This adds optimized memset/bzero/page-clear routines for Niagara-4.
We basically can do what powerpc has been able to do for a decade (via
the "dcbz" instruction), which is use cache line clearing stores for
bzero and memsets with a 'c' argument of zero.
As long as we make the cache initializing store to each 32-byte
subblock of the L2 cache line, it works.
As with other Niagara-4 optimized routines, the key is to make sure to
avoid any usage of the %asi register, as reads and writes to it cost
at least 50 cycles.
For the user clear cases, we don't use these new routines, we use the
Niagara-1 variants instead. Those have to use %asi in an unavoidable
way.
A Niagara-4 8K page clear costs just under 600 cycles.
Add definitions of the MRU variants of the cache initializing store
ASIs. By default, cache initializing stores install the line as Least
Recently Used. If we know we're going to use the data immediately
(which is true for page copies and clears) we can use the Most
Recently Used variant, to decrease the likelyhood of the lines being
evicted before they get used.
Signed-off-by: David S. Miller <davem@davemloft.net>
Linus removed the end-of-address-space hackery from
fs/namei.c:do_getname() so we really have to validate these edge
conditions and cannot cheat any more (as x86 used to as well).
Move to a common C implementation like x86 did. And if both
src and dst are sufficiently aligned we'll do word at a time
copies and checks as well.
Signed-off-by: David S. Miller <davem@davemloft.net>
Otherwise if no references exist in the static kernel image,
we won't export the symbol properly to modules.
Signed-off-by: David S. Miller <davem@davemloft.net>
Based on copy from microblaze add ucmpdi2 implementation.
This fixes build of niu driver which failed with:
drivers/built-in.o: In function `niu_get_nfc':
niu.c:(.text+0x91494): undefined reference to `__ucmpdi2'
This driver will never be used on a sparc32 system,
but patch added to fix build breakage with all*config builds.
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
For the explicit calls to .udiv/.umul in assembler, I made a
mechanical (read as: safe) transformation. I didn't attempt
to make any simplifications.
In particular, __ndelay and __udelay can be simplified significantly.
Some of the %y reads are unnecessary and these routines have no need
any longer for allocating a register window, they can be leaf
functions.
Signed-off-by: David S. Miller <davem@davemloft.net>
We always have this instruction available, so no need to use
btfixup for it any more.
This also eradicates the whole of atomic_32.S and thus the
__atomic_begin and __atomic_end symbols completely.
Signed-off-by: David S. Miller <davem@davemloft.net>
Don't use floating point on Niagara2, use the traditional
plain Niagara code instead.
Unroll Niagara loops to 128 bytes for copy, and 256 bytes
for clear.
Signed-off-by: David S. Miller <davem@davemloft.net>
Basically tip-off the powerpc code, use a 64-bit type and atomic64_t
interfaces for the implementation.
This gets us off of the by-hand asm code I wrote, which frankly I
think probably ruins I-cache hit rates.
The idea was the keep the call chains less deep, but anything taking
the rw-semaphores probably is also calling other stuff and therefore
already has allocated a stack-frame. So no real stack frame savings
ever.
Ben H. has posted patches to make powerpc use 64-bit too and with some
abstractions we can probably use a shared header file somewhere.
With suggestions from Sam Ravnborg.
Signed-off-by: David S. Miller <davem@davemloft.net>
This mirrors x86 commit 9f0cf4adb6
(x86: Use __builtin_object_size() to validate the buffer size for copy_from_user())
Signed-off-by: David S. Miller <davem@davemloft.net>
Previously PeeCeeI.o was a library but it
was always pulled in due to insw and friends being exported
(at least for a modular kernel).
But this resulted in modpost failures if there where no in-kernel
users because then insw & friends were not linked in.
Fix this by including PeeCeeI.o in the kernel unconditionally.
The only drawback for this solution is that a nonmodular kernel
will always include insw & friends no matter if they are in use or not.
Reported-by: Meelis Roos <mroos@linux.ee>
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Remove the duplicate entries from kernel/sparc_ksyms_*.c
The rationale behind this is that the EXPORT_SYMBOL() should be close to
their definition and we cannot add designate a symbol to be exported in
assembler so at least put it in a file in the same directory.
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Additions by Julian Calaby:
* Rebased over sparc-2.6.git HEAD
Signed-off-by: Julian Calaby <julian.calaby@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Use the new asm/asm.h header to help commonize the
strlen assembler between 32-bit and 64-bit
While we're here, use proper linux/linkage.h macros
instead of by-hand stuff.
Signed-off-by: David S. Miller <davem@davemloft.net>
o Renamed files in sparc64 to <name>_64.S when identical
to sparc32 files.
o iomap.c were equal for sparc32 and sparc64
o adjusted sparc/Makefile now we have only one lib/
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Identical named files renamed to <name>_32.S
Refactored Makefile to prepare for unification.
Linking order was altered slightly - but this is a lib.a file so
it should not matter.
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch removes the CVS keywords that weren't updated for a long time
from comments.
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Recent workqueue changes basically make this a formal requirement.
Also, move atomic32.o from lib-y to obj-y since it exports symbols
to modules.
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch (written by me and also containing many suggestions of Arjan van
de Ven) does a major cleanup of the spinlock code. It does the following
things:
- consolidates and enhances the spinlock/rwlock debugging code
- simplifies the asm/spinlock.h files
- encapsulates the raw spinlock type and moves generic spinlock
features (such as ->break_lock) into the generic code.
- cleans up the spinlock code hierarchy to get rid of the spaghetti.
Most notably there's now only a single variant of the debugging code,
located in lib/spinlock_debug.c. (previously we had one SMP debugging
variant per architecture, plus a separate generic one for UP builds)
Also, i've enhanced the rwlock debugging facility, it will now track
write-owners. There is new spinlock-owner/CPU-tracking on SMP builds too.
All locks have lockup detection now, which will work for both soft and hard
spin/rwlock lockups.
The arch-level include files now only contain the minimally necessary
subset of the spinlock code - all the rest that can be generalized now
lives in the generic headers:
include/asm-i386/spinlock_types.h | 16
include/asm-x86_64/spinlock_types.h | 16
I have also split up the various spinlock variants into separate files,
making it easier to see which does what. The new layout is:
SMP | UP
----------------------------|-----------------------------------
asm/spinlock_types_smp.h | linux/spinlock_types_up.h
linux/spinlock_types.h | linux/spinlock_types.h
asm/spinlock_smp.h | linux/spinlock_up.h
linux/spinlock_api_smp.h | linux/spinlock_api_up.h
linux/spinlock.h | linux/spinlock.h
/*
* here's the role of the various spinlock/rwlock related include files:
*
* on SMP builds:
*
* asm/spinlock_types.h: contains the raw_spinlock_t/raw_rwlock_t and the
* initializers
*
* linux/spinlock_types.h:
* defines the generic type and initializers
*
* asm/spinlock.h: contains the __raw_spin_*()/etc. lowlevel
* implementations, mostly inline assembly code
*
* (also included on UP-debug builds:)
*
* linux/spinlock_api_smp.h:
* contains the prototypes for the _spin_*() APIs.
*
* linux/spinlock.h: builds the final spin_*() APIs.
*
* on UP builds:
*
* linux/spinlock_type_up.h:
* contains the generic, simplified UP spinlock type.
* (which is an empty structure on non-debug builds)
*
* linux/spinlock_types.h:
* defines the generic type and initializers
*
* linux/spinlock_up.h:
* contains the __raw_spin_*()/etc. version of UP
* builds. (which are NOPs on non-debug, non-preempt
* builds)
*
* (included on UP-non-debug builds:)
*
* linux/spinlock_api_up.h:
* builds the _spin_*() APIs.
*
* linux/spinlock.h: builds the final spin_*() APIs.
*/
All SMP and UP architectures are converted by this patch.
arm, i386, ia64, ppc, ppc64, s390/s390x, x64 was build-tested via
crosscompilers. m32r, mips, sh, sparc, have not been tested yet, but should
be mostly fine.
From: Grant Grundler <grundler@parisc-linux.org>
Booted and lightly tested on a500-44 (64-bit, SMP kernel, dual CPU).
Builds 32-bit SMP kernel (not booted or tested). I did not try to build
non-SMP kernels. That should be trivial to fix up later if necessary.
I converted bit ops atomic_hash lock to raw_spinlock_t. Doing so avoids
some ugly nesting of linux/*.h and asm/*.h files. Those particular locks
are well tested and contained entirely inside arch specific code. I do NOT
expect any new issues to arise with them.
If someone does ever need to use debug/metrics with them, then they will
need to unravel this hairball between spinlocks, atomic ops, and bit ops
that exist only because parisc has exactly one atomic instruction: LDCW
(load and clear word).
From: "Luck, Tony" <tony.luck@intel.com>
ia64 fix
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjanv@infradead.org>
Signed-off-by: Grant Grundler <grundler@parisc-linux.org>
Cc: Matthew Wilcox <willy@debian.org>
Signed-off-by: Hirokazu Takata <takata@linux-m32r.org>
Signed-off-by: Mikael Pettersson <mikpe@csd.uu.se>
Signed-off-by: Benoit Boissinot <benoit.boissinot@ens-lyon.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!