
hwrng: msm - Add PRNG support for MSM SoC's
ARM: DT: msm: Add Qualcomm's PRNG driver binding document
crypto: skcipher - Use eseqiv even on UP machines
crypto: talitos - Simplify key parsing
crypto: picoxcell - Simplify and harden key parsing
crypto: ixp4xx - Simplify and harden key parsing
crypto: authencesn - Simplify key parsing
crypto: authenc - Export key parsing helper function
crypto: mv_cesa: remove deprecated IRQF_DISABLED
hwrng: OMAP3 ROM Random Number Generator support
crypto: sha256_ssse3 - also test for BMI2
crypto: mv_cesa - Remove redundant of_match_ptr
crypto: sahara - Remove redundant of_match_ptr
...
This patch provides a single place for information about hash algorithms,
such as hash sizes and kernel driver names, which will be used by IMA
and the public key code.
Changelog:
- Fix sparse and checkpatch warnings
- Move hash algo enums to uapi for userspace signing functions.
Signed-off-by: Dmitry Kasatkin <d.kasatkin@samsung.com>
Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
When comparing MAC hashes, AEAD authentication tags, or other hash
values in the context of authentication or integrity checking, it
is important not to leak timing information to a potential attacker,
i.e. when communication happens over a network.
Bytewise memory comparisons (such as memcmp) are usually optimized so
that they return a nonzero value as soon as a mismatch is found. E.g,
on x86_64/i5 for 512 bytes this can be ~50 cyc for a full mismatch
and up to ~850 cyc for a full match (cold). This early-return behavior
can leak timing information as a side channel, allowing an attacker to
iteratively guess the correct result.
This patch adds a new method crypto_memneq ("memory not equal to each
other") to the crypto API that compares memory areas of the same length
in roughly "constant time" (cache misses could change the timing, but
since they don't reveal information about the content of the strings
being compared, they are effectively benign). Iow, best and worst case
behaviour take the same amount of time to complete (in contrast to
memcmp).
Note that crypto_memneq (unlike memcmp) can only be used to test for
equality or inequality, NOT for lexicographical order. This, however,
is not an issue for its use-cases within the crypto API.
We tried to locate all of the places in the crypto API where memcmp was
being used for authentication or integrity checking, and convert them
over to crypto_memneq.
crypto_memneq is declared noinline, placed in its own source file,
and compiled with optimizations that might increase code size disabled
("Os") because a smart compiler (or LTO) might notice that the return
value is always compared against zero/nonzero, and might then
reintroduce the same early-return optimization that we are trying to
avoid.
Using #pragma or __attribute__ optimization annotations of the code
for disabling optimization was avoided as it seems to be considered
broken or unmaintained for long time in GCC [1]. Therefore, we work
around that by specifying the compile flag for memneq.o directly in
the Makefile. We found that this seems to be most appropriate.
As we use ("Os"), this patch also provides a loop-free "fast-path" for
frequently used 16 byte digests. Similarly to kernel library string
functions, leave an option for future even further optimized architecture
specific assembler implementations.
This was a joint work of James Yonan and Daniel Borkmann. Also thanks
for feedback from Florian Weimer on this and earlier proposals [2].
[1] http://gcc.gnu.org/ml/gcc/2012-07/msg00211.html
[2] https://lkml.org/lkml/2013/2/10/131
Signed-off-by: James Yonan <james@openvpn.net>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Cc: Florian Weimer <fw@deneb.enyo.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Create a generic version of ablk_helper so it can be reused
by other architectures.
Acked-by: Jussi Kivilinna <jussi.kivilinna@iki.fi>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Unfortunately, even with a softdep some distros fail to include
the necessary modules in the initrd. Therefore this patch adds
a fallback path to restore existing behaviour where we cannot
load the new crypto crct10dif algorithm.
In order to do this, the underlying crct10dif has been split out
from the crypto implementation so that it can be used on the
fallback path.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch reinstates commits
67822649d739761214ee0b95a7f85731d939625a2d31e518a4
Now that module softdeps are in the kernel we can use that to resolve
the boot issue which cause the revert.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Pull crypto fixes from Herbert Xu:
"This push fixes a memory corruption issue in caam, as well as
reverting the new optimised crct10dif implementation as it breaks boot
on initrd systems.
Hopefully crct10dif will be reinstated once the supporting code is
added so that it doesn't break boot"
* git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6:
Revert "crypto: crct10dif - Wrap crc_t10dif function all to use crypto transform framework"
crypto: caam - Fixed the memory out of bound overwrite issue
This reverts commits
67822649d739761214ee0b95a7f85731d939625a2d31e518a4
Unfortunately this change broke boot on some systems that used an
initrd which does not include the newly created crct10dif modules.
As these modules are required by sd_mod under certain configurations
this is a serious problem.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add support for lz4 and lz4hc compression algorithm using the lib/lz4/*
codebase.
[akpm@linux-foundation.org: fix warnings]
Signed-off-by: Chanho Min <chanho.min@lge.com>
Cc: "Darrick J. Wong" <djwong@us.ibm.com>
Cc: Bob Pearson <rpearson@systemfabricworks.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Herbert Xu <herbert@gondor.hengli.com.au>
Cc: Yann Collet <yann.collet.73@gmail.com>
Cc: Kyungsik Lee <kyungsik.lee@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When CRC T10 DIF is calculated using the crypto transform framework, we
wrap the crc_t10dif function call to utilize it. This allows us to
take advantage of any accelerated CRC T10 DIF transform that is
plugged into the crypto framework.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Patch adds support for NIST recommended block cipher mode CMAC to CryptoAPI.
This work is based on Tom St Denis' earlier patch,
http://marc.info/?l=linux-crypto-vger&m=135877306305466&w=2
Cc: Tom St Denis <tstdenis@elliptictech.com>
Signed-off-by: Jussi Kivilinna <jussi.kivilinna@iki.fi>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds crc32 algorithms to shash crypto api. One is wrapper to
gerneric crc32_le function. Second is crc32 pclmulqdq implementation. It
use hardware provided PCLMULQDQ instruction to accelerate the CRC32 disposal.
This instruction present from Intel Westmere and AMD Bulldozer CPUs.
For intel core i5 I got 450MB/s for table implementation and 2100MB/s
for pclmulqdq implementation.
Signed-off-by: Alexander Boyko <alexander_boyko@xyratex.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
CAST5 and CAST6 both use same lookup tables, which can be moved shared module
'cast_common'.
Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Pull module signing support from Rusty Russell:
"module signing is the highlight, but it's an all-over David Howells frenzy..."
Hmm "Magrathea: Glacier signing key". Somebody has been reading too much HHGTTG.
* 'modules-next' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux: (37 commits)
X.509: Fix indefinite length element skip error handling
X.509: Convert some printk calls to pr_devel
asymmetric keys: fix printk format warning
MODSIGN: Fix 32-bit overflow in X.509 certificate validity date checking
MODSIGN: Make mrproper should remove generated files.
MODSIGN: Use utf8 strings in signer's name in autogenerated X.509 certs
MODSIGN: Use the same digest for the autogen key sig as for the module sig
MODSIGN: Sign modules during the build process
MODSIGN: Provide a script for generating a key ID from an X.509 cert
MODSIGN: Implement module signature checking
MODSIGN: Provide module signing public keys to the kernel
MODSIGN: Automatically generate module signing keys if missing
MODSIGN: Provide Kconfig options
MODSIGN: Provide gitignore and make clean rules for extra files
MODSIGN: Add FIPS policy
module: signature checking hook
X.509: Add a crypto key parser for binary (DER) X.509 certificates
MPILIB: Provide a function to read raw data into an MPI
X.509: Add an ASN.1 decoder
X.509: Add simple ASN.1 grammar compiler
...
Create a key type that can be used to represent an asymmetric key type for use
in appropriate cryptographic operations, such as encryption, decryption,
signature generation and signature verification.
The key type is "asymmetric" and can provide access to a variety of
cryptographic algorithms.
Possibly, this would be better as "public_key" - but that has the disadvantage
that "public key" is an overloaded term.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This patch add the 842 cryptographic API driver that
submits compression requests to the 842 hardware compression
accelerator driver (nx-compress).
If the hardware accelerator goes offline for any reason
(dynamic disable, migration, etc...), this driver will use LZO
as a software failover for all future compression requests.
For decompression requests, the 842 hardware driver contains
a software implementation of the 842 decompressor to support
the decompression of data that was compressed before the accelerator
went offline.
Signed-off-by: Robert Jennings <rcj@linux.vnet.ibm.com>
Signed-off-by: Seth Jennings <sjenning@linux.vnet.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Rename cast6 module to cast6_generic to allow autoloading of optimized
implementations. Generic functions and s-boxes are exported to be able to use
them within optimized implementations.
Signed-off-by: Johannes Goetzfried <Johannes.Goetzfried@informatik.stud.uni-erlangen.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Rename cast5 module to cast5_generic to allow autoloading of optimized
implementations. Generic functions and s-boxes are exported to be able to use
them within optimized implementations.
Signed-off-by: Johannes Goetzfried <Johannes.Goetzfried@informatik.stud.uni-erlangen.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Rename camellia module to camellia_generic to allow optimized assembler
implementations to autoload with module-alias.
Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Now that serpent.c has been cleaned from checkpatch warnings,
we can do clean rename.
Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Rename module from serpent.ko to serpent_generic.ko and add module alias. This
is to allow assembler implementation to autoload on 'modprobe serpent'. Also
add driver_name and priority for serpent cipher.
CC: Dag Arne Osvik <osvik@ii.uib.no>
Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds a basic userspace configuration API for the crypto layer.
With this it is possible to instantiate, remove and to show crypto
algorithms from userspace.
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Rename blowfish to blowfish_generic so that assembler versions of blowfish
cipher can autoload. Module alias 'blowfish' is added.
Also fix checkpatch warnings.
Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Patch splits up the blowfish crypto routine into a common part (key setup)
which will be used by blowfish crypto modules (x86_64 assembly and generic-c).
Also fixes errors/warnings reported by checkpatch.
Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
ESP with separate encryption/authentication algorithms needs a special
treatment for the associated data. This patch add a new algorithm that
handles esp with extended sequence numbers.
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
Changed Makefile to use <modules>-y instead of <modules>-objs.
Signed-off-by: Tracey Dent <tdent48227@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds the af_alg plugin for symmetric key ciphers,
corresponding to the ablkcipher kernel operation type.
Keys can optionally be set through the setsockopt interface.
Once a sendmsg call occurs without MSG_MORE no further writes
may be made to the socket until all previous data has been read.
IVs and and whether encryption/decryption is performed can be
set through the setsockopt interface or as a control message
to sendmsg.
The interface is completely synchronous, all operations are
carried out in recvmsg(2) and will complete prior to the system
call returning.
The splice(2) interface support reading the user-space data directly
without copying (except that the Crypto API itself may copy the data
if alignment is off).
The recvmsg(2) interface supports directly writing to user-space
without additional copying, i.e., the kernel crypto interface will
receive the user-space address as its output SG list.
Thakns to Miloslav Trmac for reviewing this and contributing
fixes and improvements.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Acked-by: David S. Miller <davem@davemloft.net>
This patch adds the af_alg plugin for hash, corresponding to
the ahash kernel operation type.
Keys can optionally be set through the setsockopt interface.
Each sendmsg call will finalise the hash unless sent with a MSG_MORE
flag.
Partial hash states can be cloned using accept(2).
The interface is completely synchronous, all operations will
complete prior to the system call returning.
Both sendmsg(2) and splice(2) support reading the user-space
data directly without copying (except that the Crypto API itself
may copy the data if alignment is off).
For now only the splice(2) interface supports performing digest
instead of init/update/final. In future the sendmsg(2) interface
will also be modified to use digest/finup where possible so that
hardware that cannot return a partial hash state can still benefit
from this interface.
Thakns to Miloslav Trmac for reviewing this and contributing
fixes and improvements.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Acked-by: David S. Miller <davem@davemloft.net>
Tested-by: Martin Willi <martin@strongswan.org>
This patch creates the backbone of the user-space interface for
the Crypto API, through a new socket family AF_ALG.
Each session corresponds to one or more connections obtained from
that socket. The number depends on the number of inputs/outputs
of that particular type of operation. For most types there will
be a s ingle connection/file descriptor that is used for both input
and output. AEAD is one of the few that require two inputs.
Each algorithm type will provide its own implementation that plugs
into af_alg. They're keyed using a string such as "skcipher" or
"hash".
IOW this patch only contains the boring bits that is required
to hold everything together.
Thakns to Miloslav Trmac for reviewing this and contributing
fixes and improvements.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Acked-by: David S. Miller <davem@davemloft.net>
Tested-by: Martin Willi <martin@strongswan.org>
This fixes the broken autoloading of the corresponding twofish assembler
ciphers on x86 and x86_64 if they are available. The module name of the
generic implementation was in conflict with the alias in the assembler
modules. The generic twofish c implementation is renamed to
twofish_generic according to the other algorithms with assembler
implementations and an module alias is added for 'twofish'. You can now
load 'twofish' giving you the best implementation by priority,
'twofish-generic' to get the c implementation or 'twofish-asm' to get
the assembler version of cipher.
Signed-off-by: Joachim Fritschi <jfritschi@freenet.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The PCOMP Kconfig entry current allows the following combination
which is illegal:
ZLIB=y
PCOMP=y
ALGAPI=m
ALGAPI2=y
MANAGER=m
MANAGER2=m
This patch fixes this by adding PCOMP2 so that PCOMP can select
ALGAPI to propagate the setting to MANAGER2.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds a parallel crypto template that takes a crypto
algorithm and converts it to process the crypto transforms in
parallel. For the moment only aead algorithms are supported.
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds VMAC (a fast MAC) support into crypto framework.
Signed-off-by: Shane Wang <shane.wang@intel.com>
Signed-off-by: Joseph Cihula <joseph.cihula@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
GHASH is implemented as a shash algorithm. The actual implementation
is copied from gcm.c. This makes it possible to add
architecture/hardware accelerated GHASH implementation.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch removes the implementation of hash and digest now that
no algorithms use them anymore. The interface though will remain
until the users are converted across.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The current "comp" crypto interface supports one-shot (de)compression only,
i.e. the whole data buffer to be (de)compressed must be passed at once, and
the whole (de)compressed data buffer will be received at once.
In several use-cases (e.g. compressed file systems that store files in big
compressed blocks), this workflow is not suitable.
Furthermore, the "comp" type doesn't provide for the configuration of
(de)compression parameters, and always allocates workspace memory for both
compression and decompression, which may waste memory.
To solve this, add a "pcomp" partial (de)compression interface that provides
the following operations:
- crypto_compress_{init,update,final}() for compression,
- crypto_decompress_{init,update,final}() for decompression,
- crypto_{,de}compress_setup(), to configure (de)compression parameters
(incl. allocating workspace memory).
The (de)compression methods take a struct comp_request, which was mimicked
after the z_stream object in zlib, and contains buffer pointer and length
pairs for input and output.
The setup methods take an opaque parameter pointer and length pair. Parameters
are supposed to be encoded using netlink attributes, whose meanings depend on
the actual (name of the) (de)compression algorithm.
Signed-off-by: Geert Uytterhoeven <Geert.Uytterhoeven@sonycom.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Use dedicated workqueue for crypto subsystem
A dedicated workqueue named kcrypto_wq is created to be used by crypto
subsystem. The system shared keventd_wq is not suitable for
encryption/decryption, because of potential starvation problem.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The shash interface replaces the current synchronous hash interface.
It improves over hash in two ways. Firstly shash is reentrant,
meaning that the same tfm may be used by two threads simultaneously
as all hashing state is stored in a local descriptor.
The other enhancement is that shash no longer takes scatter list
entries. This is because shash is specifically designed for
synchronous algorithms and as such scatter lists are unnecessary.
All existing hash users will be converted to shash once the
algorithms have been completely converted.
There is also a new finup function that combines update with final.
This will be extended to ahash once the algorithm conversion is
done.
This is also the first time that an algorithm type has their own
registration function. Existing algorithm types will be converted
to this way in due course.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
If we have at least one algorithm built-in then it no longer makes
sense to have the testing framework, and hence cryptomgr to be a
module. It should be either on or off, i.e., built-in or disabled.
This just happens to stop a potential runaway modprobe loop that
seems to trigger on at least one distro.
With fixes from Evgeniy Polyakov.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds a random number generator interface as well as a
cryptographic pseudo-random number generator based on AES. It is
meant to be used in cases where a deterministic CPRNG is required.
One of the first applications will be as an input in the IPsec IV
generation process.
Signed-off-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add the ability to turn FIPS-compliant mode on or off at boot
In order to be FIPS compliant, several check may need to be preformed that may
be construed as unusefull in a non-compliant mode. This patch allows us to set
a kernel flag incating that we are running in a fips-compliant mode from boot
up. It also exports that mode information to user space via a sysctl
(/proc/sys/crypto/fips_enabled).
Tested successfully by me.
Signed-off-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch moves the default IV generators into their own modules
in order to break a dependency loop between cryptomgr, rng, and
blkcipher.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch moves the newly created alg_test infrastructure into
cryptomgr. This shall allow us to use it for testing at algorithm
registrations.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds a cryptographic pseudo-random number generator
based on CTR(AES-128). It is meant to be used in cases where a
deterministic CPRNG is required.
One of the first applications will be as an input in the IPsec IV
generation process.
Signed-off-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds support for the extended RIPEMD hash
algorithms RIPEMD-256 and RIPEMD-320.
Signed-off-by: Adrian-Ken Rueegsegger <rueegsegger@swiss-it.ch>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds support for RIPEMD-128 and RIPEMD-160
hash algorithms.
Signed-off-by: Adrian-Ken Rueegsegger <rueegsegger@swiss-it.ch>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Implement CTS wrapper for CBC mode required for support of AES
encryption support for Kerberos (rfc3962).
Signed-off-by: Kevin Coffman <kwc@citi.umich.edu>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Rename sha512 to sha512_generic and add a MODULE_ALIAS for sha512
so all sha512 implementations can be loaded automatically.
Keep the broken tabs so git recognizes this as a rename.
Signed-off-by: Jan Glauber <jang@linux.vnet.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
For compatibility with dm-crypt initramfs setups it is useful to merge
chainiv/seqiv into the crypto_blkcipher module. Since they're required
by most algorithms anyway this is an acceptable trade-off.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds Counter with CBC-MAC (CCM) support.
RFC 3610 and NIST Special Publication 800-38C were referenced.
Signed-off-by: Joy Latten <latten@austin.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This generator generates an IV based on a sequence number by xoring it
with a salt. This algorithm is mainly useful for CTR and similar modes.
This patch also sets it as the default IV generator for ctr.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This generator generates an IV based on a sequence number by xoring it
with a salt and then encrypting it with the same key as used to encrypt
the plain text. This algorithm requires that the block size be equal
to the IV size. It is mainly useful for CBC.
It has one noteworthy property that for IPsec the IV happens to lie
just before the plain text so the IV generation simply increases the
number of encrypted blocks by one. Therefore the cost of this generator
is entirely dependent on the speed of the underlying cipher.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The chain IV generator is the one we've been using in the IPsec stack.
It simply starts out with a random IV, then uses the last block of each
encrypted packet's cipher text as the IV for the next packet.
It can only be used by synchronous ciphers since we have to make sure
that we don't start the encryption of the next packet until the last
one has completed.
It does have the advantage of using very little CPU time since it doesn't
have to generate anything at all.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
With the impending addition of the givcipher type, both blkcipher and
ablkcipher algorithms will use it to create givcipher objects. As such
it no longer makes sense to split the system between ablkcipher and
blkcipher. In particular, both ablkcipher.c and blkcipher.c would need
to use the givcipher type which has to reside in ablkcipher.c since it
shares much code with it.
This patch merges the two Kconfig options as well as the modules into one.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add GCM/GMAC support to cryptoapi.
GCM (Galois/Counter Mode) is an AEAD mode of operations for any block cipher
with a block size of 16. The typical example is AES-GCM.
Signed-off-by: Mikko Herranen <mh1@iki.fi>
Reviewed-by: Mika Kukkonen <mika.kukkonen@nsn.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch implements CTR mode for IPsec.
It is based off of RFC 3686.
Please note:
1. CTR turns a block cipher into a stream cipher.
Encryption is done in blocks, however the last block
may be a partial block.
A "counter block" is encrypted, creating a keystream
that is xor'ed with the plaintext. The counter portion
of the counter block is incremented after each block
of plaintext is encrypted.
Decryption is performed in same manner.
2. The CTR counterblock is composed of,
nonce + IV + counter
The size of the counterblock is equivalent to the
blocksize of the cipher.
sizeof(nonce) + sizeof(IV) + sizeof(counter) = blocksize
The CTR template requires the name of the cipher
algorithm, the sizeof the nonce, and the sizeof the iv.
ctr(cipher,sizeof_nonce,sizeof_iv)
So for example,
ctr(aes,4,8)
specifies the counterblock will be composed of 4 bytes
from a nonce, 8 bytes from the iv, and 4 bytes for counter
since aes has a blocksize of 16 bytes.
3. The counter portion of the counter block is stored
in big endian for conformance to rfc 3686.
Signed-off-by: Joy Latten <latten@austin.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Loading the crypto algorithm by the alias instead of by module directly
has the advantage that all possible implementations of this algorithm
are loaded automatically and the crypto API can choose the best one
depending on its priority.
Additionally it ensures that the generic implementation as well as the
HW driver (if available) is loaded in case the HW driver needs the
generic version as fallback in corner cases.
Also remove the probe for sha1 in padlock's init code.
Quote from Herbert:
The probe is actually pointless since we can always probe when
the algorithm is actually used which does not lead to dead-locks
like this.
Signed-off-by: Sebastian Siewior <sebastian@breakpoint.cc>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Loading the crypto algorithm by the alias instead of by module directly
has the advantage that all possible implementations of this algorithm
are loaded automatically and the crypto API can choose the best one
depending on its priority.
Additionally it ensures that the generic implementation as well as the
HW driver (if available) is loaded in case the HW driver needs the
generic version as fallback in corner cases.
Signed-off-by: Sebastian Siewior <sebastian@breakpoint.cc>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Loading the crypto algorithm by the alias instead of by module directly
has the advantage that all possible implementations of this algorithm
are loaded automatically and the crypto API can choose the best one
depending on its priority.
Signed-off-by: Sebastian Siewior <sebastian@breakpoint.cc>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
XTS currently considered to be the successor of the LRW mode by the IEEE1619
workgroup. LRW was discarded, because it was not secure if the encyption key
itself is encrypted with LRW.
XTS does not have this problem. The implementation is pretty straightforward,
a new function was added to gf128mul to handle GF(128) elements in ble format.
Four testvectors from the specification
http://grouper.ieee.org/groups/1619/email/pdf00086.pdf
were added, and they verify on my system.
Signed-off-by: Rik Snel <rsnel@cube.dyndns.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds the authenc algorithm which constructs an AEAD algorithm
from an asynchronous block cipher and a hash. The construction is done
by concatenating the encrypted result from the cipher with the output
from the hash, as is used by the IPsec ESP protocol.
The authenc algorithm exists as a template with four parameters:
authenc(auth, authsize, enc, enckeylen).
The authentication algorithm, the authentication size (i.e., truncating
the output of the authentication algorithm), the encryption algorithm,
and the encryption key length. Both the size field and the key length
field are in bytes. For example, AES-128 with SHA1-HMAC would be
represented by
authenc(hmac(sha1), 12, cbc(aes), 16)
The key for the authenc algorithm is the concatenation of the keys for
the authentication algorithm with the encryption algorithm. For the
above example, if a key of length 36 bytes is given, then hmac(sha1)
would receive the first 20 bytes while the last 16 would be given to
cbc(aes).
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The scatterwalk code is only used by algorithms that can be built as
a module. Therefore we can move it into algapi.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds crypto_aead which is the interface for AEAD
(Authenticated Encryption with Associated Data) algorithms.
AEAD algorithms perform authentication and encryption in one
step. Traditionally users (such as IPsec) would use two
different crypto algorithms to perform these. With AEAD
this comes down to one algorithm and one operation.
Of course if traditional algorithms were used we'd still
be doing two operations underneath. However, real AEAD
algorithms may allow the underlying operations to be
optimised as well.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>