Commit Graph

31900 Commits

Author SHA1 Message Date
Linus Torvalds d3ce3b1879 Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto fix from Herbert Xu:
 "Fix a bug in the implementation of the x86 accelerated version of
  poly1305"

* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6:
  crypto: x86/poly1305 - fix overflow during partial reduction
2019-04-18 08:04:10 -07:00
Linus Torvalds b5de3c5026 * Fix for a memory leak introduced during the merge window
* Fixes for nested VMX with ept=0
 * Fixes for AMD (APIC virtualization, NMI injection)
 * Fixes for Hyper-V under KVM and KVM under Hyper-V
 * Fixes for 32-bit SMM and tests for SMM virtualization
 * More array_index_nospec peppering
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJctdrUAAoJEL/70l94x66Deq8H/0OEIBBuDt53nPEHXufNSV1S
 uzIVvwJoL6786URWZfWZ99Z/NTTA1rn9Vr/leLPkSidpDpw7IuK28KZtEMP2rdRE
 Sb8eN2g4SoQ51ZDSIMUzjcx9VGNqkH8CWXc2yhDtTUSD21S3S1kidZ0O0YbmetkJ
 OwF1EDx4m7JO6EUHaJhIfdTUb9ItRC1Vfo7hpOuRVxPx2USv5+CLbexpteKogMcI
 5WDaXFIRwUWW6Z8Bwyi7yA9gELKcXTTXlz9T/A7iKeqxRMLBazVKnH8h7Lfd0M0A
 wR4AI+tE30MuHT7WLh1VOAKZk6TDabq9FJrva3JlDq+T+WOjgUzYALLKEd4Vv4o=
 =zsT5
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM fixes from Paolo Bonzini:
 "5.1 keeps its reputation as a big bugfix release for KVM x86.

   - Fix for a memory leak introduced during the merge window

   - Fixes for nested VMX with ept=0

   - Fixes for AMD (APIC virtualization, NMI injection)

   - Fixes for Hyper-V under KVM and KVM under Hyper-V

   - Fixes for 32-bit SMM and tests for SMM virtualization

   - More array_index_nospec peppering"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (21 commits)
  KVM: x86: avoid misreporting level-triggered irqs as edge-triggered in tracing
  KVM: fix spectrev1 gadgets
  KVM: x86: fix warning Using plain integer as NULL pointer
  selftests: kvm: add a selftest for SMM
  selftests: kvm: fix for compilers that do not support -no-pie
  selftests: kvm/evmcs_test: complete I/O before migrating guest state
  KVM: x86: Always use 32-bit SMRAM save state for 32-bit kernels
  KVM: x86: Don't clear EFER during SMM transitions for 32-bit vCPU
  KVM: x86: clear SMM flags before loading state while leaving SMM
  KVM: x86: Open code kvm_set_hflags
  KVM: x86: Load SMRAM in a single shot when leaving SMM
  KVM: nVMX: Expose RDPMC-exiting only when guest supports PMU
  KVM: x86: Raise #GP when guest vCPU do not support PMU
  x86/kvm: move kvm_load/put_guest_xcr0 into atomic context
  KVM: x86: svm: make sure NMI is injected after nmi_singlestep
  svm/avic: Fix invalidate logical APIC id entry
  Revert "svm: Fix AVIC incomplete IPI emulation"
  kvm: mmu: Fix overflow on kvm mmu page limit calculation
  KVM: nVMX: always use early vmcs check when EPT is disabled
  KVM: nVMX: allow tests to use bad virtual-APIC page address
  ...
2019-04-16 08:52:00 -07:00
Vitaly Kuznetsov 7a223e06b1 KVM: x86: avoid misreporting level-triggered irqs as edge-triggered in tracing
In __apic_accept_irq() interface trig_mode is int and actually on some code
paths it is set above u8:

kvm_apic_set_irq() extracts it from 'struct kvm_lapic_irq' where trig_mode
is u16. This is done on purpose as e.g. kvm_set_msi_irq() sets it to
(1 << 15) & e->msi.data

kvm_apic_local_deliver sets it to reg & (1 << 15).

Fix the immediate issue by making 'tm' into u16. We may also want to adjust
__apic_accept_irq() interface and use proper sizes for vector, level,
trig_mode but this is not urgent.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:38:08 +02:00
Paolo Bonzini 1d487e9bf8 KVM: fix spectrev1 gadgets
These were found with smatch, and then generalized when applicable.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:38:07 +02:00
Hariprasad Kelam be43c440eb KVM: x86: fix warning Using plain integer as NULL pointer
Changed passing argument as "0 to NULL" which resolves below sparse warning

arch/x86/kvm/x86.c:3096:61: warning: Using plain integer as NULL pointer

Signed-off-by: Hariprasad Kelam <hariprasad.kelam@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:38:07 +02:00
Sean Christopherson b68f3cc7d9 KVM: x86: Always use 32-bit SMRAM save state for 32-bit kernels
Invoking the 64-bit variation on a 32-bit kenrel will crash the guest,
trigger a WARN, and/or lead to a buffer overrun in the host, e.g.
rsm_load_state_64() writes r8-r15 unconditionally, but enum kvm_reg and
thus x86_emulate_ctxt._regs only define r8-r15 for CONFIG_X86_64.

KVM allows userspace to report long mode support via CPUID, even though
the guest is all but guaranteed to crash if it actually tries to enable
long mode.  But, a pure 32-bit guest that is ignorant of long mode will
happily plod along.

SMM complicates things as 64-bit CPUs use a different SMRAM save state
area.  KVM handles this correctly for 64-bit kernels, e.g. uses the
legacy save state map if userspace has hid long mode from the guest,
but doesn't fare well when userspace reports long mode support on a
32-bit host kernel (32-bit KVM doesn't support 64-bit guests).

Since the alternative is to crash the guest, e.g. by not loading state
or explicitly requesting shutdown, unconditionally use the legacy SMRAM
save state map for 32-bit KVM.  If a guest has managed to get far enough
to handle SMIs when running under a weird/buggy userspace hypervisor,
then don't deliberately crash the guest since there are no downsides
(from KVM's perspective) to allow it to continue running.

Fixes: 660a5d517a ("KVM: x86: save/load state on SMM switch")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:38 +02:00
Sean Christopherson 8f4dc2e77c KVM: x86: Don't clear EFER during SMM transitions for 32-bit vCPU
Neither AMD nor Intel CPUs have an EFER field in the legacy SMRAM save
state area, i.e. don't save/restore EFER across SMM transitions.  KVM
somewhat models this, e.g. doesn't clear EFER on entry to SMM if the
guest doesn't support long mode.  But during RSM, KVM unconditionally
clears EFER so that it can get back to pure 32-bit mode in order to
start loading CRs with their actual non-SMM values.

Clear EFER only when it will be written when loading the non-SMM state
so as to preserve bits that can theoretically be set on 32-bit vCPUs,
e.g. KVM always emulates EFER_SCE.

And because CR4.PAE is cleared only to play nice with EFER, wrap that
code in the long mode check as well.  Note, this may result in a
compiler warning about cr4 being consumed uninitialized.  Re-read CR4
even though it's technically unnecessary, as doing so allows for more
readable code and RSM emulation is not a performance critical path.

Fixes: 660a5d517a ("KVM: x86: save/load state on SMM switch")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:37 +02:00
Sean Christopherson 9ec19493fb KVM: x86: clear SMM flags before loading state while leaving SMM
RSM emulation is currently broken on VMX when the interrupted guest has
CR4.VMXE=1.  Stop dancing around the issue of HF_SMM_MASK being set when
loading SMSTATE into architectural state, e.g. by toggling it for
problematic flows, and simply clear HF_SMM_MASK prior to loading
architectural state (from SMRAM save state area).

Reported-by: Jon Doron <arilou@gmail.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Fixes: 5bea5123cb ("KVM: VMX: check nested state and CR4.VMXE against SMM")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Tested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:36 +02:00
Sean Christopherson c5833c7a43 KVM: x86: Open code kvm_set_hflags
Prepare for clearing HF_SMM_MASK prior to loading state from the SMRAM
save state map, i.e. kvm_smm_changed() needs to be called after state
has been loaded and so cannot be done automatically when setting
hflags from RSM.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:36 +02:00
Sean Christopherson ed19321fb6 KVM: x86: Load SMRAM in a single shot when leaving SMM
RSM emulation is currently broken on VMX when the interrupted guest has
CR4.VMXE=1.  Rather than dance around the issue of HF_SMM_MASK being set
when loading SMSTATE into architectural state, ideally RSM emulation
itself would be reworked to clear HF_SMM_MASK prior to loading non-SMM
architectural state.

Ostensibly, the only motivation for having HF_SMM_MASK set throughout
the loading of state from the SMRAM save state area is so that the
memory accesses from GET_SMSTATE() are tagged with role.smm.  Load
all of the SMRAM save state area from guest memory at the beginning of
RSM emulation, and load state from the buffer instead of reading guest
memory one-by-one.

This paves the way for clearing HF_SMM_MASK prior to loading state,
and also aligns RSM with the enter_smm() behavior, which fills a
buffer and writes SMRAM save state in a single go.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:35 +02:00
Liran Alon e51bfdb687 KVM: nVMX: Expose RDPMC-exiting only when guest supports PMU
Issue was discovered when running kvm-unit-tests on KVM running as L1 on
top of Hyper-V.

When vmx_instruction_intercept unit-test attempts to run RDPMC to test
RDPMC-exiting, it is intercepted by L1 KVM which it's EXIT_REASON_RDPMC
handler raise #GP because vCPU exposed by Hyper-V doesn't support PMU.
Instead of unit-test expectation to be reflected with EXIT_REASON_RDPMC.

The reason vmx_instruction_intercept unit-test attempts to run RDPMC
even though Hyper-V doesn't support PMU is because L1 expose to L2
support for RDPMC-exiting. Which is reasonable to assume that is
supported only in case CPU supports PMU to being with.

Above issue can easily be simulated by modifying
vmx_instruction_intercept config in x86/unittests.cfg to run QEMU with
"-cpu host,+vmx,-pmu" and run unit-test.

To handle issue, change KVM to expose RDPMC-exiting only when guest
supports PMU.

Reported-by: Saar Amar <saaramar@microsoft.com>
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:34 +02:00
Liran Alon 672ff6cff8 KVM: x86: Raise #GP when guest vCPU do not support PMU
Before this change, reading a VMware pseduo PMC will succeed even when
PMU is not supported by guest. This can easily be seen by running
kvm-unit-test vmware_backdoors with "-cpu host,-pmu" option.

Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:34 +02:00
WANG Chao 1811d979c7 x86/kvm: move kvm_load/put_guest_xcr0 into atomic context
guest xcr0 could leak into host when MCE happens in guest mode. Because
do_machine_check() could schedule out at a few places.

For example:

kvm_load_guest_xcr0
...
kvm_x86_ops->run(vcpu) {
  vmx_vcpu_run
    vmx_complete_atomic_exit
      kvm_machine_check
        do_machine_check
          do_memory_failure
            memory_failure
              lock_page

In this case, host_xcr0 is 0x2ff, guest vcpu xcr0 is 0xff. After schedule
out, host cpu has guest xcr0 loaded (0xff).

In __switch_to {
     switch_fpu_finish
       copy_kernel_to_fpregs
         XRSTORS

If any bit i in XSTATE_BV[i] == 1 and xcr0[i] == 0, XRSTORS will
generate #GP (In this case, bit 9). Then ex_handler_fprestore kicks in
and tries to reinitialize fpu by restoring init fpu state. Same story as
last #GP, except we get DOUBLE FAULT this time.

Cc: stable@vger.kernel.org
Signed-off-by: WANG Chao <chao.wang@ucloud.cn>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:33 +02:00
Vitaly Kuznetsov 99c221796a KVM: x86: svm: make sure NMI is injected after nmi_singlestep
I noticed that apic test from kvm-unit-tests always hangs on my EPYC 7401P,
the hanging test nmi-after-sti is trying to deliver 30000 NMIs and tracing
shows that we're sometimes able to deliver a few but never all.

When we're trying to inject an NMI we may fail to do so immediately for
various reasons, however, we still need to inject it so enable_nmi_window()
arms nmi_singlestep mode. #DB occurs as expected, but we're not checking
for pending NMIs before entering the guest and unless there's a different
event to process, the NMI will never get delivered.

Make KVM_REQ_EVENT request on the vCPU from db_interception() to make sure
pending NMIs are checked and possibly injected.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:32 +02:00
Suthikulpanit, Suravee e44e3eaccc svm/avic: Fix invalidate logical APIC id entry
Only clear the valid bit when invalidate logical APIC id entry.
The current logic clear the valid bit, but also set the rest of
the bits (including reserved bits) to 1.

Fixes: 98d90582be ('svm: Fix AVIC DFR and LDR handling')
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:32 +02:00
Suthikulpanit, Suravee 4a58038b9e Revert "svm: Fix AVIC incomplete IPI emulation"
This reverts commit bb218fbcfa.

As Oren Twaig pointed out the old discussion:

  https://patchwork.kernel.org/patch/8292231/

that the change coud potentially cause an extra IPI to be sent to
the destination vcpu because the AVIC hardware already set the IRR bit
before the incomplete IPI #VMEXIT with id=1 (target vcpu is not running).
Since writting to ICR and ICR2 will also set the IRR. If something triggers
the destination vcpu to get scheduled before the emulation finishes, then
this could result in an additional IPI.

Also, the issue mentioned in the commit bb218fbcfa was misdiagnosed.

Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Reported-by: Oren Twaig <oren@scalemp.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:31 +02:00
Ben Gardon bc8a3d8925 kvm: mmu: Fix overflow on kvm mmu page limit calculation
KVM bases its memory usage limits on the total number of guest pages
across all memslots. However, those limits, and the calculations to
produce them, use 32 bit unsigned integers. This can result in overflow
if a VM has more guest pages that can be represented by a u32. As a
result of this overflow, KVM can use a low limit on the number of MMU
pages it will allocate. This makes KVM unable to map all of guest memory
at once, prompting spurious faults.

Tested: Ran all kvm-unit-tests on an Intel Haswell machine. This patch
	introduced no new failures.

Signed-off-by: Ben Gardon <bgardon@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:30 +02:00
Paolo Bonzini 2b27924bb1 KVM: nVMX: always use early vmcs check when EPT is disabled
The remaining failures of vmx.flat when EPT is disabled are caused by
incorrectly reflecting VMfails to the L1 hypervisor.  What happens is
that nested_vmx_restore_host_state corrupts the guest CR3, reloading it
with the host's shadow CR3 instead, because it blindly loads GUEST_CR3
from the vmcs01.

For simplicity let's just always use hardware VMCS checks when EPT is
disabled.  This way, nested_vmx_restore_host_state is not reached at
all (or at least shouldn't be reached).

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:12 +02:00
Paolo Bonzini 690908104e KVM: nVMX: allow tests to use bad virtual-APIC page address
As mentioned in the comment, there are some special cases where we can simply
clear the TPR shadow bit from the CPU-based execution controls in the vmcs02.
Handle them so that we can remove some XFAILs from vmx.flat.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 10:59:07 +02:00
Sean Christopherson cfd32acf78 KVM: x86/mmu: Fix an inverted list_empty() check when zapping sptes
A recently introduced helper for handling zap vs. remote flush
incorrectly bails early, effectively leaking defunct shadow pages.
Manifests as a slab BUG when exiting KVM due to the shadow pages
being alive when their associated cache is destroyed.

==========================================================================
BUG kvm_mmu_page_header: Objects remaining in kvm_mmu_page_header on ...
--------------------------------------------------------------------------
Disabling lock debugging due to kernel taint
INFO: Slab 0x00000000fc436387 objects=26 used=23 fp=0x00000000d023caee ...
CPU: 6 PID: 4315 Comm: rmmod Tainted: G    B             5.1.0-rc2+ #19
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
Call Trace:
 dump_stack+0x46/0x5b
 slab_err+0xad/0xd0
 ? on_each_cpu_mask+0x3c/0x50
 ? ksm_migrate_page+0x60/0x60
 ? on_each_cpu_cond_mask+0x7c/0xa0
 ? __kmalloc+0x1ca/0x1e0
 __kmem_cache_shutdown+0x13a/0x310
 shutdown_cache+0xf/0x130
 kmem_cache_destroy+0x1d5/0x200
 kvm_mmu_module_exit+0xa/0x30 [kvm]
 kvm_arch_exit+0x45/0x60 [kvm]
 kvm_exit+0x6f/0x80 [kvm]
 vmx_exit+0x1a/0x50 [kvm_intel]
 __x64_sys_delete_module+0x153/0x1f0
 ? exit_to_usermode_loop+0x88/0xc0
 do_syscall_64+0x4f/0x100
 entry_SYSCALL_64_after_hwframe+0x44/0xa9

Fixes: a21136345c ("KVM: x86/mmu: Split remote_flush+zap case out of kvm_mmu_flush_or_zap()")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-15 13:25:07 +02:00
Linus Torvalds 6d0a598489 Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Ingo Molnar:
 "Fix typos in user-visible resctrl parameters, and also fix assembly
  constraint bugs that might result in miscompilation"

* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/asm: Use stricter assembly constraints in bitops
  x86/resctrl: Fix typos in the mba_sc mount option
2019-04-12 20:54:40 -07:00
Linus Torvalds 73fdb2c908 Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Ingo Molnar:
 "Six kernel side fixes: three related to NMI handling on AMD systems, a
  race fix, a kexec initialization fix and a PEBS sampling fix"

* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  perf/core: Fix perf_event_disable_inatomic() race
  x86/perf/amd: Remove need to check "running" bit in NMI handler
  x86/perf/amd: Resolve NMI latency issues for active PMCs
  x86/perf/amd: Resolve race condition when disabling PMC
  perf/x86/intel: Initialize TFA MSR
  perf/x86/intel: Fix handling of wakeup_events for multi-entry PEBS
2019-04-12 20:42:30 -07:00
Lendacky, Thomas 3966c3feca x86/perf/amd: Remove need to check "running" bit in NMI handler
Spurious interrupt support was added to perf in the following commit, almost
a decade ago:

  63e6be6d98 ("perf, x86: Catch spurious interrupts after disabling counters")

The two previous patches (resolving the race condition when disabling a
PMC and NMI latency mitigation) allow for the removal of this older
spurious interrupt support.

Currently in x86_pmu_stop(), the bit for the PMC in the active_mask bitmap
is cleared before disabling the PMC, which sets up a race condition. This
race condition was mitigated by introducing the running bitmap. That race
condition can be eliminated by first disabling the PMC, waiting for PMC
reset on overflow and then clearing the bit for the PMC in the active_mask
bitmap. The NMI handler will not re-enable a disabled counter.

If x86_pmu_stop() is called from the perf NMI handler, the NMI latency
mitigation support will guard against any unhandled NMI messages.

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org> # 4.14.x-
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: https://lkml.kernel.org/r/Message-ID:
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-10 13:03:18 +02:00
Eric Biggers 678cce4019 crypto: x86/poly1305 - fix overflow during partial reduction
The x86_64 implementation of Poly1305 produces the wrong result on some
inputs because poly1305_4block_avx2() incorrectly assumes that when
partially reducing the accumulator, the bits carried from limb 'd4' to
limb 'h0' fit in a 32-bit integer.  This is true for poly1305-generic
which processes only one block at a time.  However, it's not true for
the AVX2 implementation, which processes 4 blocks at a time and
therefore can produce intermediate limbs about 4x larger.

Fix it by making the relevant calculations use 64-bit arithmetic rather
than 32-bit.  Note that most of the carries already used 64-bit
arithmetic, but the d4 -> h0 carry was different for some reason.

To be safe I also made the same change to the corresponding SSE2 code,
though that only operates on 1 or 2 blocks at a time.  I don't think
it's really needed for poly1305_block_sse2(), but it doesn't hurt
because it's already x86_64 code.  It *might* be needed for
poly1305_2block_sse2(), but overflows aren't easy to reproduce there.

This bug was originally detected by my patches that improve testmgr to
fuzz algorithms against their generic implementation.  But also add a
test vector which reproduces it directly (in the AVX2 case).

Fixes: b1ccc8f4b6 ("crypto: poly1305 - Add a four block AVX2 variant for x86_64")
Fixes: c70f4abef0 ("crypto: poly1305 - Add a SSE2 SIMD variant for x86_64")
Cc: <stable@vger.kernel.org> # v4.3+
Cc: Martin Willi <martin@strongswan.org>
Cc: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-04-08 14:43:06 +08:00
Linus Torvalds 3b04689147 xen: fixes for 5.1-rc4
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQRTLbB6QfY48x44uB6AXGG7T9hjvgUCXKoNnwAKCRCAXGG7T9hj
 vqpEAQCMeiLXXp+BMGI1+x1eeE4ri2woGkK1lsZJLOJhGIqTfgD/dDvmhCSQBDAs
 IbDDbNJP1IT4jQ98c5obw+qEt9OWcww=
 =J7ME
 -----END PGP SIGNATURE-----

Merge tag 'for-linus-5.1b-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip

Pull xen fixes from Juergen Gross:
 "One minor fix and a small cleanup for the xen privcmd driver"

* tag 'for-linus-5.1b-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
  xen: Prevent buffer overflow in privcmd ioctl
  xen: use struct_size() helper in kzalloc()
2019-04-07 06:12:10 -10:00
Alexander Potapenko 5b77e95dd7 x86/asm: Use stricter assembly constraints in bitops
There's a number of problems with how arch/x86/include/asm/bitops.h
is currently using assembly constraints for the memory region
bitops are modifying:

1) Use memory clobber in bitops that touch arbitrary memory

Certain bit operations that read/write bits take a base pointer and an
arbitrarily large offset to address the bit relative to that base.
Inline assembly constraints aren't expressive enough to tell the
compiler that the assembly directive is going to touch a specific memory
location of unknown size, therefore we have to use the "memory" clobber
to indicate that the assembly is going to access memory locations other
than those listed in the inputs/outputs.

To indicate that BTR/BTS instructions don't necessarily touch the first
sizeof(long) bytes of the argument, we also move the address to assembly
inputs.

This particular change leads to size increase of 124 kernel functions in
a defconfig build. For some of them the diff is in NOP operations, other
end up re-reading values from memory and may potentially slow down the
execution. But without these clobbers the compiler is free to cache
the contents of the bitmaps and use them as if they weren't changed by
the inline assembly.

2) Use byte-sized arguments for operations touching single bytes.

Passing a long value to ANDB/ORB/XORB instructions makes the compiler
treat sizeof(long) bytes as being clobbered, which isn't the case. This
may theoretically lead to worse code in the case of heavy optimization.

Practical impact:

I've built a defconfig kernel and looked through some of the functions
generated by GCC 7.3.0 with and without this clobber, and didn't spot
any miscompilations.

However there is a (trivial) theoretical case where this code leads to
miscompilation:

  https://lkml.org/lkml/2019/3/28/393

using just GCC 8.3.0 with -O2.  It isn't hard to imagine someone writes
such a function in the kernel someday.

So the primary motivation is to fix an existing misuse of the asm
directive, which happens to work in certain configurations now, but
isn't guaranteed to work under different circumstances.

[ --mingo: Added -stable tag because defconfig only builds a fraction
  of the kernel and the trivial testcase looks normal enough to
  be used in existing or in-development code. ]

Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: <stable@vger.kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: James Y Knight <jyknight@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20190402112813.193378-1-glider@google.com
[ Edited the changelog, tidied up one of the defines. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-06 09:52:02 +02:00
Linus Torvalds bc5725f974 x86 fixes for overflows and other nastiness.
-----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEbBAABAgAGBQJcp6fbAAoJEL/70l94x66DpFIH+M/M5gWfGGJ2zbZGhSJpQAjd
 5MvoZbJGCKqN/NVGvcjWES09z7iA79t34jMEYSBpAM1VQ5XJumpC6ITpSLg26lrD
 6MCftkAQTkN+xkJMHtKENsosqrqXb+CszTC/46CkNB65xbQQuaG5HRzIbQp7VccE
 3xt4FHibPC4QzjXrlOyDnzUF3TUYheVOxN3u7L5xBrmXq3tpW5U+RuCF5O9Xs0OR
 slf1RM4L9GBIOciaE6Q0633wDml3L/+kDg00xZ8COxIOZ7ilrgFNbtc2O6GKk1cu
 PFZ3D0+eoSmRoJWPEOUb4O0uPyzujo08iR7GU6Rhl4oBNA+8UqK4SYIIJtUWig==
 =rPQV
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm fixes from Paolo Bonzini:
 "x86 fixes for overflows and other nastiness"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
  KVM: x86: nVMX: fix x2APIC VTPR read intercept
  KVM: x86: nVMX: close leak of L0's x2APIC MSRs (CVE-2019-3887)
  KVM: SVM: prevent DBG_DECRYPT and DBG_ENCRYPT overflow
  kvm: svm: fix potential get_num_contig_pages overflow
2019-04-05 13:43:07 -10:00
Marc Orr c73f4c998e KVM: x86: nVMX: fix x2APIC VTPR read intercept
Referring to the "VIRTUALIZING MSR-BASED APIC ACCESSES" chapter of the
SDM, when "virtualize x2APIC mode" is 1 and "APIC-register
virtualization" is 0, a RDMSR of 808H should return the VTPR from the
virtual APIC page.

However, for nested, KVM currently fails to disable the read intercept
for this MSR. This means that a RDMSR exit takes precedence over
"virtualize x2APIC mode", and KVM passes through L1's TPR to L2,
instead of sourcing the value from L2's virtual APIC page.

This patch fixes the issue by disabling the read intercept, in VMCS02,
for the VTPR when "APIC-register virtualization" is 0.

The issue described above and fix prescribed here, were verified with
a related patch in kvm-unit-tests titled "Test VMX's virtualize x2APIC
mode w/ nested".

Signed-off-by: Marc Orr <marcorr@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Fixes: c992384bde ("KVM: vmx: speed up MSR bitmap merge")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-05 21:08:30 +02:00
Marc Orr acff78477b KVM: x86: nVMX: close leak of L0's x2APIC MSRs (CVE-2019-3887)
The nested_vmx_prepare_msr_bitmap() function doesn't directly guard the
x2APIC MSR intercepts with the "virtualize x2APIC mode" MSR. As a
result, we discovered the potential for a buggy or malicious L1 to get
access to L0's x2APIC MSRs, via an L2, as follows.

1. L1 executes WRMSR(IA32_SPEC_CTRL, 1). This causes the spec_ctrl
variable, in nested_vmx_prepare_msr_bitmap() to become true.
2. L1 disables "virtualize x2APIC mode" in VMCS12.
3. L1 enables "APIC-register virtualization" in VMCS12.

Now, KVM will set VMCS02's x2APIC MSR intercepts from VMCS12, and then
set "virtualize x2APIC mode" to 0 in VMCS02. Oops.

This patch closes the leak by explicitly guarding VMCS02's x2APIC MSR
intercepts with VMCS12's "virtualize x2APIC mode" control.

The scenario outlined above and fix prescribed here, were verified with
a related patch in kvm-unit-tests titled "Add leak scenario to
virt_x2apic_mode_test".

Note, it looks like this issue may have been introduced inadvertently
during a merge---see 15303ba5d1.

Signed-off-by: Marc Orr <marcorr@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-05 21:08:22 +02:00
David Rientjes b86bc2858b KVM: SVM: prevent DBG_DECRYPT and DBG_ENCRYPT overflow
This ensures that the address and length provided to DBG_DECRYPT and
DBG_ENCRYPT do not cause an overflow.

At the same time, pass the actual number of pages pinned in memory to
sev_unpin_memory() as a cleanup.

Reported-by: Cfir Cohen <cfir@google.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-05 20:49:42 +02:00
David Rientjes ede885ecb2 kvm: svm: fix potential get_num_contig_pages overflow
get_num_contig_pages() could potentially overflow int so make its type
consistent with its usage.

Reported-by: Cfir Cohen <cfir@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-05 20:48:59 +02:00
Steven Rostedt (VMware) 32d9258662 syscalls: Remove start and number from syscall_set_arguments() args
After removing the start and count arguments of syscall_get_arguments() it
seems reasonable to remove them from syscall_set_arguments(). Note, as of
today, there are no users of syscall_set_arguments(). But we are told that
there will be soon. But for now, at least make it consistent with
syscall_get_arguments().

Link: http://lkml.kernel.org/r/20190327222014.GA32540@altlinux.org

Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Dave Martin <dave.martin@arm.com>
Cc: "Dmitry V. Levin" <ldv@altlinux.org>
Cc: x86@kernel.org
Cc: linux-snps-arc@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-c6x-dev@linux-c6x.org
Cc: uclinux-h8-devel@lists.sourceforge.jp
Cc: linux-hexagon@vger.kernel.org
Cc: linux-ia64@vger.kernel.org
Cc: linux-mips@vger.kernel.org
Cc: nios2-dev@lists.rocketboards.org
Cc: openrisc@lists.librecores.org
Cc: linux-parisc@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: linux-riscv@lists.infradead.org
Cc: linux-s390@vger.kernel.org
Cc: linux-sh@vger.kernel.org
Cc: sparclinux@vger.kernel.org
Cc: linux-um@lists.infradead.org
Cc: linux-xtensa@linux-xtensa.org
Cc: linux-arch@vger.kernel.org
Acked-by: Max Filippov <jcmvbkbc@gmail.com> # For xtensa changes
Acked-by: Will Deacon <will.deacon@arm.com> # For the arm64 bits
Reviewed-by: Thomas Gleixner <tglx@linutronix.de> # for x86
Reviewed-by: Dmitry V. Levin <ldv@altlinux.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2019-04-05 09:27:23 -04:00
Steven Rostedt (Red Hat) b35f549df1 syscalls: Remove start and number from syscall_get_arguments() args
At Linux Plumbers, Andy Lutomirski approached me and pointed out that the
function call syscall_get_arguments() implemented in x86 was horribly
written and not optimized for the standard case of passing in 0 and 6 for
the starting index and the number of system calls to get. When looking at
all the users of this function, I discovered that all instances pass in only
0 and 6 for these arguments. Instead of having this function handle
different cases that are never used, simply rewrite it to return the first 6
arguments of a system call.

This should help out the performance of tracing system calls by ptrace,
ftrace and perf.

Link: http://lkml.kernel.org/r/20161107213233.754809394@goodmis.org

Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Dave Martin <dave.martin@arm.com>
Cc: "Dmitry V. Levin" <ldv@altlinux.org>
Cc: x86@kernel.org
Cc: linux-snps-arc@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-c6x-dev@linux-c6x.org
Cc: uclinux-h8-devel@lists.sourceforge.jp
Cc: linux-hexagon@vger.kernel.org
Cc: linux-ia64@vger.kernel.org
Cc: linux-mips@vger.kernel.org
Cc: nios2-dev@lists.rocketboards.org
Cc: openrisc@lists.librecores.org
Cc: linux-parisc@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: linux-riscv@lists.infradead.org
Cc: linux-s390@vger.kernel.org
Cc: linux-sh@vger.kernel.org
Cc: sparclinux@vger.kernel.org
Cc: linux-um@lists.infradead.org
Cc: linux-xtensa@linux-xtensa.org
Cc: linux-arch@vger.kernel.org
Acked-by: Paul Burton <paul.burton@mips.com> # MIPS parts
Acked-by: Max Filippov <jcmvbkbc@gmail.com> # For xtensa changes
Acked-by: Will Deacon <will.deacon@arm.com> # For the arm64 bits
Reviewed-by: Thomas Gleixner <tglx@linutronix.de> # for x86
Reviewed-by: Dmitry V. Levin <ldv@altlinux.org>
Reported-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2019-04-05 09:26:43 -04:00
Dan Carpenter 42d8644bd7 xen: Prevent buffer overflow in privcmd ioctl
The "call" variable comes from the user in privcmd_ioctl_hypercall().
It's an offset into the hypercall_page[] which has (PAGE_SIZE / 32)
elements.  We need to put an upper bound on it to prevent an out of
bounds access.

Cc: stable@vger.kernel.org
Fixes: 1246ae0bb9 ("xen: add variable hypercall caller")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
2019-04-05 08:42:45 +02:00
Lendacky, Thomas 6d3edaae16 x86/perf/amd: Resolve NMI latency issues for active PMCs
On AMD processors, the detection of an overflowed PMC counter in the NMI
handler relies on the current value of the PMC. So, for example, to check
for overflow on a 48-bit counter, bit 47 is checked to see if it is 1 (not
overflowed) or 0 (overflowed).

When the perf NMI handler executes it does not know in advance which PMC
counters have overflowed. As such, the NMI handler will process all active
PMC counters that have overflowed. NMI latency in newer AMD processors can
result in multiple overflowed PMC counters being processed in one NMI and
then a subsequent NMI, that does not appear to be a back-to-back NMI, not
finding any PMC counters that have overflowed. This may appear to be an
unhandled NMI resulting in either a panic or a series of messages,
depending on how the kernel was configured.

To mitigate this issue, add an AMD handle_irq callback function,
amd_pmu_handle_irq(), that will invoke the common x86_pmu_handle_irq()
function and upon return perform some additional processing that will
indicate if the NMI has been handled or would have been handled had an
earlier NMI not handled the overflowed PMC. Using a per-CPU variable, a
minimum value of the number of active PMCs or 2 will be set whenever a
PMC is active. This is used to indicate the possible number of NMIs that
can still occur. The value of 2 is used for when an NMI does not arrive
at the LAPIC in time to be collapsed into an already pending NMI. Each
time the function is called without having handled an overflowed counter,
the per-CPU value is checked. If the value is non-zero, it is decremented
and the NMI indicates that it handled the NMI. If the value is zero, then
the NMI indicates that it did not handle the NMI.

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org> # 4.14.x-
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: https://lkml.kernel.org/r/Message-ID:
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-03 11:40:32 +02:00
Lendacky, Thomas 914123fa39 x86/perf/amd: Resolve race condition when disabling PMC
On AMD processors, the detection of an overflowed counter in the NMI
handler relies on the current value of the counter. So, for example, to
check for overflow on a 48 bit counter, bit 47 is checked to see if it
is 1 (not overflowed) or 0 (overflowed).

There is currently a race condition present when disabling and then
updating the PMC. Increased NMI latency in newer AMD processors makes this
race condition more pronounced. If the counter value has overflowed, it is
possible to update the PMC value before the NMI handler can run. The
updated PMC value is not an overflowed value, so when the perf NMI handler
does run, it will not find an overflowed counter. This may appear as an
unknown NMI resulting in either a panic or a series of messages, depending
on how the kernel is configured.

To eliminate this race condition, the PMC value must be checked after
disabling the counter. Add an AMD function, amd_pmu_disable_all(), that
will wait for the NMI handler to reset any active and overflowed counter
after calling x86_pmu_disable_all().

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org> # 4.14.x-
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: https://lkml.kernel.org/r/Message-ID:
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-03 11:40:32 +02:00
Peter Zijlstra d7262457e3 perf/x86/intel: Initialize TFA MSR
Stephane reported that the TFA MSR is not initialized by the kernel,
but the TFA bit could set by firmware or as a leftover from a kexec,
which makes the state inconsistent.

Reported-by: Stephane Eranian <eranian@google.com>
Tested-by: Nelson DSouza <nelson.dsouza@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: tonyj@suse.com
Link: https://lkml.kernel.org/r/20190321123849.GN6521@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-03 11:40:32 +02:00
Stephane Eranian 583feb08e7 perf/x86/intel: Fix handling of wakeup_events for multi-entry PEBS
When an event is programmed with attr.wakeup_events=N (N>0), it means
the caller is interested in getting a user level notification after
N samples have been recorded in the kernel sampling buffer.

With precise events on Intel processors, the kernel uses PEBS.
The kernel tries minimize sampling overhead by verifying
if the event configuration is compatible with multi-entry PEBS mode.
If so, the kernel is notified only when the buffer has reached its threshold.
Other PEBS operates in single-entry mode, the kenrel is notified for each
PEBS sample.

The problem is that the current implementation look at frequency
mode and event sample_type but ignores the wakeup_events field. Thus,
it may not be possible to receive a notification after each precise event.

This patch fixes this problem by disabling multi-entry PEBS if wakeup_events
is non-zero.

Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: kan.liang@intel.com
Link: https://lkml.kernel.org/r/20190306195048.189514-1-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-03 09:57:43 +02:00
Xiaochen Shen faa3604eda x86/resctrl: Fix typos in the mba_sc mount option
The user can control the MBA memory bandwidth in MBps (Mega
Bytes per second) units of the MBA Software Controller (mba_sc)
by using the "mba_MBps" mount option. For details, see
Documentation/x86/resctrl_ui.txt.

However, commit

  23bf1b6be9 ("kernfs, sysfs, cgroup, intel_rdt: Support fs_context")

changed the mount option name from "mba_MBps" to "mba_mpbs" by mistake.

Change it back from to "mba_MBps" because it is user-visible, and
correct "Opt_mba_mpbs" spelling to "Opt_mba_mbps".

 [ bp: massage commit message. ]

Fixes: 23bf1b6be9 ("kernfs, sysfs, cgroup, intel_rdt: Support fs_context")
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: dhowells@redhat.com
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: pei.p.jia@intel.com
Cc: Reinette Chatre <reinette.chatre@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/1553896238-22130-1-git-send-email-xiaochen.shen@intel.com
2019-04-01 18:45:27 +02:00
Linus Torvalds 63fc9c2348 A collection of x86 and ARM bugfixes, and some improvements to documentation.
On top of this, a cleanup of kvm_para.h headers, which were exported by
 some architectures even though they not support KVM at all.  This is
 responsible for all the Kbuild changes in the diffstat.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJcoM5VAAoJEL/70l94x66DU3EH/A8sYdsfeqALWElm2Sy9TYas
 mntz+oTWsl3vDy8s8zp1ET2NpF7oBlBEMmCWhVEJaD+1qW3VpTRAseR3Zr9ML9xD
 k+BQM8SKv47o86ZN+y4XALl30Ckb3DXh/X1xsrV5hF6J3ofC+Ce2tF560l8C9ygC
 WyHDxwNHMWVA/6TyW3mhunzuVKgZ/JND9+0zlyY1LKmUQ0BQLle23gseIhhI0YDm
 B4VGIYU2Mf8jCH5Ir3N/rQ8pLdo8U7f5P/MMfgXQafksvUHJBg6B6vOhLJh94dLh
 J2wixYp1zlT0drBBkvJ0jPZ75skooWWj0o3otEA7GNk/hRj6MTllgfL5SajTHZg=
 =/A7u
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM fixes from Paolo Bonzini:
 "A collection of x86 and ARM bugfixes, and some improvements to
  documentation.

  On top of this, a cleanup of kvm_para.h headers, which were exported
  by some architectures even though they not support KVM at all. This is
  responsible for all the Kbuild changes in the diffstat"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (28 commits)
  Documentation: kvm: clarify KVM_SET_USER_MEMORY_REGION
  KVM: doc: Document the life cycle of a VM and its resources
  KVM: selftests: complete IO before migrating guest state
  KVM: selftests: disable stack protector for all KVM tests
  KVM: selftests: explicitly disable PIE for tests
  KVM: selftests: assert on exit reason in CR4/cpuid sync test
  KVM: x86: update %rip after emulating IO
  x86/kvm/hyper-v: avoid spurious pending stimer on vCPU init
  kvm/x86: Move MSR_IA32_ARCH_CAPABILITIES to array emulated_msrs
  KVM: x86: Emulate MSR_IA32_ARCH_CAPABILITIES on AMD hosts
  kvm: don't redefine flags as something else
  kvm: mmu: Used range based flushing in slot_handle_level_range
  KVM: export <linux/kvm_para.h> and <asm/kvm_para.h> iif KVM is supported
  KVM: x86: remove check on nr_mmu_pages in kvm_arch_commit_memory_region()
  kvm: nVMX: Add a vmentry check for HOST_SYSENTER_ESP and HOST_SYSENTER_EIP fields
  KVM: SVM: Workaround errata#1096 (insn_len maybe zero on SMAP violation)
  KVM: Reject device ioctls from processes other than the VM's creator
  KVM: doc: Fix incorrect word ordering regarding supported use of APIs
  KVM: x86: fix handling of role.cr4_pae and rename it to 'gpte_size'
  KVM: nVMX: Do not inherit quadrant and invalid for the root shadow EPT
  ...
2019-03-31 08:55:59 -07:00
Linus Torvalds 915ee0da5e Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Thomas Gleixner:
 "A pile of x86 updates:

   - Prevent exceeding he valid physical address space in the /dev/mem
     limit checks.

   - Move all header content inside the header guard to prevent compile
     failures.

   - Fix the bogus __percpu annotation in this_cpu_has() which makes
     sparse very noisy.

   - Disable switch jump tables completely when retpolines are enabled.

   - Prevent leaking the trampoline address"

* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/realmode: Make set_real_mode_mem() static inline
  x86/cpufeature: Fix __percpu annotation in this_cpu_has()
  x86/mm: Don't exceed the valid physical address space
  x86/retpolines: Disable switch jump tables when retpolines are enabled
  x86/realmode: Don't leak the trampoline kernel address
  x86/boot: Fix incorrect ifdeffery scope
  x86/resctrl: Remove unused variable
2019-03-31 08:40:15 -07:00
Matteo Croce f560bd19d2 x86/realmode: Make set_real_mode_mem() static inline
Remove the unused @size argument and move it into a header file, so it
can be inlined.

 [ bp: Massage. ]

Signed-off-by: Matteo Croce <mcroce@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Mukesh Ojha <mojha@codeaurora.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-efi <linux-efi@vger.kernel.org>
Cc: platform-driver-x86@vger.kernel.org
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190328114233.27835-1-mcroce@redhat.com
2019-03-29 10:16:27 +01:00
Sean Christopherson 45def77ebf KVM: x86: update %rip after emulating IO
Most (all?) x86 platforms provide a port IO based reset mechanism, e.g.
OUT 92h or CF9h.  Userspace may emulate said mechanism, i.e. reset a
vCPU in response to KVM_EXIT_IO, without explicitly announcing to KVM
that it is doing a reset, e.g. Qemu jams vCPU state and resumes running.

To avoid corruping %rip after such a reset, commit 0967b7bf1c ("KVM:
Skip pio instruction when it is emulated, not executed") changed the
behavior of PIO handlers, i.e. today's "fast" PIO handling to skip the
instruction prior to exiting to userspace.  Full emulation doesn't need
such tricks becase re-emulating the instruction will naturally handle
%rip being changed to point at the reset vector.

Updating %rip prior to executing to userspace has several drawbacks:

  - Userspace sees the wrong %rip on the exit, e.g. if PIO emulation
    fails it will likely yell about the wrong address.
  - Single step exits to userspace for are effectively dropped as
    KVM_EXIT_DEBUG is overwritten with KVM_EXIT_IO.
  - Behavior of PIO emulation is different depending on whether it
    goes down the fast path or the slow path.

Rather than skip the PIO instruction before exiting to userspace,
snapshot the linear %rip and cancel PIO completion if the current
value does not match the snapshot.  For a 64-bit vCPU, i.e. the most
common scenario, the snapshot and comparison has negligible overhead
as VMCS.GUEST_RIP will be cached regardless, i.e. there is no extra
VMREAD in this case.

All other alternatives to snapshotting the linear %rip that don't
rely on an explicit reset announcenment suffer from one corner case
or another.  For example, canceling PIO completion on any write to
%rip fails if userspace does a save/restore of %rip, and attempting to
avoid that issue by canceling PIO only if %rip changed then fails if PIO
collides with the reset %rip.  Attempting to zero in on the exact reset
vector won't work for APs, which means adding more hooks such as the
vCPU's MP_STATE, and so on and so forth.

Checking for a linear %rip match technically suffers from corner cases,
e.g. userspace could theoretically rewrite the underlying code page and
expect a different instruction to execute, or the guest hardcodes a PIO
reset at 0xfffffff0, but those are far, far outside of what can be
considered normal operation.

Fixes: 432baf60ee ("KVM: VMX: use kvm_fast_pio_in for handling IN I/O")
Cc: <stable@vger.kernel.org>
Reported-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28 17:29:04 +01:00
Vitaly Kuznetsov 013cc6ebbf x86/kvm/hyper-v: avoid spurious pending stimer on vCPU init
When userspace initializes guest vCPUs it may want to zero all supported
MSRs including Hyper-V related ones including HV_X64_MSR_STIMERn_CONFIG/
HV_X64_MSR_STIMERn_COUNT. With commit f3b138c5d8 ("kvm/x86: Update SynIC
timers on guest entry only") we began doing stimer_mark_pending()
unconditionally on every config change.

The issue I'm observing manifests itself as following:
- Qemu writes 0 to STIMERn_{CONFIG,COUNT} MSRs and marks all stimers as
  pending in stimer_pending_bitmap, arms KVM_REQ_HV_STIMER;
- kvm_hv_has_stimer_pending() starts returning true;
- kvm_vcpu_has_events() starts returning true;
- kvm_arch_vcpu_runnable() starts returning true;
- when kvm_arch_vcpu_ioctl_run() gets into
  (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED) case:
  - kvm_vcpu_block() gets in 'kvm_vcpu_check_block(vcpu) < 0' and returns
    immediately, avoiding normal wait path;
  - -EAGAIN is returned from kvm_arch_vcpu_ioctl_run() immediately forcing
    userspace to retry.

So instead of normal wait path we get a busy loop on all secondary vCPUs
before they get INIT signal. This seems to be undesirable, especially given
that this happens even when Hyper-V extensions are not used.

Generally, it seems to be pointless to mark an stimer as pending in
stimer_pending_bitmap and arm KVM_REQ_HV_STIMER as the only thing
kvm_hv_process_stimers() will do is clear the corresponding bit. We may
just not mark disabled timers as pending instead.

Fixes: f3b138c5d8 ("kvm/x86: Update SynIC timers on guest entry only")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28 17:29:03 +01:00
Xiaoyao Li 2bdb76c015 kvm/x86: Move MSR_IA32_ARCH_CAPABILITIES to array emulated_msrs
Since MSR_IA32_ARCH_CAPABILITIES is emualted unconditionally even if
host doesn't suppot it. We should move it to array emulated_msrs from
arry msrs_to_save, to report to userspace that guest support this msr.

Signed-off-by: Xiaoyao Li <xiaoyao.li@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28 17:29:01 +01:00
Sean Christopherson 0cf9135b77 KVM: x86: Emulate MSR_IA32_ARCH_CAPABILITIES on AMD hosts
The CPUID flag ARCH_CAPABILITIES is unconditioinally exposed to host
userspace for all x86 hosts, i.e. KVM advertises ARCH_CAPABILITIES
regardless of hardware support under the pretense that KVM fully
emulates MSR_IA32_ARCH_CAPABILITIES.  Unfortunately, only VMX hosts
handle accesses to MSR_IA32_ARCH_CAPABILITIES (despite KVM_GET_MSRS
also reporting MSR_IA32_ARCH_CAPABILITIES for all hosts).

Move the MSR_IA32_ARCH_CAPABILITIES handling to common x86 code so
that it's emulated on AMD hosts.

Fixes: 1eaafe91a0 ("kvm: x86: IA32_ARCH_CAPABILITIES is always supported")
Cc: stable@vger.kernel.org
Reported-by: Xiaoyao Li <xiaoyao.li@linux.intel.com>
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28 17:29:00 +01:00
Ben Gardon f285c633cb kvm: mmu: Used range based flushing in slot_handle_level_range
Replace kvm_flush_remote_tlbs with kvm_flush_remote_tlbs_with_address
in slot_handle_level_range. When range based flushes are not enabled
kvm_flush_remote_tlbs_with_address falls back to kvm_flush_remote_tlbs.

This changes the behavior of many functions that indirectly use
slot_handle_level_range, iff the range based flushes are enabled. The
only potential problem I see with this is that kvm->tlbs_dirty will be
cleared less often, however the only caller of slot_handle_level_range that
checks tlbs_dirty is kvm_mmu_notifier_invalidate_range_start which
checks it and does a kvm_flush_remote_tlbs after calling
kvm_unmap_hva_range anyway.

Tested: Ran all kvm-unit-tests on a Intel Haswell machine with and
	without this patch. The patch introduced no new failures.

Signed-off-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28 17:28:57 +01:00
Wei Yang 4d66623cfb KVM: x86: remove check on nr_mmu_pages in kvm_arch_commit_memory_region()
* nr_mmu_pages would be non-zero only if kvm->arch.n_requested_mmu_pages is
  non-zero.

* nr_mmu_pages is always non-zero, since kvm_mmu_calculate_mmu_pages()
  never return zero.

Based on these two reasons, we can merge the two *if* clause and use the
return value from kvm_mmu_calculate_mmu_pages() directly. This simplify
the code and also eliminate the possibility for reader to believe
nr_mmu_pages would be zero.

Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28 17:27:19 +01:00
Krish Sadhukhan 711eff3a8f kvm: nVMX: Add a vmentry check for HOST_SYSENTER_ESP and HOST_SYSENTER_EIP fields
According to section "Checks on VMX Controls" in Intel SDM vol 3C, the
following check is performed on vmentry of L2 guests:

    On processors that support Intel 64 architecture, the IA32_SYSENTER_ESP
    field and the IA32_SYSENTER_EIP field must each contain a canonical
    address.

Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28 17:27:18 +01:00
Singh, Brijesh 05d5a48635 KVM: SVM: Workaround errata#1096 (insn_len maybe zero on SMAP violation)
Errata#1096:

On a nested data page fault when CR.SMAP=1 and the guest data read
generates a SMAP violation, GuestInstrBytes field of the VMCB on a
VMEXIT will incorrectly return 0h instead the correct guest
instruction bytes .

Recommend Workaround:

To determine what instruction the guest was executing the hypervisor
will have to decode the instruction at the instruction pointer.

The recommended workaround can not be implemented for the SEV
guest because guest memory is encrypted with the guest specific key,
and instruction decoder will not be able to decode the instruction
bytes. If we hit this errata in the SEV guest then log the message
and request a guest shutdown.

Reported-by: Venkatesh Srinivas <venkateshs@google.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28 17:27:17 +01:00