Merge v3.12 based patch series to move cgroup_event implementation to
memcg into for-3.14. The following two commits cause a conflict in
kernel/cgroup.c
2ff2a7d03b ("cgroup: kill css_id")
79bd9814e5 ("cgroup, memcg: move cgroup_event implementation to memcg")
Each patch removes a struct definition from kernel/cgroup.c. As the
two are adjacent, they cause a context conflict. Easily resolved by
removing both structs.
Signed-off-by: Tejun Heo <tj@kernel.org>
cgroup_event is only available in memcg now. Let's brand it that way.
While at it, add a comment encouraging deprecation of the feature and
remove the respective section from cgroup documentation.
This patch is cosmetic.
v3: Typo update as per Li Zefan.
v2: Index in cgroups.txt updated accordingly as suggested by Li Zefan.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
cgroup_event is now memcg specific. Replace cgroup_event->css with
->memcg and convert [un]register_event() callbacks to take mem_cgroup
pointer instead of cgroup_subsys_state one. This simplifies the code
slightly and makes css_to_vmpressure() unnecessary which is removed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
The only use of cgroup_event->cft is distinguishing "usage_in_bytes"
and "memsw.usgae_in_bytes" for mem_cgroup_usage_[un]register_event(),
which can be done by adding an explicit argument to the function and
implementing two wrappers so that the two cases can be distinguished
from the function alone.
Remove cgroup_event->cft and the related code including
[un]register_events() methods.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
cgroup_event is being moved from cgroup core to memcg and the
implementation is already moved by the previous patch. This patch
moves the data fields and callbacks.
* cgroup->event_list[_lock] are moved to mem_cgroup.
* cftype->[un]register_event() are moved to cgroup_event. This makes
it impossible for individual cftype definitions to specify their
event callbacks. This is worked around by simply hard-coding
filename to event callback mapping in cgroup_write_event_control().
This is awkward and inflexible, which is actually desirable given
that we don't want to grow more usages of this feature.
* eventfd_ctx declaration is removed from cgroup.h, which makes
vmpressure.h miss eventfd_ctx declaration. Include eventfd.h from
vmpressure.h.
v2: Use file name from dentry instead of cftype. This will allow
removing all cftype handling in the function.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
@css for cgroup_write_event_control() is now always for memcg and the
target file should be a memcg file too. Drop code which assumes @css
is dummy_css and the target file may belong to different subsystems.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
cgroup_event is way over-designed and tries to build a generic
flexible event mechanism into cgroup - fully customizable event
specification for each user of the interface. This is utterly
unnecessary and overboard especially in the light of the planned
unified hierarchy as there's gonna be single agent. Simply generating
events at fixed points, or if that's too restrictive, configureable
cadence or single set of configureable points should be enough.
Thankfully, memcg is the only user and gets to keep it. Replacing it
with something simpler on sane_behavior is strongly recommended.
This patch moves cgroup_event and "cgroup.event_control"
implementation to mm/memcontrol.c. Clearing of events on cgroup
destruction is moved from cgroup_destroy_locked() to
mem_cgroup_css_offline(), which shouldn't make any noticeable
difference.
cgroup_css() and __file_cft() are exported to enable the move;
however, this will soon be reverted once the event code is updated to
be memcg specific.
Note that "cgroup.event_control" will now exist only on the hierarchy
with memcg attached to it. While this change is visible to userland,
it is unlikely to be noticeable as the file has never been meaningful
outside memcg.
Aside from the above change, this is pure code relocation.
v2: Per Li Zefan's comments, init/Kconfig updated accordingly and
poll.h inclusion moved from cgroup.c to memcontrol.c.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Pull SLAB changes from Pekka Enberg:
"The patches from Joonsoo Kim switch mm/slab.c to use 'struct page' for
slab internals similar to mm/slub.c. This reduces memory usage and
improves performance:
https://lkml.org/lkml/2013/10/16/155
Rest of the changes are bug fixes from various people"
* 'slab/next' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux: (21 commits)
mm, slub: fix the typo in mm/slub.c
mm, slub: fix the typo in include/linux/slub_def.h
slub: Handle NULL parameter in kmem_cache_flags
slab: replace non-existing 'struct freelist *' with 'void *'
slab: fix to calm down kmemleak warning
slub: proper kmemleak tracking if CONFIG_SLUB_DEBUG disabled
slab: rename slab_bufctl to slab_freelist
slab: remove useless statement for checking pfmemalloc
slab: use struct page for slab management
slab: replace free and inuse in struct slab with newly introduced active
slab: remove SLAB_LIMIT
slab: remove kmem_bufctl_t
slab: change the management method of free objects of the slab
slab: use __GFP_COMP flag for allocating slab pages
slab: use well-defined macro, virt_to_slab()
slab: overloading the RCU head over the LRU for RCU free
slab: remove cachep in struct slab_rcu
slab: remove nodeid in struct slab
slab: remove colouroff in struct slab
slab: change return type of kmem_getpages() to struct page
...
Fengguang Wu reports that compiling mm/mempolicy.c results in a warning:
mm/mempolicy.c: In function 'mpol_to_str':
mm/mempolicy.c:2878:2: error: format not a string literal and no format arguments
Kees says this is because he is using -Wformat-security.
Silence the warning.
Signed-off-by: David Rientjes <rientjes@google.com>
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Suggested-by: Kees Cook <keescook@chromium.org>
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 7cb2ef56e6 ("mm: fix aio performance regression for database
caused by THP") can cause dereference of a dangling pointer if
split_huge_page runs during PageHuge() if there are updates to the
tail_page->private field.
Also it is repeating compound_head twice for hugetlbfs and it is running
compound_head+compound_trans_head for THP when a single one is needed in
both cases.
The new code within the PageSlab() check doesn't need to verify that the
THP page size is never bigger than the smallest hugetlbfs page size, to
avoid memory corruption.
A longstanding theoretical race condition was found while fixing the
above (see the change right after the skip_unlock label, that is
relevant for the compound_lock path too).
By re-establishing the _mapcount tail refcounting for all compound
pages, this also fixes the below problem:
echo 0 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
BUG: Bad page state in process bash pfn:59a01
page:ffffea000139b038 count:0 mapcount:10 mapping: (null) index:0x0
page flags: 0x1c00000000008000(tail)
Modules linked in:
CPU: 6 PID: 2018 Comm: bash Not tainted 3.12.0+ #25
Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011
Call Trace:
dump_stack+0x55/0x76
bad_page+0xd5/0x130
free_pages_prepare+0x213/0x280
__free_pages+0x36/0x80
update_and_free_page+0xc1/0xd0
free_pool_huge_page+0xc2/0xe0
set_max_huge_pages.part.58+0x14c/0x220
nr_hugepages_store_common.isra.60+0xd0/0xf0
nr_hugepages_store+0x13/0x20
kobj_attr_store+0xf/0x20
sysfs_write_file+0x189/0x1e0
vfs_write+0xc5/0x1f0
SyS_write+0x55/0xb0
system_call_fastpath+0x16/0x1b
Signed-off-by: Khalid Aziz <khalid.aziz@oracle.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Tested-by: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Pravin Shelar <pshelar@nicira.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ben Hutchings <bhutchings@solarflare.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Right now, the migration code in migrate_page_copy() uses copy_huge_page()
for hugetlbfs and thp pages:
if (PageHuge(page) || PageTransHuge(page))
copy_huge_page(newpage, page);
So, yay for code reuse. But:
void copy_huge_page(struct page *dst, struct page *src)
{
struct hstate *h = page_hstate(src);
and a non-hugetlbfs page has no page_hstate(). This works 99% of the
time because page_hstate() determines the hstate from the page order
alone. Since the page order of a THP page matches the default hugetlbfs
page order, it works.
But, if you change the default huge page size on the boot command-line
(say default_hugepagesz=1G), then we might not even *have* a 2MB hstate
so page_hstate() returns null and copy_huge_page() oopses pretty fast
since copy_huge_page() dereferences the hstate:
void copy_huge_page(struct page *dst, struct page *src)
{
struct hstate *h = page_hstate(src);
if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
...
Mel noticed that the migration code is really the only user of these
functions. This moves all the copy code over to migrate.c and makes
copy_huge_page() work for THP by checking for it explicitly.
I believe the bug was introduced in commit b32967ff10 ("mm: numa: Add
THP migration for the NUMA working set scanning fault case")
[akpm@linux-foundation.org: fix coding-style and comment text, per Naoya Horiguchi]
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Tested-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit ea1e7ed337.
Al points out that while the commit *does* actually create a separate
slab for the page->ptl allocation, that slab is never actually used, and
the code continues to use kmalloc/kfree.
Damien Wyart points out that the original patch did have the conversion
to use kmem_cache_alloc/free, so it got lost somewhere on its way to me.
Revert the half-arsed attempt that didn't do anything. If we really do
want the special slab (remember: this is all relevant just for debug
builds, so it's not necessarily all that critical) we might as well redo
the patch fully.
Reported-by: Al Viro <viro@zeniv.linux.org.uk>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Kirill A Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull trivial tree updates from Jiri Kosina:
"Usual earth-shaking, news-breaking, rocket science pile from
trivial.git"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (23 commits)
doc: usb: Fix typo in Documentation/usb/gadget_configs.txt
doc: add missing files to timers/00-INDEX
timekeeping: Fix some trivial typos in comments
mm: Fix some trivial typos in comments
irq: Fix some trivial typos in comments
NUMA: fix typos in Kconfig help text
mm: update 00-INDEX
doc: Documentation/DMA-attributes.txt fix typo
DRM: comment: `halve' -> `half'
Docs: Kconfig: `devlopers' -> `developers'
doc: typo on word accounting in kprobes.c in mutliple architectures
treewide: fix "usefull" typo
treewide: fix "distingush" typo
mm/Kconfig: Grammar s/an/a/
kexec: Typo s/the/then/
Documentation/kvm: Update cpuid documentation for steal time and pv eoi
treewide: Fix common typo in "identify"
__page_to_pfn: Fix typo in comment
Correct some typos for word frequency
clk: fixed-factor: Fix a trivial typo
...
This patch enhances the type safety for the kfifo API. It is now safe
to put const data into a non const FIFO and the API will now generate a
compiler warning when reading from the fifo where the destination
address is pointing to a const variable.
As a side effect the kfifo_put() does now expect the value of an element
instead a pointer to the element. This was suggested Russell King. It
make the handling of the kfifo_put easier since there is no need to
create a helper variable for getting the address of a pointer or to pass
integers of different sizes.
IMHO the API break is okay, since there are currently only six users of
kfifo_put().
The code is also cleaner by kicking out the "if (0)" expressions.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Stefani Seibold <stefani@seibold.net>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Hauke Mehrtens <hauke@hauke-m.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If DEBUG_SPINLOCK and DEBUG_LOCK_ALLOC are enabled spinlock_t on x86_64
is 72 bytes. For page->ptl they will be allocated from kmalloc-96 slab,
so we loose 24 on each. An average system can easily allocate few tens
thousands of page->ptl and overhead is significant.
Let's create a separate slab for page->ptl allocation to solve this.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use kernel/bounds.c to convert build-time spinlock_t size check into a
preprocessor symbol and apply that to properly separate the page::ptl
situation.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If split page table lock is in use, we embed the lock into struct page
of table's page. We have to disable split lock, if spinlock_t is too
big be to be embedded, like when DEBUG_SPINLOCK or DEBUG_LOCK_ALLOC
enabled.
This patch add support for dynamic allocation of split page table lock
if we can't embed it to struct page.
page->ptl is unsigned long now and we use it as spinlock_t if
sizeof(spinlock_t) <= sizeof(long), otherwise it's pointer to spinlock_t.
The spinlock_t allocated in pgtable_page_ctor() for PTE table and in
pgtable_pmd_page_ctor() for PMD table. All other helpers converted to
support dynamically allocated page->ptl.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The basic idea is the same as with PTE level: the lock is embedded into
struct page of table's page.
We can't use mm->pmd_huge_pte to store pgtables for THP, since we don't
take mm->page_table_lock anymore. Let's reuse page->lru of table's page
for that.
pgtable_pmd_page_ctor() returns true, if initialization is successful
and false otherwise. Current implementation never fails, but assumption
that constructor can fail will help to port it to -rt where spinlock_t
is rather huge and cannot be embedded into struct page -- dynamic
allocation is required.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Alex Thorlton <athorlton@sgi.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "Eric W . Biederman" <ebiederm@xmission.com>
Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Jones <davej@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Robin Holt <robinmholt@gmail.com>
Cc: Sedat Dilek <sedat.dilek@gmail.com>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Hugh Dickins <hughd@google.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently mm->pmd_huge_pte protected by page table lock. It will not
work with split lock. We have to have per-pmd pmd_huge_pte for proper
access serialization.
For now, let's just introduce wrapper to access mm->pmd_huge_pte.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Alex Thorlton <athorlton@sgi.com>
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Eric W . Biederman" <ebiederm@xmission.com>
Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Jones <davej@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Robin Holt <robinmholt@gmail.com>
Cc: Sedat Dilek <sedat.dilek@gmail.com>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With split ptlock it's important to know which lock
pmd_trans_huge_lock() took. This patch adds one more parameter to the
function to return the lock.
In most places migration to new api is trivial. Exception is
move_huge_pmd(): we need to take two locks if pmd tables are different.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Alex Thorlton <athorlton@sgi.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "Eric W . Biederman" <ebiederm@xmission.com>
Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Jones <davej@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Robin Holt <robinmholt@gmail.com>
Cc: Sedat Dilek <sedat.dilek@gmail.com>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There's only one caller of do_generic_file_read() and the only actor is
file_read_actor(). No reason to have a callback parameter.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull core locking changes from Ingo Molnar:
"The biggest changes:
- add lockdep support for seqcount/seqlocks structures, this
unearthed both bugs and required extra annotation.
- move the various kernel locking primitives to the new
kernel/locking/ directory"
* 'core-locking-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits)
block: Use u64_stats_init() to initialize seqcounts
locking/lockdep: Mark __lockdep_count_forward_deps() as static
lockdep/proc: Fix lock-time avg computation
locking/doc: Update references to kernel/mutex.c
ipv6: Fix possible ipv6 seqlock deadlock
cpuset: Fix potential deadlock w/ set_mems_allowed
seqcount: Add lockdep functionality to seqcount/seqlock structures
net: Explicitly initialize u64_stats_sync structures for lockdep
locking: Move the percpu-rwsem code to kernel/locking/
locking: Move the lglocks code to kernel/locking/
locking: Move the rwsem code to kernel/locking/
locking: Move the rtmutex code to kernel/locking/
locking: Move the semaphore core to kernel/locking/
locking: Move the spinlock code to kernel/locking/
locking: Move the lockdep code to kernel/locking/
locking: Move the mutex code to kernel/locking/
hung_task debugging: Add tracepoint to report the hang
x86/locking/kconfig: Update paravirt spinlock Kconfig description
lockstat: Report avg wait and hold times
lockdep, x86/alternatives: Drop ancient lockdep fixup message
...
Pull block IO core updates from Jens Axboe:
"This is the pull request for the core changes in the block layer for
3.13. It contains:
- The new blk-mq request interface.
This is a new and more scalable queueing model that marries the
best part of the request based interface we currently have (which
is fully featured, but scales poorly) and the bio based "interface"
which the new drivers for high IOPS devices end up using because
it's much faster than the request based one.
The bio interface has no block layer support, since it taps into
the stack much earlier. This means that drivers end up having to
implement a lot of functionality on their own, like tagging,
timeout handling, requeue, etc. The blk-mq interface provides all
these. Some drivers even provide a switch to select bio or rq and
has code to handle both, since things like merging only works in
the rq model and hence is faster for some workloads. This is a
huge mess. Conversion of these drivers nets us a substantial code
reduction. Initial results on converting SCSI to this model even
shows an 8x improvement on single queue devices. So while the
model was intended to work on the newer multiqueue devices, it has
substantial improvements for "classic" hardware as well. This code
has gone through extensive testing and development, it's now ready
to go. A pull request is coming to convert virtio-blk to this
model will be will be coming as well, with more drivers scheduled
for 3.14 conversion.
- Two blktrace fixes from Jan and Chen Gang.
- A plug merge fix from Alireza Haghdoost.
- Conversion of __get_cpu_var() from Christoph Lameter.
- Fix for sector_div() with 64-bit divider from Geert Uytterhoeven.
- A fix for a race between request completion and the timeout
handling from Jeff Moyer. This is what caused the merge conflict
with blk-mq/core, in case you are looking at that.
- A dm stacking fix from Mike Snitzer.
- A code consolidation fix and duplicated code removal from Kent
Overstreet.
- A handful of block bug fixes from Mikulas Patocka, fixing a loop
crash and memory corruption on blk cg.
- Elevator switch bug fix from Tomoki Sekiyama.
A heads-up that I had to rebase this branch. Initially the immutable
bio_vecs had been queued up for inclusion, but a week later, it became
clear that it wasn't fully cooked yet. So the decision was made to
pull this out and postpone it until 3.14. It was a straight forward
rebase, just pruning out the immutable series and the later fixes of
problems with it. The rest of the patches applied directly and no
further changes were made"
* 'for-3.13/core' of git://git.kernel.dk/linux-block: (31 commits)
block: replace IS_ERR and PTR_ERR with PTR_ERR_OR_ZERO
block: replace IS_ERR and PTR_ERR with PTR_ERR_OR_ZERO
block: Do not call sector_div() with a 64-bit divisor
kernel: trace: blktrace: remove redundent memcpy() in compat_blk_trace_setup()
block: Consolidate duplicated bio_trim() implementations
block: Use rw_copy_check_uvector()
block: Enable sysfs nomerge control for I/O requests in the plug list
block: properly stack underlying max_segment_size to DM device
elevator: acquire q->sysfs_lock in elevator_change()
elevator: Fix a race in elevator switching and md device initialization
block: Replace __get_cpu_var uses
bdi: test bdi_init failure
block: fix a probe argument to blk_register_region
loop: fix crash if blk_alloc_queue fails
blk-core: Fix memory corruption if blkcg_init_queue fails
block: fix race between request completion and timeout handling
blktrace: Send BLK_TN_PROCESS events to all running traces
blk-mq: don't disallow request merges for req->special being set
blk-mq: mq plug list breakage
blk-mq: fix for flush deadlock
...
Pull networking updates from David Miller:
1) The addition of nftables. No longer will we need protocol aware
firewall filtering modules, it can all live in userspace.
At the core of nftables is a, for lack of a better term, virtual
machine that executes byte codes to inspect packet or metadata
(arriving interface index, etc.) and make verdict decisions.
Besides support for loading packet contents and comparing them, the
interpreter supports lookups in various datastructures as
fundamental operations. For example sets are supports, and
therefore one could create a set of whitelist IP address entries
which have ACCEPT verdicts attached to them, and use the appropriate
byte codes to do such lookups.
Since the interpreted code is composed in userspace, userspace can
do things like optimize things before giving it to the kernel.
Another major improvement is the capability of atomically updating
portions of the ruleset. In the existing netfilter implementation,
one has to update the entire rule set in order to make a change and
this is very expensive.
Userspace tools exist to create nftables rules using existing
netfilter rule sets, but both kernel implementations will need to
co-exist for quite some time as we transition from the old to the
new stuff.
Kudos to Patrick McHardy, Pablo Neira Ayuso, and others who have
worked so hard on this.
2) Daniel Borkmann and Hannes Frederic Sowa made several improvements
to our pseudo-random number generator, mostly used for things like
UDP port randomization and netfitler, amongst other things.
In particular the taus88 generater is updated to taus113, and test
cases are added.
3) Support 64-bit rates in HTB and TBF schedulers, from Eric Dumazet
and Yang Yingliang.
4) Add support for new 577xx tigon3 chips to tg3 driver, from Nithin
Sujir.
5) Fix two fatal flaws in TCP dynamic right sizing, from Eric Dumazet,
Neal Cardwell, and Yuchung Cheng.
6) Allow IP_TOS and IP_TTL to be specified in sendmsg() ancillary
control message data, much like other socket option attributes.
From Francesco Fusco.
7) Allow applications to specify a cap on the rate computed
automatically by the kernel for pacing flows, via a new
SO_MAX_PACING_RATE socket option. From Eric Dumazet.
8) Make the initial autotuned send buffer sizing in TCP more closely
reflect actual needs, from Eric Dumazet.
9) Currently early socket demux only happens for TCP sockets, but we
can do it for connected UDP sockets too. Implementation from Shawn
Bohrer.
10) Refactor inet socket demux with the goal of improving hash demux
performance for listening sockets. With the main goals being able
to use RCU lookups on even request sockets, and eliminating the
listening lock contention. From Eric Dumazet.
11) The bonding layer has many demuxes in it's fast path, and an RCU
conversion was started back in 3.11, several changes here extend the
RCU usage to even more locations. From Ding Tianhong and Wang
Yufen, based upon suggestions by Nikolay Aleksandrov and Veaceslav
Falico.
12) Allow stackability of segmentation offloads to, in particular, allow
segmentation offloading over tunnels. From Eric Dumazet.
13) Significantly improve the handling of secret keys we input into the
various hash functions in the inet hashtables, TCP fast open, as
well as syncookies. From Hannes Frederic Sowa. The key fundamental
operation is "net_get_random_once()" which uses static keys.
Hannes even extended this to ipv4/ipv6 fragmentation handling and
our generic flow dissector.
14) The generic driver layer takes care now to set the driver data to
NULL on device removal, so it's no longer necessary for drivers to
explicitly set it to NULL any more. Many drivers have been cleaned
up in this way, from Jingoo Han.
15) Add a BPF based packet scheduler classifier, from Daniel Borkmann.
16) Improve CRC32 interfaces and generic SKB checksum iterators so that
SCTP's checksumming can more cleanly be handled. Also from Daniel
Borkmann.
17) Add a new PMTU discovery mode, IP_PMTUDISC_INTERFACE, which forces
using the interface MTU value. This helps avoid PMTU attacks,
particularly on DNS servers. From Hannes Frederic Sowa.
18) Use generic XPS for transmit queue steering rather than internal
(re-)implementation in virtio-net. From Jason Wang.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1622 commits)
random32: add test cases for taus113 implementation
random32: upgrade taus88 generator to taus113 from errata paper
random32: move rnd_state to linux/random.h
random32: add prandom_reseed_late() and call when nonblocking pool becomes initialized
random32: add periodic reseeding
random32: fix off-by-one in seeding requirement
PHY: Add RTL8201CP phy_driver to realtek
xtsonic: add missing platform_set_drvdata() in xtsonic_probe()
macmace: add missing platform_set_drvdata() in mace_probe()
ethernet/arc/arc_emac: add missing platform_set_drvdata() in arc_emac_probe()
ipv6: protect for_each_sk_fl_rcu in mem_check with rcu_read_lock_bh
vlan: Implement vlan_dev_get_egress_qos_mask as an inline.
ixgbe: add warning when max_vfs is out of range.
igb: Update link modes display in ethtool
netfilter: push reasm skb through instead of original frag skbs
ip6_output: fragment outgoing reassembled skb properly
MAINTAINERS: mv643xx_eth: take over maintainership from Lennart
net_sched: tbf: support of 64bit rates
ixgbe: deleting dfwd stations out of order can cause null ptr deref
ixgbe: fix build err, num_rx_queues is only available with CONFIG_RPS
...
Merge first patch-bomb from Andrew Morton:
"Quite a lot of other stuff is banked up awaiting further
next->mainline merging, but this batch contains:
- Lots of random misc patches
- OCFS2
- Most of MM
- backlight updates
- lib/ updates
- printk updates
- checkpatch updates
- epoll tweaking
- rtc updates
- hfs
- hfsplus
- documentation
- procfs
- update gcov to gcc-4.7 format
- IPC"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (269 commits)
ipc, msg: fix message length check for negative values
ipc/util.c: remove unnecessary work pending test
devpts: plug the memory leak in kill_sb
./Makefile: export initial ramdisk compression config option
init/Kconfig: add option to disable kernel compression
drivers: w1: make w1_slave::flags long to avoid memory corruption
drivers/w1/masters/ds1wm.cuse dev_get_platdata()
drivers/memstick/core/ms_block.c: fix unreachable state in h_msb_read_page()
drivers/memstick/core/mspro_block.c: fix attributes array allocation
drivers/pps/clients/pps-gpio.c: remove redundant of_match_ptr
kernel/panic.c: reduce 1 byte usage for print tainted buffer
gcov: reuse kbasename helper
kernel/gcov/fs.c: use pr_warn()
kernel/module.c: use pr_foo()
gcov: compile specific gcov implementation based on gcc version
gcov: add support for gcc 4.7 gcov format
gcov: move gcov structs definitions to a gcc version specific file
kernel/taskstats.c: return -ENOMEM when alloc memory fails in add_del_listener()
kernel/taskstats.c: add nla_nest_cancel() for failure processing between nla_nest_start() and nla_nest_end()
kernel/sysctl_binary.c: use scnprintf() instead of snprintf()
...
Pull vfs updates from Al Viro:
"All kinds of stuff this time around; some more notable parts:
- RCU'd vfsmounts handling
- new primitives for coredump handling
- files_lock is gone
- Bruce's delegations handling series
- exportfs fixes
plus misc stuff all over the place"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (101 commits)
ecryptfs: ->f_op is never NULL
locks: break delegations on any attribute modification
locks: break delegations on link
locks: break delegations on rename
locks: helper functions for delegation breaking
locks: break delegations on unlink
namei: minor vfs_unlink cleanup
locks: implement delegations
locks: introduce new FL_DELEG lock flag
vfs: take i_mutex on renamed file
vfs: rename I_MUTEX_QUOTA now that it's not used for quotas
vfs: don't use PARENT/CHILD lock classes for non-directories
vfs: pull ext4's double-i_mutex-locking into common code
exportfs: fix quadratic behavior in filehandle lookup
exportfs: better variable name
exportfs: move most of reconnect_path to helper function
exportfs: eliminate unused "noprogress" counter
exportfs: stop retrying once we race with rename/remove
exportfs: clear DISCONNECTED on all parents sooner
exportfs: more detailed comment for path_reconnect
...
Pull cgroup changes from Tejun Heo:
"Not too much activity this time around. css_id is finally killed and
a minor update to device_cgroup"
* 'for-3.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
device_cgroup: remove can_attach
cgroup: kill css_id
memcg: stop using css id
memcg: fail to create cgroup if the cgroup id is too big
memcg: convert to use cgroup id
memcg: convert to use cgroup_is_descendant()
Pull percpu changes from Tejun Heo:
"Two smallish changes for percpu. Two patches to remove unused
this_cpu_xor() and one to fix a bug in percpu init failure path so
that it can reach the proper BUG() instead of oopsing earlier"
* 'for-3.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu:
x86: remove this_cpu_xor() implementation
percpu: remove this_cpu_xor() implementation
percpu: fix bootmem error handling in pcpu_page_first_chunk()
Commit 0255d49184 ("mm: Account for a THP NUMA hinting update as one
PTE update") was added to account for the number of PTE updates when
marking pages prot_numa. task_numa_work was using the old return value
to track how much address space had been updated. Altering the return
value causes the scanner to do more work than it is configured or
documented to in a single unit of work.
This patch reverts that commit and accounts for the number of THP
updates separately in vmstat. It is up to the administrator to
interpret the pair of values correctly. This is a straight-forward
operation and likely to only be of interest when actively debugging NUMA
balancing problems.
The impact of this patch is that the NUMA PTE scanner will scan slower
when THP is enabled and workloads may converge slower as a result. On
the flip size system CPU usage should be lower than recent tests
reported. This is an illustrative example of a short single JVM specjbb
test
specjbb
3.12.0 3.12.0
vanilla acctupdates
TPut 1 26143.00 ( 0.00%) 25747.00 ( -1.51%)
TPut 7 185257.00 ( 0.00%) 183202.00 ( -1.11%)
TPut 13 329760.00 ( 0.00%) 346577.00 ( 5.10%)
TPut 19 442502.00 ( 0.00%) 460146.00 ( 3.99%)
TPut 25 540634.00 ( 0.00%) 549053.00 ( 1.56%)
TPut 31 512098.00 ( 0.00%) 519611.00 ( 1.47%)
TPut 37 461276.00 ( 0.00%) 474973.00 ( 2.97%)
TPut 43 403089.00 ( 0.00%) 414172.00 ( 2.75%)
3.12.0 3.12.0
vanillaacctupdates
User 5169.64 5184.14
System 100.45 80.02
Elapsed 252.75 251.85
Performance is similar but note the reduction in system CPU time. While
this showed a performance gain, it will not be universal but at least
it'll be behaving as documented. The vmstats are obviously different but
here is an obvious interpretation of them from mmtests.
3.12.0 3.12.0
vanillaacctupdates
NUMA page range updates 1408326 11043064
NUMA huge PMD updates 0 21040
NUMA PTE updates 1408326 291624
"NUMA page range updates" == nr_pte_updates and is the value returned to
the NUMA pte scanner. NUMA huge PMD updates were the number of THP
updates which in combination can be used to calculate how many ptes were
updated from userspace.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reported-by: Alex Thorlton <athorlton@sgi.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The same calculation is currently done in three differents places.
Factor that code so future changes has to be made at only one place.
[akpm@linux-foundation.org: uninline vm_commit_limit()]
Signed-off-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The refcount routine was not fit the kernel get/put semantic exactly,
There were too many judgement statements on refcount and it could be
minus.
This patch does the following:
- move refcount judgement to zswap_entry_put() to hide resource free function.
- add a new function zswap_entry_find_get(), so that callers can use
easily in the following pattern:
zswap_entry_find_get
.../* do something */
zswap_entry_put
- to eliminate compile error, move some functions declaration
This patch is based on Minchan Kim <minchan@kernel.org> 's idea and suggestion.
Signed-off-by: Weijie Yang <weijie.yang@samsung.com>
Cc: Seth Jennings <sjennings@variantweb.net>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Bob Liu <bob.liu@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Consider the following scenario:
thread 0: reclaim entry x (get refcount, but not call zswap_get_swap_cache_page)
thread 1: call zswap_frontswap_invalidate_page to invalidate entry x.
finished, entry x and its zbud is not freed as its refcount != 0
now, the swap_map[x] = 0
thread 0: now call zswap_get_swap_cache_page
swapcache_prepare return -ENOENT because entry x is not used any more
zswap_get_swap_cache_page return ZSWAP_SWAPCACHE_NOMEM
zswap_writeback_entry do nothing except put refcount
Now, the memory of zswap_entry x and its zpage leak.
Modify:
- check the refcount in fail path, free memory if it is not referenced.
- use ZSWAP_SWAPCACHE_FAIL instead of ZSWAP_SWAPCACHE_NOMEM as the fail path
can be not only caused by nomem but also by invalidate.
Signed-off-by: Weijie Yang <weijie.yang@samsung.com>
Reviewed-by: Bob Liu <bob.liu@oracle.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Acked-by: Seth Jennings <sjenning@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We can't see the relationship with memcg from the parameters,
so the name with memcg_idx would be more reasonable.
Signed-off-by: Qiang Huang <h.huangqiang@huawei.com>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch fixes the problem that get_unmapped_area() can return illegal
address and result in failing mmap(2) etc.
In case that the address higher than PAGE_SIZE is set to
/proc/sys/vm/mmap_min_addr, the address lower than mmap_min_addr can be
returned by get_unmapped_area(), even if you do not pass any virtual
address hint (i.e. the second argument).
This is because the current get_unmapped_area() code does not take into
account mmap_min_addr.
This leads to two actual problems as follows:
1. mmap(2) can fail with EPERM on the process without CAP_SYS_RAWIO,
although any illegal parameter is not passed.
2. The bottom-up search path after the top-down search might not work in
arch_get_unmapped_area_topdown().
Note: The first and third chunk of my patch, which changes "len" check,
are for more precise check using mmap_min_addr, and not for solving the
above problem.
[How to reproduce]
--- test.c -------------------------------------------------
#include <stdio.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/errno.h>
int main(int argc, char *argv[])
{
void *ret = NULL, *last_map;
size_t pagesize = sysconf(_SC_PAGESIZE);
do {
last_map = ret;
ret = mmap(0, pagesize, PROT_NONE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
// printf("ret=%p\n", ret);
} while (ret != MAP_FAILED);
if (errno != ENOMEM) {
printf("ERR: unexpected errno: %d (last map=%p)\n",
errno, last_map);
}
return 0;
}
---------------------------------------------------------------
$ gcc -m32 -o test test.c
$ sudo sysctl -w vm.mmap_min_addr=65536
vm.mmap_min_addr = 65536
$ ./test (run as non-priviledge user)
ERR: unexpected errno: 1 (last map=0x10000)
Signed-off-by: Akira Takeuchi <takeuchi.akr@jp.panasonic.com>
Signed-off-by: Kiyoshi Owada <owada.kiyoshi@jp.panasonic.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When __rmqueue_fallback() doesn't find a free block with the required size
it splits a larger page and puts the rest of the page onto the free list.
But it has one serious mistake. When putting back, __rmqueue_fallback()
always use start_migratetype if type is not CMA. However,
__rmqueue_fallback() is only called when all of the start_migratetype
queue is empty. That said, __rmqueue_fallback always puts back memory to
the wrong queue except try_to_steal_freepages() changed pageblock type
(i.e. requested size is smaller than half of page block). The end result
is that the antifragmentation framework increases fragmenation instead of
decreasing it.
Mel's original anti fragmentation does the right thing. But commit
47118af076 ("mm: mmzone: MIGRATE_CMA migration type added") broke it.
This patch restores sane and old behavior. It also removes an incorrect
comment which was introduced by commit fef903efcf ("mm/page_alloc.c:
restructure free-page stealing code and fix a bug").
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In general, every tracepoint should be zero overhead if it is disabled.
However, trace_mm_page_alloc_extfrag() is one of exception. It evaluate
"new_type == start_migratetype" even if tracepoint is disabled.
However, the code can be moved into tracepoint's TP_fast_assign() and
TP_fast_assign exist exactly such purpose. This patch does it.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, set_pageblock_migratetype() screws up MIGRATE_CMA and
MIGRATE_ISOLATE if page_group_by_mobility_disabled is true. It rewrites
the argument to MIGRATE_UNMOVABLE and we lost these attribute.
The problem was introduced by commit 49255c619f ("page allocator: move
check for disabled anti-fragmentation out of fastpath"). So a 4 year
old issue may mean that nobody uses page_group_by_mobility_disabled.
But anyway, this patch fixes the problem.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The kernel's readahead algorithm sometimes interprets random read
accesses as sequential and triggers unnecessary data prefecthing from
storage device (impacting random read average latency).
In order to identify sequential cache read misses, the readahead
algorithm intends to check whether offset - previous offset == 1
(trivial sequential reads) or offset - previous offset == 0 (sequential
reads not aligned on page boundary):
if (offset - (ra->prev_pos >> PAGE_CACHE_SHIFT) <= 1UL)
The current offset is stored in the "offset" variable of type "pgoff_t"
(unsigned long), while previous offset is stored in "ra->prev_pos" of
type "loff_t" (long long). Therefore, operands of the if statement are
implicitly converted to type long long. Consequently, when previous
offset > current offset (which happens on random pattern), the if
condition is true and access is wrongly interpeted as sequential. An
unnecessary data prefetching is triggered, impacting the average random
read latency.
Storing the previous offset value in a "pgoff_t" variable (unsigned
long) fixes the sequential read detection logic.
Signed-off-by: Damien Ramonda <damien.ramonda@intel.com>
Reviewed-by: Fengguang Wu <fengguang.wu@intel.com>
Acked-by: Pierre Tardy <pierre.tardy@intel.com>
Acked-by: David Cohen <david.a.cohen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
vmstat_cpuup_callback() is a CPU notifier callback, which marks N_CPU to a
node at CPU online event. However, it does not update this N_CPU info at
CPU offline event.
Changed vmstat_cpuup_callback() to clear N_CPU when the last CPU in the
node is put into offline, i.e. the node no longer has any online CPU.
Signed-off-by: Toshi Kani <toshi.kani@hp.com>
Acked-by: Christoph Lameter <cl@linux.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Tested-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After a system booted, N_CPU is not set to any node as has_cpu shows an
empty line.
# cat /sys/devices/system/node/has_cpu
(show-empty-line)
setup_vmstat() registers its CPU notifier callback,
vmstat_cpuup_callback(), which marks N_CPU to a node when a CPU is put
into online. However, setup_vmstat() is called after all CPUs are
launched in the boot sequence.
Changed setup_vmstat() to mark N_CPU to the nodes with online CPUs at
boot, which is consistent with other operations in
vmstat_cpuup_callback(), i.e. start_cpu_timer() and
refresh_zone_stat_thresholds().
Also added get_online_cpus() to protect the for_each_online_cpu() loop.
Signed-off-by: Toshi Kani <toshi.kani@hp.com>
Acked-by: Christoph Lameter <cl@linux.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Tested-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The hot-Pluggable field in SRAT specifies which memory is hotpluggable.
As we mentioned before, if hotpluggable memory is used by the kernel, it
cannot be hot-removed. So memory hotplug users may want to set all
hotpluggable memory in ZONE_MOVABLE so that the kernel won't use it.
Memory hotplug users may also set a node as movable node, which has
ZONE_MOVABLE only, so that the whole node can be hot-removed.
But the kernel cannot use memory in ZONE_MOVABLE. By doing this, the
kernel cannot use memory in movable nodes. This will cause NUMA
performance down. And other users may be unhappy.
So we need a way to allow users to enable and disable this functionality.
In this patch, we introduce movable_node boot option to allow users to
choose to not to consume hotpluggable memory at early boot time and later
we can set it as ZONE_MOVABLE.
To achieve this, the movable_node boot option will control the memblock
allocation direction. That said, after memblock is ready, before SRAT is
parsed, we should allocate memory near the kernel image as we explained in
the previous patches. So if movable_node boot option is set, the kernel
does the following:
1. After memblock is ready, make memblock allocate memory bottom up.
2. After SRAT is parsed, make memblock behave as default, allocate memory
top down.
Users can specify "movable_node" in kernel commandline to enable this
functionality. For those who don't use memory hotplug or who don't want
to lose their NUMA performance, just don't specify anything. The kernel
will work as before.
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Suggested-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Suggested-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Thomas Renninger <trenn@suse.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The Linux kernel cannot migrate pages used by the kernel. As a result,
kernel pages cannot be hot-removed. So we cannot allocate hotpluggable
memory for the kernel.
ACPI SRAT (System Resource Affinity Table) contains the memory hotplug
info. But before SRAT is parsed, memblock has already started to allocate
memory for the kernel. So we need to prevent memblock from doing this.
In a memory hotplug system, any numa node the kernel resides in should be
unhotpluggable. And for a modern server, each node could have at least
16GB memory. So memory around the kernel image is highly likely
unhotpluggable.
So the basic idea is: Allocate memory from the end of the kernel image and
to the higher memory. Since memory allocation before SRAT is parsed won't
be too much, it could highly likely be in the same node with kernel image.
The current memblock can only allocate memory top-down. So this patch
introduces a new bottom-up allocation mode to allocate memory bottom-up.
And later when we use this allocation direction to allocate memory, we
will limit the start address above the kernel.
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Thomas Renninger <trenn@suse.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[Problem]
The current Linux cannot migrate pages used by the kernel because of the
kernel direct mapping. In Linux kernel space, va = pa + PAGE_OFFSET.
When the pa is changed, we cannot simply update the pagetable and keep the
va unmodified. So the kernel pages are not migratable.
There are also some other issues will cause the kernel pages not
migratable. For example, the physical address may be cached somewhere and
will be used. It is not to update all the caches.
When doing memory hotplug in Linux, we first migrate all the pages in one
memory device somewhere else, and then remove the device. But if pages
are used by the kernel, they are not migratable. As a result, memory used
by the kernel cannot be hot-removed.
Modifying the kernel direct mapping mechanism is too difficult to do. And
it may cause the kernel performance down and unstable. So we use the
following way to do memory hotplug.
[What we are doing]
In Linux, memory in one numa node is divided into several zones. One of
the zones is ZONE_MOVABLE, which the kernel won't use.
In order to implement memory hotplug in Linux, we are going to arrange all
hotpluggable memory in ZONE_MOVABLE so that the kernel won't use these
memory. To do this, we need ACPI's help.
In ACPI, SRAT(System Resource Affinity Table) contains NUMA info. The
memory affinities in SRAT record every memory range in the system, and
also, flags specifying if the memory range is hotpluggable. (Please refer
to ACPI spec 5.0 5.2.16)
With the help of SRAT, we have to do the following two things to achieve our
goal:
1. When doing memory hot-add, allow the users arranging hotpluggable as
ZONE_MOVABLE.
(This has been done by the MOVABLE_NODE functionality in Linux.)
2. when the system is booting, prevent bootmem allocator from allocating
hotpluggable memory for the kernel before the memory initialization
finishes.
The problem 2 is the key problem we are going to solve. But before solving it,
we need some preparation. Please see below.
[Preparation]
Bootloader has to load the kernel image into memory. And this memory must
be unhotpluggable. We cannot prevent this anyway. So in a memory hotplug
system, we can assume any node the kernel resides in is not hotpluggable.
Before SRAT is parsed, we don't know which memory ranges are hotpluggable.
But memblock has already started to work. In the current kernel,
memblock allocates the following memory before SRAT is parsed:
setup_arch()
|->memblock_x86_fill() /* memblock is ready */
|......
|->early_reserve_e820_mpc_new() /* allocate memory under 1MB */
|->reserve_real_mode() /* allocate memory under 1MB */
|->init_mem_mapping() /* allocate page tables, about 2MB to map 1GB memory */
|->dma_contiguous_reserve() /* specified by user, should be low */
|->setup_log_buf() /* specified by user, several mega bytes */
|->relocate_initrd() /* could be large, but will be freed after boot, should reorder */
|->acpi_initrd_override() /* several mega bytes */
|->reserve_crashkernel() /* could be large, should reorder */
|......
|->initmem_init() /* Parse SRAT */
According to Tejun's advice, before SRAT is parsed, we should try our best
to allocate memory near the kernel image. Since the whole node the kernel
resides in won't be hotpluggable, and for a modern server, a node may have
at least 16GB memory, allocating several mega bytes memory around the
kernel image won't cross to hotpluggable memory.
[About this patchset]
So this patchset is the preparation for the problem 2 that we want to
solve. It does the following:
1. Make memblock be able to allocate memory bottom up.
1) Keep all the memblock APIs' prototype unmodified.
2) When the direction is bottom up, keep the start address greater than the
end of kernel image.
2. Improve init_mem_mapping() to support allocate page tables in
bottom up direction.
3. Introduce "movable_node" boot option to enable and disable this
functionality.
This patch (of 6):
Create a new function __memblock_find_range_top_down to factor out of
top-down allocation from memblock_find_in_range_node. This is a
preparation because we will introduce a new bottom-up allocation mode in
the following patch.
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Thomas Renninger <trenn@suse.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is more or less the generic variant of commit 41aacc1eea ("x86
get_unmapped_area: Access mmap_legacy_base through mm_struct member").
So effectively architectures which use an own arch_pick_mmap_layout()
implementation but call the generic arch_get_unmapped_area() now can
also randomize their mmap_base.
All architectures which have an own arch_pick_mmap_layout() and call the
generic arch_get_unmapped_area() (arm64, s390, tile) currently set
mmap_base to TASK_UNMAPPED_BASE. This is also true for the generic
arch_pick_mmap_layout() function. So this change is a no-op currently.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Radu Caragea <sinaelgl@gmail.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add SetPageReclaim() before __swap_writepage() so that page can be moved
to the tail of the inactive list, which can avoid unnecessary page
scanning as this page was reclaimed by swap subsystem before.
Signed-off-by: Weijie Yang <weijie.yang@samsung.com>
Reviewed-by: Bob Liu <bob.liu@oracle.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Acked-by: Seth Jennings <sjenning@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During swapoff the frontswap_map was NULL-ified before calling
frontswap_invalidate_area(). However the frontswap_invalidate_area()
exits early if frontswap_map is NULL. Invalidate was never called
during swapoff.
This patch moves frontswap_map_set() in swapoff just after calling
frontswap_invalidate_area() so outside of locks (swap_lock and
swap_info_struct->lock). This shouldn't be a problem as during swapon
the frontswap_map_set() is called also outside of any locks.
Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com>
Reviewed-by: Seth Jennings <sjenning@linux.vnet.ibm.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Shaohua Li <shli@fusionio.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 248ac0e194 ("mm/vmalloc: remove guard page from between vmap
blocks") had the side effect of making vmap_area.va_end member point to
the next vmap_area.va_start. This was creating an artificial reference
to vmalloc'ed objects and kmemleak was rarely reporting vmalloc() leaks.
This patch marks the vmap_area containing pointers explicitly and
reduces the min ref_count to 2 as vm_struct still contains a reference
to the vmalloc'ed object. The kmemleak add_scan_area() function has
been improved to allow a SIZE_MAX argument covering the rest of the
object (for simpler calling sites).
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We pass the number of pages which hold page structs of a memory section
to free_map_bootmem(). This is right when !CONFIG_SPARSEMEM_VMEMMAP but
wrong when CONFIG_SPARSEMEM_VMEMMAP. When CONFIG_SPARSEMEM_VMEMMAP, we
should pass the number of pages of a memory section to free_map_bootmem.
So the fix is removing the nr_pages parameter. When
CONFIG_SPARSEMEM_VMEMMAP, we directly use the prefined marco
PAGES_PER_SECTION in free_map_bootmem. When !CONFIG_SPARSEMEM_VMEMMAP,
we calculate page numbers needed to hold the page structs for a memory
section and use the value in free_map_bootmem().
This was found by reading the code. And I have no machine that support
memory hot-remove to test the bug now.
Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For below functions,
- sparse_add_one_section()
- kmalloc_section_memmap()
- __kmalloc_section_memmap()
- __kfree_section_memmap()
they are always invoked to operate on one memory section, so it is
redundant to always pass a nr_pages parameter, which is the page numbers
in one section. So we can directly use predefined macro PAGES_PER_SECTION
instead of passing the parameter.
Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memory.numa_stat file was not hierarchical. Memory charged to the
children was not shown in parent's numa_stat.
This change adds the "hierarchical_" stats to the existing stats. The
new hierarchical stats include the sum of all children's values in
addition to the value of the memcg.
Tested: Create cgroup a, a/b and run workload under b. The values of
b are included in the "hierarchical_*" under a.
$ cd /sys/fs/cgroup
$ echo 1 > memory.use_hierarchy
$ mkdir a a/b
Run workload in a/b:
$ (echo $BASHPID >> a/b/cgroup.procs && cat /some/file && bash) &
The hierarchical_ fields in parent (a) show use of workload in a/b:
$ cat a/memory.numa_stat
total=0 N0=0 N1=0 N2=0 N3=0
file=0 N0=0 N1=0 N2=0 N3=0
anon=0 N0=0 N1=0 N2=0 N3=0
unevictable=0 N0=0 N1=0 N2=0 N3=0
hierarchical_total=908 N0=552 N1=317 N2=39 N3=0
hierarchical_file=850 N0=549 N1=301 N2=0 N3=0
hierarchical_anon=58 N0=3 N1=16 N2=39 N3=0
hierarchical_unevictable=0 N0=0 N1=0 N2=0 N3=0
$ cat a/b/memory.numa_stat
total=908 N0=552 N1=317 N2=39 N3=0
file=850 N0=549 N1=301 N2=0 N3=0
anon=58 N0=3 N1=16 N2=39 N3=0
unevictable=0 N0=0 N1=0 N2=0 N3=0
hierarchical_total=908 N0=552 N1=317 N2=39 N3=0
hierarchical_file=850 N0=549 N1=301 N2=0 N3=0
hierarchical_anon=58 N0=3 N1=16 N2=39 N3=0
hierarchical_unevictable=0 N0=0 N1=0 N2=0 N3=0
Signed-off-by: Ying Han <yinghan@google.com>
Signed-off-by: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Refactor mem_control_numa_stat_show() to use a new stats structure for
smaller and simpler code. This consolidates nearly identical code.
text data bss dec hex filename
8,137,679 1,703,496 1,896,448 11,737,623 b31a17 vmlinux.before
8,136,911 1,703,496 1,896,448 11,736,855 b31717 vmlinux.after
Signed-off-by: Greg Thelen <gthelen@google.com>
Signed-off-by: Ying Han <yinghan@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Khugepaged will scan/free HPAGE_PMD_NR normal pages and replace with a
hugepage which is allocated from the node of the first scanned normal
page, but this policy is too rough and may end with unexpected result to
upper users.
The problem is the original page-balancing among all nodes will be
broken after hugepaged started. Thinking about the case if the first
scanned normal page is allocated from node A, most of other scanned
normal pages are allocated from node B or C.. But hugepaged will always
allocate hugepage from node A which will cause extra memory pressure on
node A which is not the situation before khugepaged started.
This patch try to fix this problem by making khugepaged allocate
hugepage from the node which have max record of scaned normal pages hit,
so that the effect to original page-balancing can be minimized.
The other problem is if normal scanned pages are equally allocated from
Node A,B and C, after khugepaged started Node A will still suffer extra
memory pressure.
Andrew Davidoff reported a related issue several days ago. He wanted
his application interleaving among all nodes and "numactl
--interleave=all ./test" was used to run the testcase, but the result
wasn't not as expected.
cat /proc/2814/numa_maps:
7f50bd440000 interleave:0-3 anon=51403 dirty=51403 N0=435 N1=435 N2=435 N3=50098
The end result showed that most pages are from Node3 instead of
interleave among node0-3 which was unreasonable.
This patch also fix this issue by allocating hugepage round robin from
all nodes have the same record, after this patch the result was as
expected:
7f78399c0000 interleave:0-3 anon=51403 dirty=51403 N0=12723 N1=12723 N2=13235 N3=12722
The simple testcase is like this:
int main() {
char *p;
int i;
int j;
for (i=0; i < 200; i++) {
p = (char *)malloc(1048576);
printf("malloc done\n");
if (p == 0) {
printf("Out of memory\n");
return 1;
}
for (j=0; j < 1048576; j++) {
p[j] = 'A';
}
printf("touched memory\n");
sleep(1);
}
printf("enter sleep\n");
while(1) {
sleep(100);
}
}
[akpm@linux-foundation.org: make last_khugepaged_target_node local to khugepaged_find_target_node()]
Reported-by: Andrew Davidoff <davidoff@qedmf.net>
Tested-by: Andrew Davidoff <davidoff@qedmf.net>
Signed-off-by: Bob Liu <bob.liu@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move alloc_hugepage() to a better place, no need for a seperate #ifndef
CONFIG_NUMA
Signed-off-by: Bob Liu <bob.liu@oracle.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andrew Davidoff <davidoff@qedmf.net>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The VM_UNINITIALIZED/VM_UNLIST flag introduced by f5252e009d ("mm:
avoid null pointer access in vm_struct via /proc/vmallocinfo") is used
to avoid accessing the pages field with unallocated page when
show_numa_info() is called.
This patch moves the check just before show_numa_info in order that some
messages still can be dumped via /proc/vmallocinfo. This patch reverts
commit d157a55815 ("mm/vmalloc.c: check VM_UNINITIALIZED flag in
s_show instead of show_numa_info");
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Mitsuo Hayasaka <mitsuo.hayasaka.hu@hitachi.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a race window between vmap_area tear down and show vmap_area
information.
A B
remove_vm_area
spin_lock(&vmap_area_lock);
va->vm = NULL;
va->flags &= ~VM_VM_AREA;
spin_unlock(&vmap_area_lock);
spin_lock(&vmap_area_lock);
if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEZING))
return 0;
if (!(va->flags & VM_VM_AREA)) {
seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
(void *)va->va_start, (void *)va->va_end,
va->va_end - va->va_start);
return 0;
}
free_unmap_vmap_area(va);
flush_cache_vunmap
free_unmap_vmap_area_noflush
unmap_vmap_area
free_vmap_area_noflush
va->flags |= VM_LAZY_FREE
The assumption !VM_VM_AREA represents vm_map_ram allocation is
introduced by d4033afdf8 ("mm, vmalloc: iterate vmap_area_list,
instead of vmlist, in vmallocinfo()").
However, !VM_VM_AREA also represents vmap_area is being tear down in
race window mentioned above. This patch fix it by don't dump any
information for !VM_VM_AREA case and also remove (VM_LAZY_FREE |
VM_LAZY_FREEING) check since they are not possible for !VM_VM_AREA case.
Suggested-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Mitsuo Hayasaka <mitsuo.hayasaka.hu@hitachi.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The caller address has already been set in set_vmalloc_vm(), there's no
need to set it again in __vmalloc_area_node.
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Mitsuo Hayasaka <mitsuo.hayasaka.hu@hitachi.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mpol_to_str() should not fail. Currently, it either fails because the
string buffer is too small or because a string hasn't been defined for a
mempolicy mode.
If a new mempolicy mode is introduced and no string is defined for it,
just warn and return "unknown".
If the buffer is too small, just truncate the string and return, the
same behavior as snprintf().
This also fixes a bug where there was no NULL-byte termination when doing
*p++ = '=' and *p++ ':' and maxlen has been reached.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Chen Gang <gang.chen@asianux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Dave Jones <davej@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Chen Gong pointed out that set/unset_migratetype_isolate() was done in
different functions in mm/memory-failure.c, which makes the code less
readable/maintainable. So this patch does it in soft_offline_page().
With this patch, we get to hold lock_memory_hotplug() longer but it's
not a problem because races between memory hotplug and soft offline are
very rare.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Chen, Gong <gong.chen@linux.intel.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
cpu_up() has #ifdef CONFIG_MEMORY_HOTPLUG code blocks, which call
mem_online_node() to put its node online if offlined and then call
build_all_zonelists() to initialize the zone list.
These steps are specific to memory hotplug, and should be managed in
mm/memory_hotplug.c. lock_memory_hotplug() should also be held for the
whole steps.
For this reason, this patch replaces mem_online_node() with
try_online_node(), which performs the whole steps with
lock_memory_hotplug() held. try_online_node() is named after
try_offline_node() as they have similar purpose.
There is no functional change in this patch.
Signed-off-by: Toshi Kani <toshi.kani@hp.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On large memory machines it can take a few minutes to get through
free_all_bootmem().
Currently, when free_all_bootmem() calls __free_pages_memory(), the number
of contiguous pages that __free_pages_memory() passes to the buddy
allocator is limited to BITS_PER_LONG. BITS_PER_LONG was originally
chosen to keep things similar to mm/nobootmem.c. But it is more efficient
to limit it to MAX_ORDER.
base new change
8TB 202s 172s 30s
16TB 401s 351s 50s
That is around 1%-3% improvement on total boot time.
This patch was spun off from the boot time rfc Robin and I had been
working on.
Signed-off-by: Robin Holt <robin.m.holt@gmail.com>
Signed-off-by: Nathan Zimmer <nzimmer@sgi.com>
Cc: Robin Holt <robinmholt@linux.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Mike Travis <travis@sgi.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use helper function to check if we need to deal with oom condition.
Signed-off-by: Qiang Huang <h.huangqiang@huawei.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A is_memblock_offlined() return or 1 means memory block is offlined, but
is_memblock_offlined_cb() returning 1 means memory block is not offlined,
this will confuse somebody, so rename the function.
Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Acked-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use "if (zone->present_pages)" instead of "if (zone->present_pages)".
Simplify the code, no functional change.
Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use "pgdat_end_pfn()" instead of "pgdat->node_start_pfn +
pgdat->node_spanned_pages". Simplify the code, no functional change.
Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 13ece886d9 ("thp: transparent hugepage config choice"),
transparent hugepage support is disabled by default, and
TRANSPARENT_HUGEPAGE_ALWAYS is configured when TRANSPARENT_HUGEPAGE=y.
And since commit d39d33c332 ("thp: enable direct defrag"), defrag is
enable for all transparent hugepage page faults by default, not only in
MADV_HUGEPAGE regions.
Signed-off-by: Jianguo Wu <wujianguo@huawei.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The callers of free_pgd_range() and hugetlb_free_pgd_range() don't hold
page table locks. The comments seems to be obsolete, so let's remove
them.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit f40d1e42bb ("mm: compaction: acquire the zone->lock as
late as possible"), isolate_freepages_block() takes the zone->lock
itself. The function description however still states that the
zone->lock must be held.
This patch removes this outdated statement.
Signed-off-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kcalloc returns zeroed memory. There's no need to use this flag.
Signed-off-by: Joe Perches <joe@perches.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The callee force_page_cache_readahead() already does this and unlike
do_readahead(), force_page_cache_readahead() remembers to check for
->readpages() as well.
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull scheduler changes from Ingo Molnar:
"The main changes in this cycle are:
- (much) improved CONFIG_NUMA_BALANCING support from Mel Gorman, Rik
van Riel, Peter Zijlstra et al. Yay!
- optimize preemption counter handling: merge the NEED_RESCHED flag
into the preempt_count variable, by Peter Zijlstra.
- wait.h fixes and code reorganization from Peter Zijlstra
- cfs_bandwidth fixes from Ben Segall
- SMP load-balancer cleanups from Peter Zijstra
- idle balancer improvements from Jason Low
- other fixes and cleanups"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (129 commits)
ftrace, sched: Add TRACE_FLAG_PREEMPT_RESCHED
stop_machine: Fix race between stop_two_cpus() and stop_cpus()
sched: Remove unnecessary iteration over sched domains to update nr_busy_cpus
sched: Fix asymmetric scheduling for POWER7
sched: Move completion code from core.c to completion.c
sched: Move wait code from core.c to wait.c
sched: Move wait.c into kernel/sched/
sched/wait: Fix __wait_event_interruptible_lock_irq_timeout()
sched: Avoid throttle_cfs_rq() racing with period_timer stopping
sched: Guarantee new group-entities always have weight
sched: Fix hrtimer_cancel()/rq->lock deadlock
sched: Fix cfs_bandwidth misuse of hrtimer_expires_remaining
sched: Fix race on toggling cfs_bandwidth_used
sched: Remove extra put_online_cpus() inside sched_setaffinity()
sched/rt: Fix task_tick_rt() comment
sched/wait: Fix build breakage
sched/wait: Introduce prepare_to_wait_event()
sched/wait: Add ___wait_cond_timeout() to wait_event*_timeout() too
sched: Remove get_online_cpus() usage
sched: Fix race in migrate_swap_stop()
...
There were two places where return value from bdi_init was not tested.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Currently seqlocks and seqcounts don't support lockdep.
After running across a seqcount related deadlock in the timekeeping
code, I used a less-refined and more focused variant of this patch
to narrow down the cause of the issue.
This is a first-pass attempt to properly enable lockdep functionality
on seqlocks and seqcounts.
Since seqcounts are used in the vdso gettimeofday code, I've provided
non-lockdep accessors for those needs.
I've also handled one case where there were nested seqlock writers
and there may be more edge cases.
Comments and feedback would be appreciated!
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: netdev@vger.kernel.org
Link: http://lkml.kernel.org/r/1381186321-4906-3-git-send-email-john.stultz@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Conflicts:
kernel/Makefile
There are conflicts in kernel/Makefile due to file moving in the
scheduler tree - resolve them.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Conflicts:
drivers/net/ethernet/emulex/benet/be.h
drivers/net/netconsole.c
net/bridge/br_private.h
Three mostly trivial conflicts.
The net/bridge/br_private.h conflict was a function signature (argument
addition) change overlapping with the extern removals from Joe Perches.
In drivers/net/netconsole.c we had one change adjusting a printk message
whilst another changed "printk(KERN_INFO" into "pr_info(".
Lastly, the emulex change was a new inline function addition overlapping
with Joe Perches's extern removals.
Signed-off-by: David S. Miller <davem@davemloft.net>
When a memcg is deleted mem_cgroup_reparent_charges() moves charged
memory to the parent memcg. As of v3.11-9444-g3ea67d0 "memcg: add per
cgroup writeback pages accounting" there's bad pointer read. The goal
was to check for counter underflow. The counter is a per cpu counter
and there are two problems with the code:
(1) per cpu access function isn't used, instead a naked pointer is used
which easily causes oops.
(2) the check doesn't sum all cpus
Test:
$ cd /sys/fs/cgroup/memory
$ mkdir x
$ echo 3 > /proc/sys/vm/drop_caches
$ (echo $BASHPID >> x/tasks && exec cat) &
[1] 7154
$ grep ^mapped x/memory.stat
mapped_file 53248
$ echo 7154 > tasks
$ rmdir x
<OOPS>
The fix is to remove the check. It's currently dangerous and isn't
worth fixing it to use something expensive, such as
percpu_counter_sum(), for each reparented page. __this_cpu_read() isn't
enough to fix this because there's no guarantees of the current cpus
count. The only guarantees is that the sum of all per-cpu counter is >=
nr_pages.
Fixes: 3ea67d06e4 ("memcg: add per cgroup writeback pages accounting")
Reported-and-tested-by: Flavio Leitner <fbl@redhat.com>
Signed-off-by: Greg Thelen <gthelen@google.com>
Reviewed-by: Sha Zhengju <handai.szj@taobao.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Resolve cherry-picking conflicts:
Conflicts:
mm/huge_memory.c
mm/memory.c
mm/mprotect.c
See this upstream merge commit for more details:
52469b4fcd Merge branch 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Merge four more fixes from Andrew Morton.
* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
lib/scatterlist.c: don't flush_kernel_dcache_page on slab page
mm: memcg: fix test for child groups
mm: memcg: lockdep annotation for memcg OOM lock
mm: memcg: use proper memcg in limit bypass
When memcg code needs to know whether any given memcg has children, it
uses the cgroup child iteration primitives and returns true/false
depending on whether the iteration loop is executed at least once or
not.
Because a cgroup's list of children is RCU protected, these primitives
require the RCU read-lock to be held, which is not the case for all
memcg callers. This results in the following splat when e.g. enabling
hierarchy mode:
WARNING: CPU: 3 PID: 1 at kernel/cgroup.c:3043 css_next_child+0xa3/0x160()
CPU: 3 PID: 1 Comm: systemd Not tainted 3.12.0-rc5-00117-g83f11a9-dirty #18
Hardware name: LENOVO 3680B56/3680B56, BIOS 6QET69WW (1.39 ) 04/26/2012
Call Trace:
dump_stack+0x54/0x74
warn_slowpath_common+0x78/0xa0
warn_slowpath_null+0x1a/0x20
css_next_child+0xa3/0x160
mem_cgroup_hierarchy_write+0x5b/0xa0
cgroup_file_write+0x108/0x2a0
vfs_write+0xbd/0x1e0
SyS_write+0x4c/0xa0
system_call_fastpath+0x16/0x1b
In the memcg case, we only care about children when we are attempting to
modify inheritable attributes interactively. Racing with deletion could
mean a spurious -EBUSY, no problem. Racing with addition is handled
just fine as well through the memcg_create_mutex: if the child group is
not on the list after the mutex is acquired, it won't be initialized
from the parent's attributes until after the unlock.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memcg OOM lock is a mutex-type lock that is open-coded due to
memcg's special needs. Add annotations for lockdep coverage.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 84235de394 ("fs: buffer: move allocation failure loop into the
allocator") allowed __GFP_NOFAIL allocations to bypass the limit if they
fail to reclaim enough memory for the charge. But because the main test
case was on a 3.2-based system, the patch missed the fact that on newer
kernels the charge function needs to return root_mem_cgroup when
bypassing the limit, and not NULL. This will corrupt whatever memory is
at NULL + percpu pointer offset. Fix this quickly before problems are
reported.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull NUMA balancing memory corruption fixes from Ingo Molnar:
"So these fixes are definitely not something I'd like to sit on, but as
I said to Mel at the KS the timing is quite tight, with Linus planning
v3.12-final within a week.
Fedora-19 is affected:
comet:~> grep NUMA_BALANCING /boot/config-3.11.3-201.fc19.x86_64
CONFIG_ARCH_SUPPORTS_NUMA_BALANCING=y
CONFIG_NUMA_BALANCING_DEFAULT_ENABLED=y
CONFIG_NUMA_BALANCING=y
AFAICS Ubuntu will be affected as well, once it updates the kernel:
hubble:~> grep NUMA_BALANCING /boot/config-3.8.0-32-generic
CONFIG_ARCH_SUPPORTS_NUMA_BALANCING=y
CONFIG_NUMA_BALANCING_DEFAULT_ENABLED=y
CONFIG_NUMA_BALANCING=y
These 6 commits are a minimalized set of cherry-picks needed to fix
the memory corruption bugs. All commits are fixes, except "mm: numa:
Sanitize task_numa_fault() callsites" which is a cleanup that made two
followup fixes simpler.
I've done targeted testing with just this SHA1 to try to make sure
there are no cherry-picking artifacts. The original non-cherry-picked
set of fixes were exposed to linux-next for a couple of weeks"
* 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
mm: Account for a THP NUMA hinting update as one PTE update
mm: Close races between THP migration and PMD numa clearing
mm: numa: Sanitize task_numa_fault() callsites
mm: Prevent parallel splits during THP migration
mm: Wait for THP migrations to complete during NUMA hinting faults
mm: numa: Do not account for a hinting fault if we raced
Merge three fixes from Andrew Morton.
* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
memcg: use __this_cpu_sub() to dec stats to avoid incorrect subtrahend casting
percpu: fix this_cpu_sub() subtrahend casting for unsigneds
mm/pagewalk.c: fix walk_page_range() access of wrong PTEs
As of commit 3ea67d06e4 ("memcg: add per cgroup writeback pages
accounting") memcg counter errors are possible when moving charged
memory to a different memcg. Charge movement occurs when processing
writes to memory.force_empty, moving tasks to a memcg with
memcg.move_charge_at_immigrate=1, or memcg deletion.
An example showing error after memory.force_empty:
$ cd /sys/fs/cgroup/memory
$ mkdir x
$ rm /data/tmp/file
$ (echo $BASHPID >> x/tasks && exec mmap_writer /data/tmp/file 1M) &
[1] 13600
$ grep ^mapped x/memory.stat
mapped_file 1048576
$ echo 13600 > tasks
$ echo 1 > x/memory.force_empty
$ grep ^mapped x/memory.stat
mapped_file 4503599627370496
mapped_file should end with 0.
4503599627370496 == 0x10,0000,0000,0000 == 0x100,0000,0000 pages
1048576 == 0x10,0000 == 0x100 pages
This issue only affects the source memcg on 64 bit machines; the
destination memcg counters are correct. So the rmdir case is not too
important because such counters are soon disappearing with the entire
memcg. But the memcg.force_empty and memory.move_charge_at_immigrate=1
cases are larger problems as the bogus counters are visible for the
(possibly long) remaining life of the source memcg.
The problem is due to memcg use of __this_cpu_from(.., -nr_pages), which
is subtly wrong because it subtracts the unsigned int nr_pages (either
-1 or -512 for THP) from a signed long percpu counter. When
nr_pages=-1, -nr_pages=0xffffffff. On 64 bit machines stat->count[idx]
is signed 64 bit. So memcg's attempt to simply decrement a count (e.g.
from 1 to 0) boils down to:
long count = 1
unsigned int nr_pages = 1
count += -nr_pages /* -nr_pages == 0xffff,ffff */
count is now 0x1,0000,0000 instead of 0
The fix is to subtract the unsigned page count rather than adding its
negation. This only works once "percpu: fix this_cpu_sub() subtrahend
casting for unsigneds" is applied to fix this_cpu_sub().
Signed-off-by: Greg Thelen <gthelen@google.com>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When walk_page_range walk a memory map's page tables, it'll skip
VM_PFNMAP area, then variable 'next' will to assign to vma->vm_end, it
maybe larger than 'end'. In next loop, 'addr' will be larger than
'next'. Then in /proc/XXXX/pagemap file reading procedure, the 'addr'
will growing forever in pagemap_pte_range, pte_to_pagemap_entry will
access the wrong pte.
BUG: Bad page map in process procrank pte:8437526f pmd:785de067
addr:9108d000 vm_flags:00200073 anon_vma:f0d99020 mapping: (null) index:9108d
CPU: 1 PID: 4974 Comm: procrank Tainted: G B W O 3.10.1+ #1
Call Trace:
dump_stack+0x16/0x18
print_bad_pte+0x114/0x1b0
vm_normal_page+0x56/0x60
pagemap_pte_range+0x17a/0x1d0
walk_page_range+0x19e/0x2c0
pagemap_read+0x16e/0x200
vfs_read+0x84/0x150
SyS_read+0x4a/0x80
syscall_call+0x7/0xb
Signed-off-by: Liu ShuoX <shuox.liu@intel.com>
Signed-off-by: Chen LinX <linx.z.chen@intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: <stable@vger.kernel.org> [3.10.x+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I've seen a fair number of issues with kswapd and other processes
appearing to get stuck in v3.12-rc. Using sysrq-p many times seems to
indicate that it gets stuck somewhere in list_lru_walk_node(), called
from prune_icache_sb() and super_cache_scan().
I never seem to be able to trigger a calltrace for functions above that
point.
So I decided to add the following to super_cache_scan():
@@ -81,10 +81,14 @@ static unsigned long super_cache_scan(struct shrinker *shrink,
inodes = list_lru_count_node(&sb->s_inode_lru, sc->nid);
dentries = list_lru_count_node(&sb->s_dentry_lru, sc->nid);
total_objects = dentries + inodes + fs_objects + 1;
+printk("%s:%u: %s: dentries %lu inodes %lu total %lu\n", current->comm, current->pid, __func__, dentries, inodes, total_objects);
/* proportion the scan between the caches */
dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
+printk("%s:%u: %s: dentries %lu inodes %lu\n", current->comm, current->pid, __func__, dentries, inodes);
+BUG_ON(dentries == 0);
+BUG_ON(inodes == 0);
/*
* prune the dcache first as the icache is pinned by it, then
@@ -99,7 +103,7 @@ static unsigned long super_cache_scan(struct shrinker *shrink,
freed += sb->s_op->free_cached_objects(sb, fs_objects,
sc->nid);
}
-
+printk("%s:%u: %s: dentries %lu inodes %lu freed %lu\n", current->comm, current->pid, __func__, dentries, inodes, freed);
drop_super(sb);
return freed;
}
and shortly thereafter, having applied some pressure, I got this:
update-apt-xapi:1616: super_cache_scan: dentries 25632 inodes 2 total 25635
update-apt-xapi:1616: super_cache_scan: dentries 1023 inodes 0
------------[ cut here ]------------
Kernel BUG at c0101994 [verbose debug info unavailable]
Internal error: Oops - BUG: 0 [#3] SMP ARM
Modules linked in: fuse rfcomm bnep bluetooth hid_cypress
CPU: 0 PID: 1616 Comm: update-apt-xapi Tainted: G D 3.12.0-rc7+ #154
task: daea1200 ti: c3bf8000 task.ti: c3bf8000
PC is at super_cache_scan+0x1c0/0x278
LR is at trace_hardirqs_on+0x14/0x18
Process update-apt-xapi (pid: 1616, stack limit = 0xc3bf8240)
...
Backtrace:
(super_cache_scan) from [<c00cd69c>] (shrink_slab+0x254/0x4c8)
(shrink_slab) from [<c00d09a0>] (try_to_free_pages+0x3a0/0x5e0)
(try_to_free_pages) from [<c00c59cc>] (__alloc_pages_nodemask+0x5)
(__alloc_pages_nodemask) from [<c00e07c0>] (__pte_alloc+0x2c/0x13)
(__pte_alloc) from [<c00e3a70>] (handle_mm_fault+0x84c/0x914)
(handle_mm_fault) from [<c001a4cc>] (do_page_fault+0x1f0/0x3bc)
(do_page_fault) from [<c001a7b0>] (do_translation_fault+0xac/0xb8)
(do_translation_fault) from [<c000840c>] (do_DataAbort+0x38/0xa0)
(do_DataAbort) from [<c00133f8>] (__dabt_usr+0x38/0x40)
Notice that we had a very low number of inodes, which were reduced to
zero my mult_frac().
Now, prune_icache_sb() calls list_lru_walk_node() passing that number of
inodes (0) into that as the number of objects to scan:
long prune_icache_sb(struct super_block *sb, unsigned long nr_to_scan,
int nid)
{
LIST_HEAD(freeable);
long freed;
freed = list_lru_walk_node(&sb->s_inode_lru, nid, inode_lru_isolate,
&freeable, &nr_to_scan);
which does:
unsigned long
list_lru_walk_node(struct list_lru *lru, int nid, list_lru_walk_cb isolate,
void *cb_arg, unsigned long *nr_to_walk)
{
struct list_lru_node *nlru = &lru->node[nid];
struct list_head *item, *n;
unsigned long isolated = 0;
spin_lock(&nlru->lock);
restart:
list_for_each_safe(item, n, &nlru->list) {
enum lru_status ret;
/*
* decrement nr_to_walk first so that we don't livelock if we
* get stuck on large numbesr of LRU_RETRY items
*/
if (--(*nr_to_walk) == 0)
break;
So, if *nr_to_walk was zero when this function was entered, that means
we're wanting to operate on (~0UL)+1 objects - which might as well be
infinite.
Clearly this is not correct behaviour. If we think about the behaviour
of this function when *nr_to_walk is 1, then clearly it's wrong - we
decrement first and then test for zero - which results in us doing
nothing at all. A post-decrement would give the desired behaviour -
we'd try to walk one object and one object only if *nr_to_walk were one.
It also gives the correct behaviour for zero - we exit at this point.
Fixes: 5cedf721a7 ("list_lru: fix broken LRU_RETRY behaviour")
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
[ Modified to make sure we never underflow the count: this function gets
called in a loop, so the 0 -> ~0ul transition is dangerous - Linus ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no 'strcut freelist', but codes use pointer to 'struct freelist'.
Although compiler doesn't complain anything about this wrong usage and
codes work fine, but fixing it is better.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Pekka Enberg <penberg@iki.fi>
After using struct page as slab management, we should not call
kmemleak_scan_area(), since struct page isn't the tracking object of
kmemleak. Without this patch and if CONFIG_DEBUG_KMEMLEAK is enabled,
so many kmemleak warnings are printed.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Pekka Enberg <penberg@iki.fi>
A THP PMD update is accounted for as 512 pages updated in vmstat. This is
large difference when estimating the cost of automatic NUMA balancing and
can be misleading when comparing results that had collapsed versus split
THP. This patch addresses the accounting issue.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: <stable@kernel.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-10-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
THP migration uses the page lock to guard against parallel allocations
but there are cases like this still open
Task A Task B
--------------------- ---------------------
do_huge_pmd_numa_page do_huge_pmd_numa_page
lock_page
mpol_misplaced == -1
unlock_page
goto clear_pmdnuma
lock_page
mpol_misplaced == 2
migrate_misplaced_transhuge
pmd = pmd_mknonnuma
set_pmd_at
During hours of testing, one crashed with weird errors and while I have
no direct evidence, I suspect something like the race above happened.
This patch extends the page lock to being held until the pmd_numa is
cleared to prevent migration starting in parallel while the pmd_numa is
being cleared. It also flushes the old pmd entry and orders pagetable
insertion before rmap insertion.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: <stable@kernel.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-9-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are three callers of task_numa_fault():
- do_huge_pmd_numa_page():
Accounts against the current node, not the node where the
page resides, unless we migrated, in which case it accounts
against the node we migrated to.
- do_numa_page():
Accounts against the current node, not the node where the
page resides, unless we migrated, in which case it accounts
against the node we migrated to.
- do_pmd_numa_page():
Accounts not at all when the page isn't migrated, otherwise
accounts against the node we migrated towards.
This seems wrong to me; all three sites should have the same
sementaics, furthermore we should accounts against where the page
really is, we already know where the task is.
So modify all three sites to always account; we did after all receive
the fault; and always account to where the page is after migration,
regardless of success.
They all still differ on when they clear the PTE/PMD; ideally that
would get sorted too.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: <stable@kernel.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-8-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
THP migrations are serialised by the page lock but on its own that does
not prevent THP splits. If the page is split during THP migration then
the pmd_same checks will prevent page table corruption but the unlock page
and other fix-ups potentially will cause corruption. This patch takes the
anon_vma lock to prevent parallel splits during migration.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: <stable@kernel.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-7-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The locking for migrating THP is unusual. While normal page migration
prevents parallel accesses using a migration PTE, THP migration relies on
a combination of the page_table_lock, the page lock and the existance of
the NUMA hinting PTE to guarantee safety but there is a bug in the scheme.
If a THP page is currently being migrated and another thread traps a
fault on the same page it checks if the page is misplaced. If it is not,
then pmd_numa is cleared. The problem is that it checks if the page is
misplaced without holding the page lock meaning that the racing thread
can be migrating the THP when the second thread clears the NUMA bit
and faults a stale page.
This patch checks if the page is potentially being migrated and stalls
using the lock_page if it is potentially being migrated before checking
if the page is misplaced or not.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: <stable@kernel.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-6-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If another task handled a hinting fault in parallel then do not double
account for it.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: <stable@kernel.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-5-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move all kmemleak calls into hook functions, and make it so
that all hooks (both inside and outside of #ifdef CONFIG_SLUB_DEBUG)
call the appropriate kmemleak routines. This allows for kmemleak
to be configured independently of slub debug features.
It also fixes a bug where kmemleak was only partially enabled in some
configurations.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Roman Bobniev <Roman.Bobniev@sonymobile.com>
Signed-off-by: Tim Bird <tim.bird@sonymobile.com>
Signed-off-by: Pekka Enberg <penberg@iki.fi>
Now, bufctl is not proper name to this array.
So change it.
Acked-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Pekka Enberg <penberg@iki.fi>
Now, virt_to_page(page->s_mem) is same as the page,
because slab use this structure for management.
So remove useless statement.
Acked-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Pekka Enberg <penberg@iki.fi>
Now, there are a few field in struct slab, so we can overload these
over struct page. This will save some memory and reduce cache footprint.
After this change, slabp_cache and slab_size no longer related to
a struct slab, so rename them as freelist_cache and freelist_size.
These changes are just mechanical ones and there is no functional change.
Acked-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Pekka Enberg <penberg@iki.fi>
Now, free in struct slab is same meaning as inuse.
So, remove both and replace them with active.
Acked-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Pekka Enberg <penberg@iki.fi>
It's useless now, so remove it.
Acked-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Pekka Enberg <penberg@iki.fi>
Now, we changed the management method of free objects of the slab and
there is no need to use special value, BUFCTL_END, BUFCTL_FREE and
BUFCTL_ACTIVE. So remove them.
Acked-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Pekka Enberg <penberg@iki.fi>
Current free objects management method of the slab is weird, because
it touch random position of the array of kmem_bufctl_t when we try to
get free object. See following example.
struct slab's free = 6
kmem_bufctl_t array: 1 END 5 7 0 4 3 2
To get free objects, we access this array with following pattern.
6 -> 3 -> 7 -> 2 -> 5 -> 4 -> 0 -> 1 -> END
If we have many objects, this array would be larger and be not in the same
cache line. It is not good for performance.
We can do same thing through more easy way, like as the stack.
Only thing we have to do is to maintain stack top to free object. I use
free field of struct slab for this purpose. After that, if we need to get
an object, we can get it at stack top and manipulate top pointer.
That's all. This method already used in array_cache management.
Following is an access pattern when we use this method.
struct slab's free = 0
kmem_bufctl_t array: 6 3 7 2 5 4 0 1
To get free objects, we access this array with following pattern.
0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7
This may help cache line footprint if slab has many objects, and,
in addition, this makes code much much simpler.
Acked-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Pekka Enberg <penberg@iki.fi>
If we use 'struct page' of first page as 'struct slab', there is no
advantage not to use __GFP_COMP. So use __GFP_COMP flag for all the cases.
Acked-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Pekka Enberg <penberg@iki.fi>
This is trivial change, just use well-defined macro.
Acked-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Pekka Enberg <penberg@iki.fi>
With build-time size checking, we can overload the RCU head over the LRU
of struct page to free pages of a slab in rcu context. This really help to
implement to overload the struct slab over the struct page and this
eventually reduce memory usage and cache footprint of the SLAB.
Acked-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Pekka Enberg <penberg@iki.fi>
We can get cachep using page in struct slab_rcu, so remove it.
Acked-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Pekka Enberg <penberg@iki.fi>
We can get nodeid using address translation, so this field is not useful.
Therefore, remove it.
Acked-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Pekka Enberg <penberg@iki.fi>
Now there is no user colouroff, so remove it.
Acked-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Pekka Enberg <penberg@iki.fi>
It is more understandable that kmem_getpages() return struct page.
And, with this, we can reduce one translation from virt addr to page and
makes better code than before. Below is a change of this patch.
* Before
text data bss dec hex filename
22123 23434 4 45561 b1f9 mm/slab.o
* After
text data bss dec hex filename
22074 23434 4 45512 b1c8 mm/slab.o
And this help following patch to remove struct slab's colouroff.
Acked-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Pekka Enberg <penberg@iki.fi>
We checked pfmemalloc by slab unit, not page unit. You can see this
in is_slab_pfmemalloc(). So other pages don't need to be set/cleared
pfmemalloc.
And, therefore we should check pfmemalloc in page flag of first page,
but current implementation don't do that. virt_to_head_page(obj) just
return 'struct page' of that object, not one of first page, since the SLAB
don't use __GFP_COMP when CONFIG_MMU. To get 'struct page' of first page,
we first get a slab and try to get it via virt_to_head_page(slab->s_mem).
Acked-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Pekka Enberg <penberg@iki.fi>
Conflicts:
drivers/net/usb/qmi_wwan.c
include/net/dst.h
Trivial merge conflicts, both were overlapping changes.
Signed-off-by: David S. Miller <davem@davemloft.net>
Replace the pointers in struct cg_proto with actual data fields and kill
struct tcp_memcontrol as it is not fully redundant.
This removes a confusing, unnecessary layer of abstraction.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Revert commit 1ecfd533f4 ("mm/mremap.c: call pud_free() after fail
calling pmd_alloc()").
The original code was correct: pud_alloc(), pmd_alloc(), pte_alloc_map()
ensure that the pud, pmd, pt is already allocated, and seldom do they
need to allocate; on failure, upper levels are freed if appropriate by
the subsequent do_munmap(). Whereas commit 1ecfd533f4 did an
unconditional pud_free() of a most-likely still-in-use pud: saved only
by the near-impossiblity of pmd_alloc() failing.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Chen Gang <gang.chen@asianux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Occasionally we hit the BUG_ON(pmd_trans_huge(*pmd)) at the end of
__split_huge_page_pmd(): seen when doing madvise(,,MADV_DONTNEED).
It's invalid: we don't always have down_write of mmap_sem there: a racing
do_huge_pmd_wp_page() might have copied-on-write to another huge page
before our split_huge_page() got the anon_vma lock.
Forget the BUG_ON, just go back and try again if this happens.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix race between swapoff and swapon. Swapoff used old_block_size from
swap_info outside of swapon_mutex so it could be overwritten by
concurrent swapon.
The race has visible effect only if more than one swap block device
exists with different block sizes (e.g. /dev/sda1 with block size 4096
and /dev/sdb1 with 512). In such case it leads to setting the blocksize
of swapped off device with wrong blocksize.
The bug can be triggered with multiple concurrent swapoff and swapon:
0. Swap for some device is on.
1. swapoff:
First the swapoff is called on this device and "struct swap_info_struct
*p" is assigned. This is done under swap_lock however this lock is
released for the call try_to_unuse().
2. swapon:
After the assignment above (and before acquiring swapon_mutex &
swap_lock by swapoff) the swapon is called on the same device.
The p->old_block_size is assigned to the value of block_size the device.
This block size should be the same as previous but sometimes it is not.
The swapon ends successfully.
3. swapoff:
Swapoff resumes, grabs the locks and mutex and continues to disable this
swap device. Now it sets the block size to value taken from swap_info
which was overwritten by swapon in 2.
Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com>
Reported-by: Weijie Yang <weijie.yang.kh@gmail.com>
Cc: Bob Liu <bob.liu@oracle.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Shaohua Li <shli@fusionio.com>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Toralf runs trinity on UML/i386. After some time it hangs and the last
message line is
BUG: soft lockup - CPU#0 stuck for 22s! [trinity-child0:1521]
It's found that pages_dirtied becomes very large. More than 1000000000
pages in this case:
period = HZ * pages_dirtied / task_ratelimit;
BUG_ON(pages_dirtied > 2000000000);
BUG_ON(pages_dirtied > 1000000000); <---------
UML debug printf shows that we got negative pause here:
ick: pause : -984
ick: pages_dirtied : 0
ick: task_ratelimit: 0
pause:
+ if (pause < 0) {
+ extern int printf(char *, ...);
+ printf("ick : pause : %li\n", pause);
+ printf("ick: pages_dirtied : %lu\n", pages_dirtied);
+ printf("ick: task_ratelimit: %lu\n", task_ratelimit);
+ BUG_ON(1);
+ }
trace_balance_dirty_pages(bdi,
Since pause is bounded by [min_pause, max_pause] where min_pause is also
bounded by max_pause. It's suspected and demonstrated that the
max_pause calculation goes wrong:
ick: pause : -717
ick: min_pause : -177
ick: max_pause : -717
ick: pages_dirtied : 14
ick: task_ratelimit: 0
The problem lies in the two "long = unsigned long" assignments in
bdi_max_pause() which might go negative if the highest bit is 1, and the
min_t(long, ...) check failed to protect it falling under 0. Fix all of
them by using "unsigned long" throughout the function.
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Reported-by: Toralf Förster <toralf.foerster@gmx.de>
Tested-by: Toralf Förster <toralf.foerster@gmx.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Richard Weinberger <richard@nod.at>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Buffer allocation has a very crude indefinite loop around waking the
flusher threads and performing global NOFS direct reclaim because it can
not handle allocation failures.
The most immediate problem with this is that the allocation may fail due
to a memory cgroup limit, where flushers + direct reclaim might not make
any progress towards resolving the situation at all. Because unlike the
global case, a memory cgroup may not have any cache at all, only
anonymous pages but no swap. This situation will lead to a reclaim
livelock with insane IO from waking the flushers and thrashing unrelated
filesystem cache in a tight loop.
Use __GFP_NOFAIL allocations for buffers for now. This makes sure that
any looping happens in the page allocator, which knows how to
orchestrate kswapd, direct reclaim, and the flushers sensibly. It also
allows memory cgroups to detect allocations that can't handle failure
and will allow them to ultimately bypass the limit if reclaim can not
make progress.
Reported-by: azurIt <azurit@pobox.sk>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 3812c8c8f3 ("mm: memcg: do not trap chargers with full
callstack on OOM") assumed that only a few places that can trigger a
memcg OOM situation do not return VM_FAULT_OOM, like optional page cache
readahead. But there are many more and it's impractical to annotate
them all.
First of all, we don't want to invoke the OOM killer when the failed
allocation is gracefully handled, so defer the actual kill to the end of
the fault handling as well. This simplifies the code quite a bit for
added bonus.
Second, since a failed allocation might not be the abrupt end of the
fault, the memcg OOM handler needs to be re-entrant until the fault
finishes for subsequent allocation attempts. If an allocation is
attempted after the task already OOMed, allow it to bypass the limit so
that it can quickly finish the fault and invoke the OOM killer.
Reported-by: azurIt <azurit@pobox.sk>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 11feeb4980 ("kvm: optimize away THP checks in
kvm_is_mmio_pfn()") introduced a memory leak when KVM is run on gigantic
compound pages.
That commit depends on the assumption that PG_reserved is identical for
all head and tail pages of a compound page. So that if get_user_pages
returns a tail page, we don't need to check the head page in order to
know if we deal with a reserved page that requires different
refcounting.
The assumption that PG_reserved is the same for head and tail pages is
certainly correct for THP and regular hugepages, but gigantic hugepages
allocated through bootmem don't clear the PG_reserved on the tail pages
(the clearing of PG_reserved is done later only if the gigantic hugepage
is freed).
This patch corrects the gigantic compound page initialization so that we
can retain the optimization in 11feeb4980. The cacheline was already
modified in order to set PG_tail so this won't affect the boot time of
large memory systems.
[akpm@linux-foundation.org: tweak comment layout and grammar]
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: andy123 <ajs124.ajs124@gmail.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Acked-by: Rafael Aquini <aquini@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
zswap_tree is not freed when swapoff, and it got re-kmalloced in swapon,
so a memory leak occurs.
Free the memory of zswap_tree in zswap_frontswap_invalidate_area().
Signed-off-by: Weijie Yang <weijie.yang@samsung.com>
Reviewed-by: Bob Liu <bob.liu@oracle.com>
Cc: Minchan Kim <minchan@kernel.org>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Cc: <stable@vger.kernel.org>
From: Weijie Yang <weijie.yang@samsung.com>
Subject: mm/zswap: bugfix: memory leak when invalidate and reclaim occur concurrently
Consider the following scenario:
thread 0: reclaim entry x (get refcount, but not call zswap_get_swap_cache_page)
thread 1: call zswap_frontswap_invalidate_page to invalidate entry x.
finished, entry x and its zbud is not freed as its refcount != 0
now, the swap_map[x] = 0
thread 0: now call zswap_get_swap_cache_page
swapcache_prepare return -ENOENT because entry x is not used any more
zswap_get_swap_cache_page return ZSWAP_SWAPCACHE_NOMEM
zswap_writeback_entry do nothing except put refcount
Now, the memory of zswap_entry x and its zpage leak.
Modify:
- check the refcount in fail path, free memory if it is not referenced.
- use ZSWAP_SWAPCACHE_FAIL instead of ZSWAP_SWAPCACHE_NOMEM as the fail path
can be not only caused by nomem but also by invalidate.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Weijie Yang <weijie.yang@samsung.com>
Reviewed-by: Bob Liu <bob.liu@oracle.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: <stable@vger.kernel.org>
Acked-by: Seth Jennings <sjenning@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If page migration is turned on in config and the page is migrating, we
may lose the soft dirty bit. If fork and mprotect are called on
migrating pages (once migration is complete) pages do not obtain the
soft dirty bit in the correspond pte entries. Fix it adding an
appropriate test on swap entries.
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We should clear the page's private flag when returing the page to the
hugepage pool. Otherwise, marked hugepage can be allocated to the user
who tries to allocate the non-reserved hugepage. If this user fail to
map this hugepage, he would try to return the page to the hugepage pool.
Since this page has a private flag, resv_huge_pages would mistakenly
increase. This patch fixes this situation.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <davidlohr.bueso@hp.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
for_each_online_cpu() needs the protection of {get,put}_online_cpus() so
cpu_online_mask doesn't change during the iteration.
cpu_hotplug.lock is held while a cpu is going down, it's a coarse lock
that is used kernel-wide to synchronize cpu hotplug activity. Memcg has
a cpu hotplug notifier, called while there may not be any cpu hotplug
refcounts, which drains per-cpu event counts to memcg->nocpu_base.events
to maintain a cumulative event count as cpus disappear. Without
get_online_cpus() in mem_cgroup_read_events(), it's possible to account
for the event count on a dying cpu twice, and this value may be
significantly large.
In fact, all memcg->pcp_counter_lock use should be nested by
{get,put}_online_cpus().
This fixes that issue and ensures the reported statistics are not vastly
over-reported during cpu hotplug.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull SLAB fix from Pekka Enberg:
"A regression fix for overly eager slab cache name checks"
* 'slab/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux:
slab_common: Do not check for duplicate slab names
Shared faults can lead to lots of unnecessary page migrations,
slowing down the system, and causing private faults to hit the
per-pgdat migration ratelimit.
This patch adds sysctl numa_balancing_migrate_deferred, which specifies
how many shared page migrations to skip unconditionally, after each page
migration that is skipped because it is a shared fault.
This reduces the number of page migrations back and forth in
shared fault situations. It also gives a strong preference to
the tasks that are already running where most of the memory is,
and to moving the other tasks to near the memory.
Testing this with a much higher scan rate than the default
still seems to result in fewer page migrations than before.
Memory seems to be somewhat better consolidated than previously,
with multi-instance specjbb runs on a 4 node system.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-62-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With the scan rate code working (at least for multi-instance specjbb),
the large hammer that is "sched: Do not migrate memory immediately after
switching node" can be replaced with something smarter. Revert temporarily
migration disabling and all traces of numa_migrate_seq.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-61-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Adjust numa_scan_period in task_numa_placement, depending on how much
useful work the numa code can do. The more local faults there are in a
given scan window the longer the period (and hence the slower the scan rate)
during the next window. If there are excessive shared faults then the scan
period will decrease with the amount of scaling depending on whether the
ratio of shared/private faults. If the preferred node changes then the
scan rate is reset to recheck if the task is properly placed.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-59-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Due to the way the pid is truncated, and tasks are moved between
CPUs by the scheduler, it is possible for the current task_numa_fault
to group together tasks that do not actually share memory together.
This patch adds a few easy sanity checks to task_numa_fault, joining
tasks together if they share the same tsk->mm, or if the fault was on
a page with an elevated mapcount, in a shared VMA.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-57-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With the THP migration races closed it is still possible to occasionally
see corruption. The problem is related to handling PMD pages in batch.
When a page fault is handled it can be assumed that the page being
faulted will also be flushed from the TLB. The same flushing does not
happen when handling PMD pages in batch. Fixing is straight forward but
there are a number of reasons not to
1. Multiple TLB flushes may have to be sent depending on what pages get
migrated
2. The handling of PMDs in batch means that faults get accounted to
the task that is handling the fault. While care is taken to only
mark PMDs where the last CPU and PID match it can still have problems
due to PID truncation when matching PIDs.
3. Batching on the PMD level may reduce faults but setting pmd_numa
requires taking a heavy lock that can contend with THP migration
and handling the fault requires the release/acquisition of the PTL
for every page migrated. It's still pretty heavy.
PMD batch handling is not something that people ever have been happy
with. This patch removes it and later patches will deal with the
additional fault overhead using more installigent migrate rate adaption.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-48-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
And here's a little something to make sure not the whole world ends up
in a single group.
As while we don't migrate shared executable pages, we do scan/fault on
them. And since everybody links to libc, everybody ends up in the same
group.
Suggested-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1381141781-10992-47-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
After page migration, the new page has the nidpid unset. This makes
every fault on a recently migrated page look like a first numa fault,
leading to another page migration.
Copying over the nidpid at page migration time should prevent erroneous
migrations of recently migrated pages.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-46-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While parallel applications tend to align their data on the cache
boundary, they tend not to align on the page or THP boundary.
Consequently tasks that partition their data can still "false-share"
pages presenting a problem for optimal NUMA placement.
This patch uses NUMA hinting faults to chain tasks together into
numa_groups. As well as storing the NID a task was running on when
accessing a page a truncated representation of the faulting PID is
stored. If subsequent faults are from different PIDs it is reasonable
to assume that those two tasks share a page and are candidates for
being grouped together. Note that this patch makes no scheduling
decisions based on the grouping information.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1381141781-10992-44-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Change the per page last fault tracking to use cpu,pid instead of
nid,pid. This will allow us to try and lookup the alternate task more
easily. Note that even though it is the cpu that is store in the page
flags that the mpol_misplaced decision is still based on the node.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1381141781-10992-43-git-send-email-mgorman@suse.de
[ Fixed build failure on 32-bit systems. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Base page PMD faulting is meant to batch handle NUMA hinting faults from
PTEs. However, even is no PTE faults would ever be handled within a
range the kernel still traps PMD hinting faults. This patch avoids the
overhead.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-37-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is a 90% regression observed with a large Oracle performance test
on a 4 node system. Profiles indicated that the overhead was due to
contention on sp_lock when looking up shared memory policies. These
policies do not have the appropriate flags to allow them to be
automatically balanced so trapping faults on them is pointless. This
patch skips VMAs that do not have MPOL_F_MOF set.
[riel@redhat.com: Initial patch]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reported-and-tested-by: Joe Mario <jmario@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-32-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The load balancer can move tasks between nodes and does not take NUMA
locality into account. With automatic NUMA balancing this may result in the
tasks working set being migrated to the new node. However, as the fault
buffer will still store faults from the old node the schduler may decide to
reset the preferred node and migrate the task back resulting in more
migrations.
The ideal would be that the scheduler did not migrate tasks with a heavy
memory footprint but this may result nodes being overloaded. We could
also discard the fault information on task migration but this would still
cause all the tasks working set to be migrated. This patch simply avoids
migrating the memory for a short time after a task is migrated.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-31-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Ideally it would be possible to distinguish between NUMA hinting faults that
are private to a task and those that are shared. If treated identically
there is a risk that shared pages bounce between nodes depending on
the order they are referenced by tasks. Ultimately what is desirable is
that task private pages remain local to the task while shared pages are
interleaved between sharing tasks running on different nodes to give good
average performance. This is further complicated by THP as even
applications that partition their data may not be partitioning on a huge
page boundary.
To start with, this patch assumes that multi-threaded or multi-process
applications partition their data and that in general the private accesses
are more important for cpu->memory locality in the general case. Also,
no new infrastructure is required to treat private pages properly but
interleaving for shared pages requires additional infrastructure.
To detect private accesses the pid of the last accessing task is required
but the storage requirements are a high. This patch borrows heavily from
Ingo Molnar's patch "numa, mm, sched: Implement last-CPU+PID hash tracking"
to encode some bits from the last accessing task in the page flags as
well as the node information. Collisions will occur but it is better than
just depending on the node information. Node information is then used to
determine if a page needs to migrate. The PID information is used to detect
private/shared accesses. The preferred NUMA node is selected based on where
the maximum number of approximately private faults were measured. Shared
faults are not taken into consideration for a few reasons.
First, if there are many tasks sharing the page then they'll all move
towards the same node. The node will be compute overloaded and then
scheduled away later only to bounce back again. Alternatively the shared
tasks would just bounce around nodes because the fault information is
effectively noise. Either way accounting for shared faults the same as
private faults can result in lower performance overall.
The second reason is based on a hypothetical workload that has a small
number of very important, heavily accessed private pages but a large shared
array. The shared array would dominate the number of faults and be selected
as a preferred node even though it's the wrong decision.
The third reason is that multiple threads in a process will race each
other to fault the shared page making the fault information unreliable.
Signed-off-by: Mel Gorman <mgorman@suse.de>
[ Fix complication error when !NUMA_BALANCING. ]
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-30-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently automatic NUMA balancing is unable to distinguish between false
shared versus private pages except by ignoring pages with an elevated
page_mapcount entirely. This avoids shared pages bouncing between the
nodes whose task is using them but that is ignored quite a lot of data.
This patch kicks away the training wheels in preparation for adding support
for identifying shared/private pages is now in place. The ordering is so
that the impact of the shared/private detection can be easily measured. Note
that the patch does not migrate shared, file-backed within vmas marked
VM_EXEC as these are generally shared library pages. Migrating such pages
is not beneficial as there is an expectation they are read-shared between
caches and iTLB and iCache pressure is generally low.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-28-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Ideally it would be possible to distinguish between NUMA hinting faults
that are private to a task and those that are shared. This patch prepares
infrastructure for separately accounting shared and private faults by
allocating the necessary buffers and passing in relevant information. For
now, all faults are treated as private and detection will be introduced
later.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-26-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The zero page is not replicated between nodes and is often shared between
processes. The data is read-only and likely to be cached in local CPUs
if heavily accessed meaning that the remote memory access cost is less
of a concern. This patch prevents trapping faults on the zero pages. For
tasks using the zero page this will reduce the number of PTE updates,
TLB flushes and hinting faults.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
[ Correct use of is_huge_zero_page]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-13-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
NUMA PTE scanning is expensive both in terms of the scanning itself and
the TLB flush if there are any updates. The TLB flush is avoided if no
PTEs are updated but there is a bug where transhuge PMDs are considered
to be updated even if they were already pmd_numa. This patch addresses
the problem and TLB flushes should be reduced.
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-12-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
NUMA PTE scanning is expensive both in terms of the scanning itself and
the TLB flush if there are any updates. Currently non-present PTEs are
accounted for as an update and incurring a TLB flush where it is only
necessary for anonymous migration entries. This patch addresses the
problem and should reduce TLB flushes.
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-11-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A THP PMD update is accounted for as 512 pages updated in vmstat. This is
large difference when estimating the cost of automatic NUMA balancing and
can be misleading when comparing results that had collapsed versus split
THP. This patch addresses the accounting issue.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-10-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
THP migration uses the page lock to guard against parallel allocations
but there are cases like this still open
Task A Task B
--------------------- ---------------------
do_huge_pmd_numa_page do_huge_pmd_numa_page
lock_page
mpol_misplaced == -1
unlock_page
goto clear_pmdnuma
lock_page
mpol_misplaced == 2
migrate_misplaced_transhuge
pmd = pmd_mknonnuma
set_pmd_at
During hours of testing, one crashed with weird errors and while I have
no direct evidence, I suspect something like the race above happened.
This patch extends the page lock to being held until the pmd_numa is
cleared to prevent migration starting in parallel while the pmd_numa is
being cleared. It also flushes the old pmd entry and orders pagetable
insertion before rmap insertion.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-9-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are three callers of task_numa_fault():
- do_huge_pmd_numa_page():
Accounts against the current node, not the node where the
page resides, unless we migrated, in which case it accounts
against the node we migrated to.
- do_numa_page():
Accounts against the current node, not the node where the
page resides, unless we migrated, in which case it accounts
against the node we migrated to.
- do_pmd_numa_page():
Accounts not at all when the page isn't migrated, otherwise
accounts against the node we migrated towards.
This seems wrong to me; all three sites should have the same
sementaics, furthermore we should accounts against where the page
really is, we already know where the task is.
So modify all three sites to always account; we did after all receive
the fault; and always account to where the page is after migration,
regardless of success.
They all still differ on when they clear the PTE/PMD; ideally that
would get sorted too.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-8-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
THP migrations are serialised by the page lock but on its own that does
not prevent THP splits. If the page is split during THP migration then
the pmd_same checks will prevent page table corruption but the unlock page
and other fix-ups potentially will cause corruption. This patch takes the
anon_vma lock to prevent parallel splits during migration.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-7-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The locking for migrating THP is unusual. While normal page migration
prevents parallel accesses using a migration PTE, THP migration relies on
a combination of the page_table_lock, the page lock and the existance of
the NUMA hinting PTE to guarantee safety but there is a bug in the scheme.
If a THP page is currently being migrated and another thread traps a
fault on the same page it checks if the page is misplaced. If it is not,
then pmd_numa is cleared. The problem is that it checks if the page is
misplaced without holding the page lock meaning that the racing thread
can be migrating the THP when the second thread clears the NUMA bit
and faults a stale page.
This patch checks if the page is potentially being migrated and stalls
using the lock_page if it is potentially being migrated before checking
if the page is misplaced or not.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-6-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If another task handled a hinting fault in parallel then do not double
account for it.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-5-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fix a 80 column violation and a PTE vs PMD reference.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1381141781-10992-4-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull powerpc fixes from Ben Herrenschmidt:
"Here are a few powerpc fixes, all aimed at -stable, found in part
thanks to the ramping up of a major distro testing and in part thanks
to the LE guys hitting all sort interesting corner cases.
The most scary are probably the register clobber issues in
csum_partial_copy_generic(), especially since Anton even had a test
case for that thing, which didn't manage to hit the bugs :-)
Another highlight is that memory hotplug should work again with these
fixes.
Oh and the vio modalias one is worse than the cset implies as it
upsets distro installers, so I've been told at least, which is why I'm
shooting it to stable"
* 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc:
powerpc/tm: Switch out userspace PPR and DSCR sooner
powerpc/tm: Turn interrupts hard off in tm_reclaim()
powerpc/perf: Fix handling of FAB events
powerpc/vio: Fix modalias_show return values
powerpc/iommu: Use GFP_KERNEL instead of GFP_ATOMIC in iommu_init_table()
powerpc/sysfs: Disable writing to PURR in guest mode
powerpc: Restore registers on error exit from csum_partial_copy_generic()
powerpc: Fix parameter clobber in csum_partial_copy_generic()
powerpc: Fix memory hotplug with sparse vmemmap
Previous commit 46723bfa540... introduced a new config option
HAVE_BOOTMEM_INFO_NODE that ended up breaking memory hot-remove for ppc
when sparse vmemmap is not defined.
This patch defines HAVE_BOOTMEM_INFO_NODE for ppc and adds the call to
register_page_bootmem_info_node. Without this we get a BUG_ON for memory
hot remove in put_page_bootmem().
This also adds a stub for register_page_bootmem_memmap to allow ppc to build
with sparse vmemmap defined. Leaving this as a stub is fine since the same
vmemmap addresses are also handled in vmemmap_populate and as such are
properly mapped.
Signed-off-by: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
CC: <stable@vger.kernel.org> [v3.9+]
The lack of one reference count against poisoned page for hwpoison_inject
w/o hwpoison_filter enabled result in hwpoison detect -1 users still
referenced the page, however, the number should be 0 except the poison
handler held one after successfully unmap. This patch fix it by hold one
referenced count against poisoned page for hwpoison_inject w/ and w/o
hwpoison_filter enabled.
Before patch:
[ 71.902112] Injecting memory failure at pfn 224706
[ 71.902137] MCE 0x224706: dirty LRU page recovery: Failed
[ 71.902138] MCE 0x224706: dirty LRU page still referenced by -1 users
After patch:
[ 94.710860] Injecting memory failure at pfn 215b68
[ 94.710885] MCE 0x215b68: dirty LRU page recovery: Recovered
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the page is poisoned by software injection w/ MF_COUNT_INCREASED
flag, there is a false report during the 2nd attempt at page recovery
which is not truthful.
This patch fixes it by reporting the first attempt to try free buddy
page recovery if MF_COUNT_INCREASED is set.
Before patch:
[ 346.332041] Injecting memory failure at pfn 200010
[ 346.332189] MCE 0x200010: free buddy, 2nd try page recovery: Delayed
After patch:
[ 297.742600] Injecting memory failure at pfn 200010
[ 297.742941] MCE 0x200010: free buddy page recovery: Delayed
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
PageTransHuge() can't guarantee the page is a transparent huge page
since it returns true for both transparent huge and hugetlbfs pages.
This patch fixes it by checking the page is also !hugetlbfs page.
Before patch:
[ 121.571128] Injecting memory failure at pfn 23a200
[ 121.571141] MCE 0x23a200: huge page recovery: Delayed
[ 140.355100] MCE: Memory failure is now running on 0x23a200
After patch:
[ 94.290793] Injecting memory failure at pfn 23a000
[ 94.290800] MCE 0x23a000: huge page recovery: Delayed
[ 105.722303] MCE: Software-unpoisoned page 0x23a000
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
madvise_hwpoison won't check if the page is small page or huge page and
traverses in small page granularity against the range unconditionally,
which result in a printk flood "MCE xxx: already hardware poisoned" if
the page is a huge page.
This patch fixes it by using compound_order(compound_head(page)) for
huge page iterator.
Testcase:
#define _GNU_SOURCE
#include <stdlib.h>
#include <stdio.h>
#include <sys/mman.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/types.h>
#include <errno.h>
#define PAGES_TO_TEST 3
#define PAGE_SIZE 4096 * 512
int main(void)
{
char *mem;
int i;
mem = mmap(NULL, PAGES_TO_TEST * PAGE_SIZE,
PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB, 0, 0);
if (madvise(mem, PAGES_TO_TEST * PAGE_SIZE, MADV_HWPOISON) == -1)
return -1;
munmap(mem, PAGES_TO_TEST * PAGE_SIZE);
return 0;
}
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The function __munlock_pagevec_fill() introduced in commit 7a8010cd36
("mm: munlock: manual pte walk in fast path instead of
follow_page_mask()") uses pmd_addr_end() for restricting its operation
within current page table.
This is insufficient on architectures/configurations where pmd is folded
and pmd_addr_end() just returns the end of the full range to be walked.
In this case, it allows pte++ to walk off the end of a page table
resulting in unpredictable behaviour.
This patch fixes the function by using pgd_addr_end() and pud_addr_end()
before pmd_addr_end(), which will yield correct page table boundary on
all configurations. This is similar to what existing page walkers do
when walking each level of the page table.
Additionaly, the patch clarifies a comment for get_locked_pte() call in the
function.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Reviewed-by: Bob Liu <bob.liu@oracle.com>
Cc: Jörn Engel <joern@logfs.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michel Lespinasse <walken@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The "force" parameter in __blk_queue_bounce was being ignored, which
means that stable page snapshots are not always happening (on ext3).
This of course leads to DIF disks reporting checksum errors, so fix this
regression.
The regression was introduced in commit 6bc454d150 ("bounce: Refactor
__blk_queue_bounce to not use bi_io_vec")
Reported-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Kent Overstreet <koverstreet@google.com>
Cc: <stable@vger.kernel.org> [3.10+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We've been getting warnings about an excessive amount of time spent
allocating pages for migration during memory compaction without
scheduling. isolate_freepages_block() already periodically checks for
contended locks or the need to schedule, but isolate_freepages() never
does.
When a zone is massively long and no suitable targets can be found, this
iteration can be quite expensive without ever doing cond_resched().
Check periodically for the need to reschedule while the compaction free
scanner iterates.
Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit cea27eb2a2 ("mm/memory-hotplug: fix lowmem count
overflow when offline pages").
The fixed bug by commit cea27eb was fixed to another way by commit
3dcc0571cd ("mm: correctly update zone->managed_pages"). That commit
enhances memory_hotplug.c to adjust totalhigh_pages when hot-removing
memory, for details please refer to:
http://marc.info/?l=linux-mm&m=136957578620221&w=2
As a result, commit cea27eb2a2 currently causes duplicated decreasing
of totalhigh_pages, thus the revert.
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Jiang Liu <liuj97@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
SLUB can alias multiple slab kmem_create_requests to one slab cache to save
memory and increase the cache hotness. As a result the name of the slab can be
stale. Only check the name for duplicates if we are in debug mode where we do
not merge multiple caches.
This fixes the following problem reported by Jonathan Brassow:
The problem with kmem_cache* is this:
*) Assume CONFIG_SLUB is set
1) kmem_cache_create(name="foo-a")
- creates new kmem_cache structure
2) kmem_cache_create(name="foo-b")
- If identical cache characteristics, it will be merged with the previously
created cache associated with "foo-a". The cache's refcount will be
incremented and an alias will be created via sysfs_slab_alias().
3) kmem_cache_destroy(<ptr>)
- Attempting to destroy cache associated with "foo-a", but instead the
refcount is simply decremented. I don't even think the sysfs aliases are
ever removed...
4) kmem_cache_create(name="foo-a")
- This FAILS because kmem_cache_sanity_check colides with the existing
name ("foo-a") associated with the non-removed cache.
This is a problem for RAID (specifically dm-raid) because the name used
for the kmem_cache_create is ("raid%d-%p", level, mddev). If the cache
persists for long enough, the memory address of an old mddev will be
reused for a new mddev - causing an identical formulation of the cache
name. Even though kmem_cache_destory had long ago been used to delete
the old cache, the merging of caches has cause the name and cache of that
old instance to be preserved and causes a colision (and thus failure) in
kmem_cache_create(). I see this regularly in my testing.
Reported-by: Jonathan Brassow <jbrassow@redhat.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
There is a loop in do_mlockall() that lacks a preemption point, which
means that the following can happen on non-preemptible builds of the
kernel. Dave Jones reports:
"My fuzz tester keeps hitting this. Every instance shows the non-irq
stack came in from mlockall. I'm only seeing this on one box, but
that has more ram (8gb) than my other machines, which might explain
it.
INFO: rcu_preempt self-detected stall on CPU { 3} (t=6500 jiffies g=470344 c=470343 q=0)
sending NMI to all CPUs:
NMI backtrace for cpu 3
CPU: 3 PID: 29664 Comm: trinity-child2 Not tainted 3.11.0-rc1+ #32
Call Trace:
lru_add_drain_all+0x15/0x20
SyS_mlockall+0xa5/0x1a0
tracesys+0xdd/0xe2"
This commit addresses this problem by inserting the required preemption
point.
Reported-by: Dave Jones <davej@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Revert commit 3b38722efd ("memcg, vmscan: integrate soft reclaim
tighter with zone shrinking code")
I merged this prematurely - Michal and Johannes still disagree about the
overall design direction and the future remains unclear.
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Revert commit e883110aad ("memcg: get rid of soft-limit tree
infrastructure")
I merged this prematurely - Michal and Johannes still disagree about the
overall design direction and the future remains unclear.
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Revert commit a5b7c87f92 ("vmscan, memcg: do softlimit reclaim also
for targeted reclaim")
I merged this prematurely - Michal and Johannes still disagree about the
overall design direction and the future remains unclear.
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Revert commit de57780dc6 ("memcg: enhance memcg iterator to support
predicates")
I merged this prematurely - Michal and Johannes still disagree about the
overall design direction and the future remains unclear.
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Revert commit 7d910c054b ("memcg: track children in soft limit excess
to improve soft limit")
I merged this prematurely - Michal and Johannes still disagree about the
overall design direction and the future remains unclear.
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Revert commit e839b6a1c8 ("memcg, vmscan: do not attempt soft limit
reclaim if it would not scan anything")
I merged this prematurely - Michal and Johannes still disagree about the
overall design direction and the future remains unclear.
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Revert commit 1be171d60b ("memcg: track all children over limit in the
root")
I merged this prematurely - Michal and Johannes still disagree about the
overall design direction and the future remains unclear.
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Revert commit e975de998b ("memcg, vmscan: do not fall into reclaim-all
pass too quickly")
I merged this prematurely - Michal and Johannes still disagree about the
overall design direction and the future remains unclear.
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now memcg uses cgroup id instead of css id. Update some comments and
set mem_cgroup_subsys->use_id to 0.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Tejun Heo <tj@kernel.org>
memcg requires the cgroup id to be smaller than 65536.
This is a preparation to kill css id.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Tejun Heo <tj@kernel.org>
Use cgroup id instead of css id. This is a preparation to kill css id.
Note, as memcg treat 0 as an invalid id, while cgroup id starts with 0,
we define memcg_id == cgroup_id + 1.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Tejun Heo <tj@kernel.org>
This is a preparation to kill css_id.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Tejun Heo <tj@kernel.org>
If memory allocation of in pcpu_embed_first_chunk() fails, the
allocated memory is not released correctly. In the release loop also
the non-allocated elements are released which leads to the following
kernel BUG on systems with very little memory:
[ 0.000000] kernel BUG at mm/bootmem.c:307!
[ 0.000000] illegal operation: 0001 [#1] PREEMPT SMP DEBUG_PAGEALLOC
[ 0.000000] Modules linked in:
[ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 3.10.0 #22
[ 0.000000] task: 0000000000a20ae0 ti: 0000000000a08000 task.ti: 0000000000a08000
[ 0.000000] Krnl PSW : 0400000180000000 0000000000abda7a (__free+0x116/0x154)
[ 0.000000] R:0 T:1 IO:0 EX:0 Key:0 M:0 W:0 P:0 AS:0 CC:0 PM:0 EA:3
...
[ 0.000000] [<0000000000abdce2>] mark_bootmem_node+0xde/0xf0
[ 0.000000] [<0000000000abdd9c>] mark_bootmem+0xa8/0x118
[ 0.000000] [<0000000000abcbba>] pcpu_embed_first_chunk+0xe7a/0xf0c
[ 0.000000] [<0000000000abcc96>] setup_per_cpu_areas+0x4a/0x28c
To fix the problem now only allocated elements are released. This then
leads to the correct kernel panic:
[ 0.000000] Kernel panic - not syncing: Failed to initialize percpu areas.
...
[ 0.000000] Call Trace:
[ 0.000000] ([<000000000011307e>] show_trace+0x132/0x150)
[ 0.000000] [<0000000000113160>] show_stack+0xc4/0xd4
[ 0.000000] [<00000000007127dc>] dump_stack+0x74/0xd8
[ 0.000000] [<00000000007123fe>] panic+0xea/0x264
[ 0.000000] [<0000000000b14814>] setup_per_cpu_areas+0x5c/0x28c
tj: Flipped if conditional so that it doesn't need "continue".
Signed-off-by: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Pull SLAB update from Pekka Enberg:
"Nothing terribly exciting here apart from Christoph's kmalloc
unification patches that brings sl[aou]b implementations closer to
each other"
* 'slab/next' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux:
slab: Use correct GFP_DMA constant
slub: remove verify_mem_not_deleted()
mm/sl[aou]b: Move kmallocXXX functions to common code
mm, slab_common: add 'unlikely' to size check of kmalloc_slab()
mm/slub.c: beautify code for removing redundancy 'break' statement.
slub: Remove unnecessary page NULL check
slub: don't use cpu partial pages on UP
mm/slub: beautify code for 80 column limitation and tab alignment
mm/slub: remove 'per_cpu' which is useless variable
Pull aio changes from Ben LaHaise:
"First off, sorry for this pull request being late in the merge window.
Al had raised a couple of concerns about 2 items in the series below.
I addressed the first issue (the race introduced by Gu's use of
mm_populate()), but he has not provided any further details on how he
wants to rework the anon_inode.c changes (which were sent out months
ago but have yet to be commented on).
The bulk of the changes have been sitting in the -next tree for a few
months, with all the issues raised being addressed"
* git://git.kvack.org/~bcrl/aio-next: (22 commits)
aio: rcu_read_lock protection for new rcu_dereference calls
aio: fix race in ring buffer page lookup introduced by page migration support
aio: fix rcu sparse warnings introduced by ioctx table lookup patch
aio: remove unnecessary debugging from aio_free_ring()
aio: table lookup: verify ctx pointer
staging/lustre: kiocb->ki_left is removed
aio: fix error handling and rcu usage in "convert the ioctx list to table lookup v3"
aio: be defensive to ensure request batching is non-zero instead of BUG_ON()
aio: convert the ioctx list to table lookup v3
aio: double aio_max_nr in calculations
aio: Kill ki_dtor
aio: Kill ki_users
aio: Kill unneeded kiocb members
aio: Kill aio_rw_vect_retry()
aio: Don't use ctx->tail unnecessarily
aio: io_cancel() no longer returns the io_event
aio: percpu ioctx refcount
aio: percpu reqs_available
aio: reqs_active -> reqs_available
aio: fix build when migration is disabled
...
Merge more patches from Andrew Morton:
"The rest of MM. Plus one misc cleanup"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (35 commits)
mm/Kconfig: add MMU dependency for MIGRATION.
kernel: replace strict_strto*() with kstrto*()
mm, thp: count thp_fault_fallback anytime thp fault fails
thp: consolidate code between handle_mm_fault() and do_huge_pmd_anonymous_page()
thp: do_huge_pmd_anonymous_page() cleanup
thp: move maybe_pmd_mkwrite() out of mk_huge_pmd()
mm: cleanup add_to_page_cache_locked()
thp: account anon transparent huge pages into NR_ANON_PAGES
truncate: drop 'oldsize' truncate_pagecache() parameter
mm: make lru_add_drain_all() selective
memcg: document cgroup dirty/writeback memory statistics
memcg: add per cgroup writeback pages accounting
memcg: check for proper lock held in mem_cgroup_update_page_stat
memcg: remove MEMCG_NR_FILE_MAPPED
memcg: reduce function dereference
memcg: avoid overflow caused by PAGE_ALIGN
memcg: rename RESOURCE_MAX to RES_COUNTER_MAX
memcg: correct RESOURCE_MAX to ULLONG_MAX
mm: memcg: do not trap chargers with full callstack on OOM
mm: memcg: rework and document OOM waiting and wakeup
...
MIGRATION must depend on MMU, or allmodconfig for the nommu sh
architecture fails to build:
CC mm/migrate.o
mm/migrate.c: In function 'remove_migration_pte':
mm/migrate.c:134:3: error: implicit declaration of function 'pmd_trans_huge' [-Werror=implicit-function-declaration]
if (pmd_trans_huge(*pmd))
^
mm/migrate.c:149:2: error: implicit declaration of function 'is_swap_pte' [-Werror=implicit-function-declaration]
if (!is_swap_pte(pte))
^
...
Also let CMA depend on MMU, or when NOMMU, if we select CMA, it will
select MIGRATION by force.
Signed-off-by: Chen Gang <gang.chen@asianux.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, thp_fault_fallback in vmstat only gets incremented if a
hugepage allocation fails. If current's memcg hits its limit or the page
fault handler returns an error, it is incorrectly accounted as a
successful thp_fault_alloc.
Count thp_fault_fallback anytime the page fault handler falls back to
using regular pages and only count thp_fault_alloc when a hugepage has
actually been faulted.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Minor cleanup: unindent most code of the fucntion by inverting one
condition. It's preparation for the next patch.
No functional changes.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Hugh Dickins <hughd@google.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's confusing that mk_huge_pmd() has semantics different from mk_pte() or
mk_pmd(). I spent some time on debugging issue cased by this
inconsistency.
Let's move maybe_pmd_mkwrite() out of mk_huge_pmd() and adjust prototype
to match mk_pte().
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Hugh Dickins <hughd@google.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We use NR_ANON_PAGES as base for reporting AnonPages to user. There's
not much sense in not accounting transparent huge pages there, but add
them on printing to user.
Let's account transparent huge pages in NR_ANON_PAGES in the first place.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Hugh Dickins <hughd@google.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Ning Qu <quning@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
truncate_pagecache() doesn't care about old size since commit
cedabed49b ("vfs: Fix vmtruncate() regression"). Let's drop it.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
make lru_add_drain_all() only selectively interrupt the cpus that have
per-cpu free pages that can be drained.
This is important in nohz mode where calling mlockall(), for example,
otherwise will interrupt every core unnecessarily.
This is important on workloads where nohz cores are handling 10 Gb traffic
in userspace. Those CPUs do not enter the kernel and place pages into LRU
pagevecs and they really, really don't want to be interrupted, or they
drop packets on the floor.
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add memcg routines to count writeback pages, later dirty pages will also
be accounted.
After Kame's commit 89c06bd52f ("memcg: use new logic for page stat
accounting"), we can use 'struct page' flag to test page state instead
of per page_cgroup flag. But memcg has a feature to move a page from a
cgroup to another one and may have race between "move" and "page stat
accounting". So in order to avoid the race we have designed a new lock:
mem_cgroup_begin_update_page_stat()
modify page information -->(a)
mem_cgroup_update_page_stat() -->(b)
mem_cgroup_end_update_page_stat()
It requires both (a) and (b)(writeback pages accounting) to be pretected
in mem_cgroup_{begin/end}_update_page_stat(). It's full no-op for
!CONFIG_MEMCG, almost no-op if memcg is disabled (but compiled in), rcu
read lock in the most cases (no task is moving), and spin_lock_irqsave
on top in the slow path.
There're two writeback interfaces to modify: test_{clear/set}_page_writeback().
And the lock order is:
--> memcg->move_lock
--> mapping->tree_lock
Signed-off-by: Sha Zhengju <handai.szj@taobao.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Greg Thelen <gthelen@google.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We should call mem_cgroup_begin_update_page_stat() before
mem_cgroup_update_page_stat() to get proper locks, however the latter
doesn't do any checking that we use proper locking, which would be hard.
Suggested by Michal Hock we could at least test for rcu_read_lock_held()
because RCU is held if !mem_cgroup_disabled().
Signed-off-by: Sha Zhengju <handai.szj@taobao.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Greg Thelen <gthelen@google.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While accounting memcg page stat, it's not worth to use
MEMCG_NR_FILE_MAPPED as an extra layer of indirection because of the
complexity and presumed performance overhead. We can use
MEM_CGROUP_STAT_FILE_MAPPED directly.
Signed-off-by: Sha Zhengju <handai.szj@taobao.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Fengguang Wu <fengguang.wu@intel.com>
Reviewed-by: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
RESOURCE_MAX is far too general name, change it to RES_COUNTER_MAX.
Signed-off-by: Sha Zhengju <handai.szj@taobao.com>
Signed-off-by: Qiang Huang <h.huangqiang@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Jeff Liu <jeff.liu@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memcg OOM handling is incredibly fragile and can deadlock. When a
task fails to charge memory, it invokes the OOM killer and loops right
there in the charge code until it succeeds. Comparably, any other task
that enters the charge path at this point will go to a waitqueue right
then and there and sleep until the OOM situation is resolved. The problem
is that these tasks may hold filesystem locks and the mmap_sem; locks that
the selected OOM victim may need to exit.
For example, in one reported case, the task invoking the OOM killer was
about to charge a page cache page during a write(), which holds the
i_mutex. The OOM killer selected a task that was just entering truncate()
and trying to acquire the i_mutex:
OOM invoking task:
mem_cgroup_handle_oom+0x241/0x3b0
mem_cgroup_cache_charge+0xbe/0xe0
add_to_page_cache_locked+0x4c/0x140
add_to_page_cache_lru+0x22/0x50
grab_cache_page_write_begin+0x8b/0xe0
ext3_write_begin+0x88/0x270
generic_file_buffered_write+0x116/0x290
__generic_file_aio_write+0x27c/0x480
generic_file_aio_write+0x76/0xf0 # takes ->i_mutex
do_sync_write+0xea/0x130
vfs_write+0xf3/0x1f0
sys_write+0x51/0x90
system_call_fastpath+0x18/0x1d
OOM kill victim:
do_truncate+0x58/0xa0 # takes i_mutex
do_last+0x250/0xa30
path_openat+0xd7/0x440
do_filp_open+0x49/0xa0
do_sys_open+0x106/0x240
sys_open+0x20/0x30
system_call_fastpath+0x18/0x1d
The OOM handling task will retry the charge indefinitely while the OOM
killed task is not releasing any resources.
A similar scenario can happen when the kernel OOM killer for a memcg is
disabled and a userspace task is in charge of resolving OOM situations.
In this case, ALL tasks that enter the OOM path will be made to sleep on
the OOM waitqueue and wait for userspace to free resources or increase
the group's limit. But a userspace OOM handler is prone to deadlock
itself on the locks held by the waiting tasks. For example one of the
sleeping tasks may be stuck in a brk() call with the mmap_sem held for
writing but the userspace handler, in order to pick an optimal victim,
may need to read files from /proc/<pid>, which tries to acquire the same
mmap_sem for reading and deadlocks.
This patch changes the way tasks behave after detecting a memcg OOM and
makes sure nobody loops or sleeps with locks held:
1. When OOMing in a user fault, invoke the OOM killer and restart the
fault instead of looping on the charge attempt. This way, the OOM
victim can not get stuck on locks the looping task may hold.
2. When OOMing in a user fault but somebody else is handling it
(either the kernel OOM killer or a userspace handler), don't go to
sleep in the charge context. Instead, remember the OOMing memcg in
the task struct and then fully unwind the page fault stack with
-ENOMEM. pagefault_out_of_memory() will then call back into the
memcg code to check if the -ENOMEM came from the memcg, and then
either put the task to sleep on the memcg's OOM waitqueue or just
restart the fault. The OOM victim can no longer get stuck on any
lock a sleeping task may hold.
Debugged by Michal Hocko.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: azurIt <azurit@pobox.sk>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memcg OOM handler open-codes a sleeping lock for OOM serialization
(trylock, wait, repeat) because the required locking is so specific to
memcg hierarchies. However, it would be nice if this construct would be
clearly recognizable and not be as obfuscated as it is right now. Clean
up as follows:
1. Remove the return value of mem_cgroup_oom_unlock()
2. Rename mem_cgroup_oom_lock() to mem_cgroup_oom_trylock().
3. Pull the prepare_to_wait() out of the memcg_oom_lock scope. This
makes it more obvious that the task has to be on the waitqueue
before attempting to OOM-trylock the hierarchy, to not miss any
wakeups before going to sleep. It just didn't matter until now
because it was all lumped together into the global memcg_oom_lock
spinlock section.
4. Pull the mem_cgroup_oom_notify() out of the memcg_oom_lock scope.
It is proctected by the hierarchical OOM-lock.
5. The memcg_oom_lock spinlock is only required to propagate the OOM
lock in any given hierarchy atomically. Restrict its scope to
mem_cgroup_oom_(trylock|unlock).
6. Do not wake up the waitqueue unconditionally at the end of the
function. Only the lockholder has to wake up the next in line
after releasing the lock.
Note that the lockholder kicks off the OOM-killer, which in turn
leads to wakeups from the uncharges of the exiting task. But a
contender is not guaranteed to see them if it enters the OOM path
after the OOM kills but before the lockholder releases the lock.
Thus there has to be an explicit wakeup after releasing the lock.
7. Put the OOM task on the waitqueue before marking the hierarchy as
under OOM as that is the point where we start to receive wakeups.
No point in listening before being on the waitqueue.
8. Likewise, unmark the hierarchy before finishing the sleep, for
symmetry.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: azurIt <azurit@pobox.sk>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
System calls and kernel faults (uaccess, gup) can handle an out of memory
situation gracefully and just return -ENOMEM.
Enable the memcg OOM killer only for user faults, where it's really the
only option available.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: azurIt <azurit@pobox.sk>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Clean up some mess made by the "Soft limit rework" series, and a few other
things.
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
shrink_zone starts with soft reclaim pass first and then falls back to
regular reclaim if nothing has been scanned. This behavior is natural
but there is a catch. Memcg iterators, when used with the reclaim
cookie, are designed to help to prevent from over reclaim by
interleaving reclaimers (per node-zone-priority) so the tree walk might
miss many (even all) nodes in the hierarchy e.g. when there are direct
reclaimers racing with each other or with kswapd in the global case or
multiple allocators reaching the limit for the target reclaim case. To
make it even more complicated, targeted reclaim doesn't do the whole
tree walk because it stops reclaiming once it reclaims sufficient pages.
As a result groups over the limit might be missed, thus nothing is
scanned, and reclaim would fall back to the reclaim all mode.
This patch checks for the incomplete tree walk in shrink_zone. If no
group has been visited and the hierarchy is soft reclaimable then we
must have missed some groups, in which case the __shrink_zone is called
again. This doesn't guarantee there will be some progress of course
because the current reclaimer might be still racing with others but it
would at least give a chance to start the walk without a big risk of
reclaim latencies.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Glauber Costa <glommer@openvz.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Children in soft limit excess are currently tracked up the hierarchy in
memcg->children_in_excess. Nevertheless there still might exist tons of
groups that are not in hierarchy relation to the root cgroup (e.g. all
first level groups if root_mem_cgroup->use_hierarchy == false).
As the whole tree walk has to be done when the iteration starts at
root_mem_cgroup the iterator should be able to skip the walk if there is
no child above the limit without iterating them. This can be done
easily if the root tracks all children rather than only hierarchical
children. This is done by this patch which updates root_mem_cgroup
children_in_excess if root_mem_cgroup->use_hierarchy == false so the
root knows about all children in excess.
Please note that this is not an issue for inner memcgs which have
use_hierarchy == false because then only the single group is visited so
no special optimization is necessary.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Glauber Costa <glommer@openvz.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_should_soft_reclaim controls whether soft reclaim pass is
done and it always says yes currently. Memcg iterators are clever to
skip nodes that are not soft reclaimable quite efficiently but
mem_cgroup_should_soft_reclaim can be more clever and do not start the
soft reclaim pass at all if it knows that nothing would be scanned
anyway.
In order to do that, simply reuse mem_cgroup_soft_reclaim_eligible for
the target group of the reclaim and allow the pass only if the whole
subtree wouldn't be skipped.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Glauber Costa <glommer@openvz.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The caller of the iterator might know that some nodes or even subtrees
should be skipped but there is no way to tell iterators about that so the
only choice left is to let iterators to visit each node and do the
selection outside of the iterating code. This, however, doesn't scale
well with hierarchies with many groups where only few groups are
interesting.
This patch adds mem_cgroup_iter_cond variant of the iterator with a
callback which gets called for every visited node. There are three
possible ways how the callback can influence the walk. Either the node is
visited, it is skipped but the tree walk continues down the tree or the
whole subtree of the current group is skipped.
[hughd@google.com: fix memcg-less page reclaim]
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Glauber Costa <glommer@openvz.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Soft reclaim has been done only for the global reclaim (both background
and direct). Since "memcg: integrate soft reclaim tighter with zone
shrinking code" there is no reason for this limitation anymore as the soft
limit reclaim doesn't use any special code paths and it is a part of the
zone shrinking code which is used by both global and targeted reclaims.
From the semantic point of view it is natural to consider soft limit
before touching all groups in the hierarchy tree which is touching the
hard limit because soft limit tells us where to push back when there is a
memory pressure. It is not important whether the pressure comes from the
limit or imbalanced zones.
This patch simply enables soft reclaim unconditionally in
mem_cgroup_should_soft_reclaim so it is enabled for both global and
targeted reclaim paths. mem_cgroup_soft_reclaim_eligible needs to learn
about the root of the reclaim to know where to stop checking soft limit
state of parents up the hierarchy. Say we have
A (over soft limit)
\
B (below s.l., hit the hard limit)
/ \
C D (below s.l.)
B is the source of the outside memory pressure now for D but we shouldn't
soft reclaim it because it is behaving well under B subtree and we can
still reclaim from C (pressumably it is over the limit).
mem_cgroup_soft_reclaim_eligible should therefore stop climbing up the
hierarchy at B (root of the memory pressure).
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Glauber Costa <glommer@openvz.org>
Reviewed-by: Tejun Heo <tj@kernel.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that the soft limit is integrated to the reclaim directly the whole
soft-limit tree infrastructure is not needed anymore. Rip it out.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Glauber Costa <glommer@openvz.org>
Reviewed-by: Tejun Heo <tj@kernel.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patchset is sitting out of tree for quite some time without any
objections. I would be really happy if it made it into 3.12. I do not
want to push it too hard but I think this work is basically ready and
waiting more doesn't help.
The basic idea is quite simple. Pull soft reclaim into shrink_zone in the
first step and get rid of the previous soft reclaim infrastructure.
shrink_zone is done in two passes now. First it tries to do the soft
limit reclaim and it falls back to reclaim-all mode if no group is over
the limit or no pages have been scanned. The second pass happens at the
same priority so the only time we waste is the memcg tree walk which has
been updated in the third step to have only negligible overhead.
As a bonus we will get rid of a _lot_ of code by this and soft reclaim
will not stand out like before when it wasn't integrated into the zone
shrinking code and it reclaimed at priority 0 (the testing results show
that some workloads suffers from such an aggressive reclaim). The clean
up is in a separate patch because I felt it would be easier to review that
way.
The second step is soft limit reclaim integration into targeted reclaim.
It should be rather straight forward. Soft limit has been used only for
the global reclaim so far but it makes sense for any kind of pressure
coming from up-the-hierarchy, including targeted reclaim.
The third step (patches 4-8) addresses the tree walk overhead by enhancing
memcg iterators to enable skipping whole subtrees and tracking number of
over soft limit children at each level of the hierarchy. This information
is updated same way the old soft limit tree was updated (from
memcg_check_events) so we shouldn't see an additional overhead. In fact
mem_cgroup_update_soft_limit is much simpler than tree manipulation done
previously.
__shrink_zone uses mem_cgroup_soft_reclaim_eligible as a predicate for
mem_cgroup_iter so the decision whether a particular group should be
visited is done at the iterator level which allows us to decide to skip
the whole subtree as well (if there is no child in excess). This reduces
the tree walk overhead considerably.
* TEST 1
========
My primary test case was a parallel kernel build with 2 groups (make is
running with -j8 with a distribution .config in a separate cgroup without
any hard limit) on a 32 CPU machine booted with 1GB memory and both builds
run taskset to Node 0 cpus.
I was mostly interested in 2 setups. Default - no soft limit set and -
and 0 soft limit set to both groups. The first one should tell us whether
the rework regresses the default behavior while the second one should show
us improvements in an extreme case where both workloads are always over
the soft limit.
/usr/bin/time -v has been used to collect the statistics and each
configuration had 3 runs after fresh boot without any other load on the
system.
base is mmotm-2013-07-18-16-40
rework all 8 patches applied on top of base
* No-limit
User
no-limit/base: min: 651.92 max: 672.65 avg: 664.33 std: 8.01 runs: 6
no-limit/rework: min: 657.34 [100.8%] max: 668.39 [99.4%] avg: 663.13 [99.8%] std: 3.61 runs: 6
System
no-limit/base: min: 69.33 max: 71.39 avg: 70.32 std: 0.79 runs: 6
no-limit/rework: min: 69.12 [99.7%] max: 71.05 [99.5%] avg: 70.04 [99.6%] std: 0.59 runs: 6
Elapsed
no-limit/base: min: 398.27 max: 422.36 avg: 408.85 std: 7.74 runs: 6
no-limit/rework: min: 386.36 [97.0%] max: 438.40 [103.8%] avg: 416.34 [101.8%] std: 18.85 runs: 6
The results are within noise. Elapsed time has a bigger variance but the
average looks good.
* 0-limit
User
0-limit/base: min: 573.76 max: 605.63 avg: 585.73 std: 12.21 runs: 6
0-limit/rework: min: 645.77 [112.6%] max: 666.25 [110.0%] avg: 656.97 [112.2%] std: 7.77 runs: 6
System
0-limit/base: min: 69.57 max: 71.13 avg: 70.29 std: 0.54 runs: 6
0-limit/rework: min: 68.68 [98.7%] max: 71.40 [100.4%] avg: 69.91 [99.5%] std: 0.87 runs: 6
Elapsed
0-limit/base: min: 1306.14 max: 1550.17 avg: 1430.35 std: 90.86 runs: 6
0-limit/rework: min: 404.06 [30.9%] max: 465.94 [30.1%] avg: 434.81 [30.4%] std: 22.68 runs: 6
The improvement is really huge here (even bigger than with my previous
testing and I suspect that this highly depends on the storage). Page
fault statistics tell us at least part of the story:
Minor
0-limit/base: min: 37180461.00 max: 37319986.00 avg: 37247470.00 std: 54772.71 runs: 6
0-limit/rework: min: 36751685.00 [98.8%] max: 36805379.00 [98.6%] avg: 36774506.33 [98.7%] std: 17109.03 runs: 6
Major
0-limit/base: min: 170604.00 max: 221141.00 avg: 196081.83 std: 18217.01 runs: 6
0-limit/rework: min: 2864.00 [1.7%] max: 10029.00 [4.5%] avg: 5627.33 [2.9%] std: 2252.71 runs: 6
Same as with my previous testing Minor faults are more or less within
noise but Major fault count is way bellow the base kernel.
While this looks as a nice win it is fair to say that 0-limit
configuration is quite artificial. So I was playing with 0-no-limit
loads as well.
* TEST 2
========
The following results are from 2 groups configuration on a 16GB machine
(single NUMA node).
- A running stream IO (dd if=/dev/zero of=local.file bs=1024) with
2*TotalMem with 0 soft limit.
- B running a mem_eater which consumes TotalMem-1G without any limit. The
mem_eater consumes the memory in 100 chunks with 1s nap after each
mmap+poppulate so that both loads have chance to fight for the memory.
The expected result is that B shouldn't be reclaimed and A shouldn't see
a big dropdown in elapsed time.
User
base: min: 2.68 max: 2.89 avg: 2.76 std: 0.09 runs: 3
rework: min: 3.27 [122.0%] max: 3.74 [129.4%] avg: 3.44 [124.6%] std: 0.21 runs: 3
System
base: min: 86.26 max: 88.29 avg: 87.28 std: 0.83 runs: 3
rework: min: 81.05 [94.0%] max: 84.96 [96.2%] avg: 83.14 [95.3%] std: 1.61 runs: 3
Elapsed
base: min: 317.28 max: 332.39 avg: 325.84 std: 6.33 runs: 3
rework: min: 281.53 [88.7%] max: 298.16 [89.7%] avg: 290.99 [89.3%] std: 6.98 runs: 3
System time improved slightly as well as Elapsed. My previous testing
has shown worse numbers but this again seem to depend on the storage
speed.
My theory is that the writeback doesn't catch up and prio-0 soft reclaim
falls into wait on writeback page too often in the base kernel. The
patched kernel doesn't do that because the soft reclaim is done from the
kswapd/direct reclaim context. This can be seen on the following graph
nicely. The A's group usage_in_bytes regurarly drops really low very often.
All 3 runs
http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/stream.png
resp. a detail of the single run
http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/stream-one-run.png
mem_eater seems to be doing better as well. It gets to the full
allocation size faster as can be seen on the following graph:
http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/mem_eater-one-run.png
/proc/meminfo collected during the test also shows that rework kernel
hasn't swapped that much (well almost not at all):
base: max: 123900 K avg: 56388.29 K
rework: max: 300 K avg: 128.68 K
kswapd and direct reclaim statistics are of no use unfortunatelly because
soft reclaim is not accounted properly as the counters are hidden by
global_reclaim() checks in the base kernel.
* TEST 3
========
Another test was the same configuration as TEST2 except the stream IO was
replaced by a single kbuild (16 parallel jobs bound to Node0 cpus same as
in TEST1) and mem_eater allocated TotalMem-200M so kbuild had only 200MB
left.
Kbuild did better with the rework kernel here as well:
User
base: min: 860.28 max: 872.86 avg: 868.03 std: 5.54 runs: 3
rework: min: 880.81 [102.4%] max: 887.45 [101.7%] avg: 883.56 [101.8%] std: 2.83 runs: 3
System
base: min: 84.35 max: 85.06 avg: 84.79 std: 0.31 runs: 3
rework: min: 85.62 [101.5%] max: 86.09 [101.2%] avg: 85.79 [101.2%] std: 0.21 runs: 3
Elapsed
base: min: 135.36 max: 243.30 avg: 182.47 std: 45.12 runs: 3
rework: min: 110.46 [81.6%] max: 116.20 [47.8%] avg: 114.15 [62.6%] std: 2.61 runs: 3
Minor
base: min: 36635476.00 max: 36673365.00 avg: 36654812.00 std: 15478.03 runs: 3
rework: min: 36639301.00 [100.0%] max: 36695541.00 [100.1%] avg: 36665511.00 [100.0%] std: 23118.23 runs: 3
Major
base: min: 14708.00 max: 53328.00 avg: 31379.00 std: 16202.24 runs: 3
rework: min: 302.00 [2.1%] max: 414.00 [0.8%] avg: 366.33 [1.2%] std: 47.22 runs: 3
Again we can see a significant improvement in Elapsed (it also seems to
be more stable), there is a huge dropdown for the Major page faults and
much more swapping:
base: max: 583736 K avg: 112547.43 K
rework: max: 4012 K avg: 124.36 K
Graphs from all three runs show the variability of the kbuild quite
nicely. It even seems that it took longer after every run with the base
kernel which would be quite surprising as the source tree for the build is
removed and caches are dropped after each run so the build operates on a
freshly extracted sources everytime.
http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/kbuild-mem_eater.png
My other testing shows that this is just a matter of timing and other runs
behave differently the std for Elapsed time is similar ~50. Example of
other three runs:
http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/kbuild-mem_eater2.png
So to wrap this up. The series is still doing good and improves the soft
limit.
The testing results for bunch of cgroups with both stream IO and kbuild
loads can be found in "memcg: track children in soft limit excess to
improve soft limit".
This patch:
Memcg soft reclaim has been traditionally triggered from the global
reclaim paths before calling shrink_zone. mem_cgroup_soft_limit_reclaim
then picked up a group which exceeds the soft limit the most and reclaimed
it with 0 priority to reclaim at least SWAP_CLUSTER_MAX pages.
The infrastructure requires per-node-zone trees which hold over-limit
groups and keep them up-to-date (via memcg_check_events) which is not cost
free. Although this overhead hasn't turned out to be a bottle neck the
implementation is suboptimal because mem_cgroup_update_tree has no idea
which zones consumed memory over the limit so we could easily end up
having a group on a node-zone tree having only few pages from that
node-zone.
This patch doesn't try to fix node-zone trees management because it seems
that integrating soft reclaim into zone shrinking sounds much easier and
more appropriate for several reasons. First of all 0 priority reclaim was
a crude hack which might lead to big stalls if the group's LRUs are big
and hard to reclaim (e.g. a lot of dirty/writeback pages). Soft reclaim
should be applicable also to the targeted reclaim which is awkward right
now without additional hacks. Last but not least the whole infrastructure
eats quite some code.
After this patch shrink_zone is done in 2 passes. First it tries to do
the soft reclaim if appropriate (only for global reclaim for now to keep
compatible with the original state) and fall back to ignoring soft limit
if no group is eligible to soft reclaim or nothing has been scanned during
the first pass. Only groups which are over their soft limit or any of
their parents up the hierarchy is over the limit are considered eligible
during the first pass.
Soft limit tree which is not necessary anymore will be removed in the
follow up patch to make this patch smaller and easier to review.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Glauber Costa <glommer@openvz.org>
Reviewed-by: Tejun Heo <tj@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Ying Han <yinghan@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Glauber Costa <glommer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
vfs guarantees the cgroup won't be destroyed, so it's redundant to get a
css reference.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull vfs pile 4 from Al Viro:
"list_lru pile, mostly"
This came out of Andrew's pile, Al ended up doing the merge work so that
Andrew didn't have to.
Additionally, a few fixes.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (42 commits)
super: fix for destroy lrus
list_lru: dynamically adjust node arrays
shrinker: Kill old ->shrink API.
shrinker: convert remaining shrinkers to count/scan API
staging/lustre/libcfs: cleanup linux-mem.h
staging/lustre/ptlrpc: convert to new shrinker API
staging/lustre/obdclass: convert lu_object shrinker to count/scan API
staging/lustre/ldlm: convert to shrinkers to count/scan API
hugepage: convert huge zero page shrinker to new shrinker API
i915: bail out earlier when shrinker cannot acquire mutex
drivers: convert shrinkers to new count/scan API
fs: convert fs shrinkers to new scan/count API
xfs: fix dquot isolation hang
xfs-convert-dquot-cache-lru-to-list_lru-fix
xfs: convert dquot cache lru to list_lru
xfs: rework buffer dispose list tracking
xfs-convert-buftarg-lru-to-generic-code-fix
xfs: convert buftarg LRU to generic code
fs: convert inode and dentry shrinking to be node aware
vmscan: per-node deferred work
...
1) ACPI-based PCI hotplug (ACPIPHP) fixes related to spurious events
After the recent ACPIPHP changes we've seen some interesting breakage
on a system that triggers device check notifications during boot for
non-existing devices. Although those notifications are really
spurious, we should be able to deal with them nevertheless and that
shouldn't introduce too much overhead. Four commits to make that
work properly.
2) Memory hotplug and hibernation mutual exclusion rework
This was maent to be a cleanup, but it happens to fix a classical
ABBA deadlock between system suspend/hibernation and ACPI memory
hotplug which is possible if they are started roughly at the same
time. Three commits rework memory hotplug so that it doesn't
acquire pm_mutex and make hibernation use device_hotplug_lock
which prevents it from racing with memory hotplug.
3) ACPI Intel LPSS (Low-Power Subsystem) driver crash fix
The ACPI LPSS driver crashes during boot on Apple Macbook Air with
Haswell that has slightly unusual BIOS configuration in which one
of the LPSS device's _CRS method doesn't return all of the information
expected by the driver. Fix from Mika Westerberg, for stable.
4) ACPICA fix related to Store->ArgX operation
AML interpreter fix for obscure breakage that causes AML to be
executed incorrectly on some machines (observed in practice). From
Bob Moore.
5) ACPI core fix for PCI ACPI device objects lookup
There still are cases in which there is more than one ACPI device
object matching a given PCI device and we don't choose the one that
the BIOS expects us to choose, so this makes the lookup take more
criteria into account in those cases.
6) Fix to prevent cpuidle from crashing in some rare cases
If the result of cpuidle_get_driver() is NULL, which can happen on
some systems, cpuidle_driver_ref() will crash trying to use that
pointer and the Daniel Fu's fix prevents that from happening.
7) cpufreq fixes related to CPU hotplug
Stephen Boyd reported a number of concurrency problems with cpufreq
related to CPU hotplug which are addressed by a series of fixes
from Srivatsa S Bhat and Viresh Kumar.
8) cpufreq fix for time conversion in time_in_state attribute
Time conversion carried out by cpufreq when user space attempts to
read /sys/devices/system/cpu/cpu*/cpufreq/stats/time_in_state won't
work correcty if cputime_t doesn't map directly to jiffies. Fix
from Andreas Schwab.
9) Revert of a troublesome cpufreq commit
Commit 7c30ed5 (cpufreq: make sure frequency transitions are
serialized) was intended to address some known concurrency problems
in cpufreq related to the ordering of transitions, but unfortunately
it introduced several problems of its own, so I decided to revert it
now and address the original problems later in a more robust way.
10) Intel Haswell CPU models for intel_pstate from Nell Hardcastle.
11) cpufreq fixes related to system suspend/resume
The recent cpufreq changes that made it preserve CPU sysfs attributes
over suspend/resume cycles introduced a possible NULL pointer
dereference that caused it to crash during the second attempt to
suspend. Three commits from Srivatsa S Bhat fix that problem and a
couple of related issues.
12) cpufreq locking fix
cpufreq_policy_restore() should acquire the lock for reading, but
it acquires it for writing. Fix from Lan Tianyu.
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.19 (GNU/Linux)
iQIcBAABCAAGBQJSMbdRAAoJEKhOf7ml8uNsiFkQAKSh1iBXuiUCxBApEGZgoQio
8lmnuyWdhNQWdjZTnh7ptjpDxdrWhxcoxvoaGABU++reDObjef1QnyrQtdO3r8dl
oy0C/YGh5kq5SIffIDEwPIb/ipDe/47cgRMW8iBlnViDa1MJBqICuLyefcTRIrKp
QGvv0owUM2o7TXpA10+qm8zXjv6m5mu1DTtxYI+2Eodhwi54neAqb+aKMspa2thy
V9KFcVv3Td4rJrNvw6BhXNM81QbaYpRxaK3DRr1T6SM++EKvbqYFA1jgW24YvqTL
nrCZlDMb6KRww5DCxA/ns9Kx5H+ZyicoRwdtAM3PBYA6MGqsLqPozC/8VKV1fSvZ
sgUdbUSuLqKRAkOqM1bjKAhi9PdCGBvkQAg2AqbRK6IBl4HJC8xhdb5E6eZ/J42G
GyNBpKef7wVJwYKXE2hSChZ5dYjqMizNHWxFHf8Xy1dveExbQ2nmSJmaWMy2A3kx
YOXFkcTV5F6GOIZB8WCRruzUalff9xal4G+iVhGF+AZIOCm7bC+FDXfwIS82uVor
ej2l+uQLLZCB499IRmM6942ZIAXshmtN7eRfGtKBc6jsbSCEdQDqf1Z7oRwqAD6h
WkD/k/zz30CyM8y4snOkAXkZgqAQsZodtqfowE3e9OHd51tfcNiqdht+obwCx+eD
MWXc2xATMAX6NcZTXSZS
=U/Jw
-----END PGP SIGNATURE-----
Merge tag 'pm+acpi-fixes-3.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI and power management fixes from Rafael Wysocki:
"All of these commits are fixes that have emerged recently and some of
them fix bugs introduced during this merge window.
Specifics:
1) ACPI-based PCI hotplug (ACPIPHP) fixes related to spurious events
After the recent ACPIPHP changes we've seen some interesting
breakage on a system that triggers device check notifications
during boot for non-existing devices. Although those
notifications are really spurious, we should be able to deal with
them nevertheless and that shouldn't introduce too much overhead.
Four commits to make that work properly.
2) Memory hotplug and hibernation mutual exclusion rework
This was maent to be a cleanup, but it happens to fix a classical
ABBA deadlock between system suspend/hibernation and ACPI memory
hotplug which is possible if they are started roughly at the same
time. Three commits rework memory hotplug so that it doesn't
acquire pm_mutex and make hibernation use device_hotplug_lock
which prevents it from racing with memory hotplug.
3) ACPI Intel LPSS (Low-Power Subsystem) driver crash fix
The ACPI LPSS driver crashes during boot on Apple Macbook Air with
Haswell that has slightly unusual BIOS configuration in which one
of the LPSS device's _CRS method doesn't return all of the
information expected by the driver. Fix from Mika Westerberg, for
stable.
4) ACPICA fix related to Store->ArgX operation
AML interpreter fix for obscure breakage that causes AML to be
executed incorrectly on some machines (observed in practice).
From Bob Moore.
5) ACPI core fix for PCI ACPI device objects lookup
There still are cases in which there is more than one ACPI device
object matching a given PCI device and we don't choose the one
that the BIOS expects us to choose, so this makes the lookup take
more criteria into account in those cases.
6) Fix to prevent cpuidle from crashing in some rare cases
If the result of cpuidle_get_driver() is NULL, which can happen on
some systems, cpuidle_driver_ref() will crash trying to use that
pointer and the Daniel Fu's fix prevents that from happening.
7) cpufreq fixes related to CPU hotplug
Stephen Boyd reported a number of concurrency problems with
cpufreq related to CPU hotplug which are addressed by a series of
fixes from Srivatsa S Bhat and Viresh Kumar.
8) cpufreq fix for time conversion in time_in_state attribute
Time conversion carried out by cpufreq when user space attempts to
read /sys/devices/system/cpu/cpu*/cpufreq/stats/time_in_state
won't work correcty if cputime_t doesn't map directly to jiffies.
Fix from Andreas Schwab.
9) Revert of a troublesome cpufreq commit
Commit 7c30ed5 (cpufreq: make sure frequency transitions are
serialized) was intended to address some known concurrency
problems in cpufreq related to the ordering of transitions, but
unfortunately it introduced several problems of its own, so I
decided to revert it now and address the original problems later
in a more robust way.
10) Intel Haswell CPU models for intel_pstate from Nell Hardcastle.
11) cpufreq fixes related to system suspend/resume
The recent cpufreq changes that made it preserve CPU sysfs
attributes over suspend/resume cycles introduced a possible NULL
pointer dereference that caused it to crash during the second
attempt to suspend. Three commits from Srivatsa S Bhat fix that
problem and a couple of related issues.
12) cpufreq locking fix
cpufreq_policy_restore() should acquire the lock for reading, but
it acquires it for writing. Fix from Lan Tianyu"
* tag 'pm+acpi-fixes-3.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (25 commits)
cpufreq: Acquire the lock in cpufreq_policy_restore() for reading
cpufreq: Prevent problems in update_policy_cpu() if last_cpu == new_cpu
cpufreq: Restructure if/else block to avoid unintended behavior
cpufreq: Fix crash in cpufreq-stats during suspend/resume
intel_pstate: Add Haswell CPU models
Revert "cpufreq: make sure frequency transitions are serialized"
cpufreq: Use signed type for 'ret' variable, to store negative error values
cpufreq: Remove temporary fix for race between CPU hotplug and sysfs-writes
cpufreq: Synchronize the cpufreq store_*() routines with CPU hotplug
cpufreq: Invoke __cpufreq_remove_dev_finish() after releasing cpu_hotplug.lock
cpufreq: Split __cpufreq_remove_dev() into two parts
cpufreq: Fix wrong time unit conversion
cpufreq: serialize calls to __cpufreq_governor()
cpufreq: don't allow governor limits to be changed when it is disabled
ACPI / bind: Prefer device objects with _STA to those without it
ACPI / hotplug / PCI: Avoid parent bus rescans on spurious device checks
ACPI / hotplug / PCI: Use _OST to notify firmware about notify status
ACPI / hotplug / PCI: Avoid doing too much for spurious notifies
ACPICA: Fix for a Store->ArgX when ArgX contains a reference to a field.
ACPI / hotplug / PCI: Don't trim devices before scanning the namespace
...
Conditionally call the appropriate fs_init function and fill_super
functions. Add a use once guard to shmem_init() to simply succeed on a
second call.
(Note that IS_ENABLED() is a compile time constant so dead code
elimination removes unused function calls when CONFIG_TMPFS is disabled.)
Signed-off-by: Rob Landley <rob@landley.net>
Cc: Jeff Layton <jlayton@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Stephen Warren <swarren@nvidia.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Jim Cromie <jim.cromie@gmail.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With users of radix_tree_preload() run from interrupt (block/blk-ioc.c is
one such possible user), the following race can happen:
radix_tree_preload()
...
radix_tree_insert()
radix_tree_node_alloc()
if (rtp->nr) {
ret = rtp->nodes[rtp->nr - 1];
<interrupt>
...
radix_tree_preload()
...
radix_tree_insert()
radix_tree_node_alloc()
if (rtp->nr) {
ret = rtp->nodes[rtp->nr - 1];
And we give out one radix tree node twice. That clearly results in radix
tree corruption with different results (usually OOPS) depending on which
two users of radix tree race.
We fix the problem by making radix_tree_node_alloc() always allocate fresh
radix tree nodes when in interrupt. Using preloading when in interrupt
doesn't make sense since all the allocations have to be atomic anyway and
we cannot steal nodes from process-context users because some users rely
on radix_tree_insert() succeeding after radix_tree_preload().
in_interrupt() check is somewhat ugly but we cannot simply key off passed
gfp_mask as that is acquired from root_gfp_mask() and thus the same for
all preload users.
Another part of the fix is to avoid node preallocation in
radix_tree_preload() when passed gfp_mask doesn't allow waiting. Again,
preallocation in such case doesn't make sense and when preallocation would
happen in interrupt we could possibly leak some allocated nodes. However,
some users of radix_tree_preload() require following radix_tree_insert()
to succeed. To avoid unexpected effects for these users,
radix_tree_preload() only warns if passed gfp mask doesn't allow waiting
and we provide a new function radix_tree_maybe_preload() for those users
which get different gfp mask from different call sites and which are
prepared to handle radix_tree_insert() failure.
Signed-off-by: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <jaxboe@fusionio.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A memory cgroup with (1) multiple threshold notifications and (2) at least
one threshold >=2G was not reliable. Specifically the notifications would
either not fire or would not fire in the proper order.
The __mem_cgroup_threshold() signaling logic depends on keeping 64 bit
thresholds in sorted order. mem_cgroup_usage_register_event() sorts them
with compare_thresholds(), which returns the difference of two 64 bit
thresholds as an int. If the difference is positive but has bit[31] set,
then sort() treats the difference as negative and breaks sort order.
This fix compares the two arbitrary 64 bit thresholds returning the
classic -1, 0, 1 result.
The test below sets two notifications (at 0x1000 and 0x81001000):
cd /sys/fs/cgroup/memory
mkdir x
for x in 4096 2164264960; do
cgroup_event_listener x/memory.usage_in_bytes $x | sed "s/^/$x listener:/" &
done
echo $$ > x/cgroup.procs
anon_leaker 500M
v3.11-rc7 fails to signal the 4096 event listener:
Leaking...
Done leaking pages.
Patched v3.11-rc7 properly notifies:
Leaking...
4096 listener:2013:8:31:14:13:36
Done leaking pages.
The fixed bug is old. It appears to date back to the introduction of
memcg threshold notifications in v2.6.34-rc1-116-g2e72b6347c94 "memcg:
implement memory thresholds"
Signed-off-by: Greg Thelen <gthelen@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use the helper function instead of __GFP_ZERO.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pgoff is not used after the statement "pgoff = vma->vm_pgoff;", so the
assignment is redundant.
Signed-off-by: Yanchuan Nian <ycnian@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
madvise_hwpoison() has two locals called "ret". Fix it all up.
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The return value outside for loop is always zero which means
madvise_hwpoison return success, however, this is not truth for
soft_offline_page w/ failure return value.
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
madvise hwpoison inject will poison the read-only empty zero page if there
is no write access before poison. Empty zero page reference count will be
increased for hwpoison, subsequent poison zero page will return directly
since page has already been set PG_hwpoison, however, page reference count
is still increased by get_user_pages_fast. The unpoison process will
unpoison the empty zero page and decrease the reference count successfully
for the fist time, however, subsequent unpoison empty zero page will
return directly since page has already been unpoisoned and without
decrease the page reference count of empty zero page.
This patch fixes it by make madvise_hwpoison() put a page and return
immediately (without calling memory_failure() or soft_offline_page()) when
the page is already hwpoisoned.
Testcase:
#define _GNU_SOURCE
#include <stdlib.h>
#include <stdio.h>
#include <sys/mman.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/types.h>
#include <errno.h>
#define PAGES_TO_TEST 3
#define PAGE_SIZE 4096
int main(void)
{
char *mem;
int i;
mem = mmap(NULL, PAGES_TO_TEST * PAGE_SIZE,
PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
if (madvise(mem, PAGES_TO_TEST * PAGE_SIZE, MADV_HWPOISON) == -1)
return -1;
munmap(mem, PAGES_TO_TEST * PAGE_SIZE);
return 0;
}
Add printk to dump page reference count:
[ 93.075959] Injecting memory failure for page 0x19d0 at 0xb77d8000
[ 93.076207] MCE 0x19d0: non LRU page recovery: Ignored
[ 93.076209] pfn 0x19d0, page count = 1 after memory failure
[ 93.076220] Injecting memory failure for page 0x19d0 at 0xb77d9000
[ 93.076221] MCE 0x19d0: already hardware poisoned
[ 93.076222] pfn 0x19d0, page count = 2 after memory failure
[ 93.076224] Injecting memory failure for page 0x19d0 at 0xb77da000
[ 93.076224] MCE 0x19d0: already hardware poisoned
[ 93.076225] pfn 0x19d0, page count = 3 after memory failure
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Suggested-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Set pageblock migration type will hold zone->lock which is heavy contended
in system to avoid race. However, soft offline page will set pageblock
migration type twice during get page if the page is in used, not hugetlbfs
page and not on lru list. There is unnecessary to set the pageblock
migration type and hold heavy contended zone->lock again if the first
round get page have already set the pageblock to right migration type.
The trick here is migration type is MIGRATE_ISOLATE. There are other two
parts can change MIGRATE_ISOLATE except hwpoison. One is memory hoplug,
however, we hold lock_memory_hotplug() which avoid race. The second is
CMA which umovable page allocation requst can't fallback to. So it's safe
here.
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace atomic_long_sub() with atomic_long_dec() since the page is normal
page instead of hugetlbfs page or thp.
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a race between hwpoison page and unpoison page, memory_failure
set the page hwpoison and increase num_poisoned_pages without hold page
lock, and one page count will be accounted against thp for
num_poisoned_pages. However, unpoison can occur before memory_failure
hold page lock and split transparent hugepage, unpoison will decrease
num_poisoned_pages by 1 << compound_order since memory_failure has not yet
split transparent hugepage with page lock held. That means we account one
page for hwpoison and 1 << compound_order for unpoison. This patch fix it
by inserting a PageTransHuge check before doing TestClearPageHWPoison,
unpoison failed without clearing PageHWPoison and decreasing
num_poisoned_pages.
A B
memory_failue
TestSetPageHWPoison(p);
if (PageHuge(p))
nr_pages = 1 << compound_order(hpage);
else
nr_pages = 1;
atomic_long_add(nr_pages, &num_poisoned_pages);
unpoison_memory
nr_pages = 1<< compound_trans_order(page);
if(TestClearPageHWPoison(p))
atomic_long_sub(nr_pages, &num_poisoned_pages);
lock page
if (!PageHWPoison(p))
unlock page and return
hwpoison_user_mappings
if (PageTransHuge(hpage))
split_huge_page(hpage);
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Suggested-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
compound lock is introduced by commit e9da73d67("thp: compound_lock."), it
is used to serialize put_page against __split_huge_page_refcount(). In
addition, transparent hugepages will be splitted in hwpoison handler and
just one subpage will be poisoned. There is unnecessary to hold compound
lock for hugetlbfs page. This patch replace compound_trans_order by
compond_order in the place where the page is hugetlbfs page.
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memory_failure() store the page flag of the error page before doing unmap,
and (only) if the first check with page flags at the time decided the
error page is unknown, it do the second check with the stored page flag
since memory_failure() does unmapping of the error pages before doing
page_action(). This unmapping changes the page state, especially
page_remove_rmap() (called from try_to_unmap_one()) clears PG_mlocked, so
page_action() can't catch mlocked pages after that.
However, memory_failure() can't handle memory errors on dirty mlocked
pages correctly. try_to_unmap_one will move the dirty bit from pte to the
physical page, the second check lose it since it check the stored page
flag. This patch fix it by restore PG_dirty flag to stored page flag if
the page is dirty.
Testcase:
#define _GNU_SOURCE
#include <stdlib.h>
#include <stdio.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <errno.h>
#define PAGES_TO_TEST 2
#define PAGE_SIZE 4096
int main(void)
{
char *mem;
int i;
mem = mmap(NULL, PAGES_TO_TEST * PAGE_SIZE,
PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_LOCKED, 0, 0);
for (i = 0; i < PAGES_TO_TEST; i++)
mem[i * PAGE_SIZE] = 'a';
if (madvise(mem, PAGES_TO_TEST * PAGE_SIZE, MADV_HWPOISON) == -1)
return -1;
return 0;
}
Before patch:
[ 912.839247] Injecting memory failure for page 7dfb8 at 7f6b4e37b000
[ 912.839257] MCE 0x7dfb8: clean mlocked LRU page recovery: Recovered
[ 912.845550] MCE 0x7dfb8: clean mlocked LRU page still referenced by 1 users
[ 912.852586] Injecting memory failure for page 7e6aa at 7f6b4e37c000
[ 912.852594] MCE 0x7e6aa: clean mlocked LRU page recovery: Recovered
[ 912.858936] MCE 0x7e6aa: clean mlocked LRU page still referenced by 1 users
After patch:
[ 163.590225] Injecting memory failure for page 91bc2f at 7f9f5b0e5000
[ 163.590264] MCE 0x91bc2f: dirty mlocked LRU page recovery: Recovered
[ 163.596680] MCE 0x91bc2f: dirty mlocked LRU page still referenced by 1 users
[ 163.603831] Injecting memory failure for page 91cdd3 at 7f9f5b0e6000
[ 163.603852] MCE 0x91cdd3: dirty mlocked LRU page recovery: Recovered
[ 163.610305] MCE 0x91cdd3: dirty mlocked LRU page still referenced by 1 users
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Soft offline code expects that MIGRATE_ISOLATE is set on the target page
only during soft offlining work. But currenly it doesn't work as expected
when get_any_page() fails and returns negative value. In the result, end
users can have unexpectedly isolated pages. This patch just fixes it.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Set _mapcount PAGE_BUDDY_MAPCOUNT_VALUE to make the page buddy. Not the
magic number -2.
Signed-off-by: Wang Sheng-Hui <shhuiw@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The feature prevents mistrusted filesystems (ie: FUSE mounts created by
unprivileged users) to grow a large number of dirty pages before
throttling. For such filesystems balance_dirty_pages always check bdi
counters against bdi limits. I.e. even if global "nr_dirty" is under
"freerun", it's not allowed to skip bdi checks. The only use case for now
is fuse: it sets bdi max_ratio to 1% by default and system administrators
are supposed to expect that this limit won't be exceeded.
The feature is on if a BDI is marked by BDI_CAP_STRICTLIMIT flag. A
filesystem may set the flag when it initializes its BDI.
The problematic scenario comes from the fact that nobody pays attention to
the NR_WRITEBACK_TEMP counter (i.e. number of pages under fuse
writeback). The implementation of fuse writeback releases original page
(by calling end_page_writeback) almost immediately. A fuse request queued
for real processing bears a copy of original page. Hence, if userspace
fuse daemon doesn't finalize write requests in timely manner, an
aggressive mmap writer can pollute virtually all memory by those temporary
fuse page copies. They are carefully accounted in NR_WRITEBACK_TEMP, but
nobody cares.
To make further explanations shorter, let me use "NR_WRITEBACK_TEMP
problem" as a shortcut for "a possibility of uncontrolled grow of amount
of RAM consumed by temporary pages allocated by kernel fuse to process
writeback".
The problem was very easy to reproduce. There is a trivial example
filesystem implementation in fuse userspace distribution: fusexmp_fh.c. I
added "sleep(1);" to the write methods, then recompiled and mounted it.
Then created a huge file on the mount point and run a simple program which
mmap-ed the file to a memory region, then wrote a data to the region. An
hour later I observed almost all RAM consumed by fuse writeback. Since
then some unrelated changes in kernel fuse made it more difficult to
reproduce, but it is still possible now.
Putting this theoretical happens-in-the-lab thing aside, there is another
thing that really hurts real world (FUSE) users. This is write-through
page cache policy FUSE currently uses. I.e. handling write(2), kernel
fuse populates page cache and flushes user data to the server
synchronously. This is excessively suboptimal. Pavel Emelyanov's patches
("writeback cache policy") solve the problem, but they also make resolving
NR_WRITEBACK_TEMP problem absolutely necessary. Otherwise, simply copying
a huge file to a fuse mount would result in memory starvation. Miklos,
the maintainer of FUSE, believes strictlimit feature the way to go.
And eventually putting FUSE topics aside, there is one more use-case for
strictlimit feature. Using a slow USB stick (mass storage) in a machine
with huge amount of RAM installed is a well-known pain. Let's make simple
computations. Assuming 64GB of RAM installed, existing implementation of
balance_dirty_pages will start throttling only after 9.6GB of RAM becomes
dirty (freerun == 15% of total RAM). So, the command "cp 9GB_file
/media/my-usb-storage/" may return in a few seconds, but subsequent
"umount /media/my-usb-storage/" will take more than two hours if effective
throughput of the storage is, to say, 1MB/sec.
After inclusion of strictlimit feature, it will be trivial to add a knob
(e.g. /sys/devices/virtual/bdi/x:y/strictlimit) to enable it on demand.
Manually or via udev rule. May be I'm wrong, but it seems to be quite a
natural desire to limit the amount of dirty memory for some devices we are
not fully trust (in the sense of sustainable throughput).
[akpm@linux-foundation.org: fix warning in page-writeback.c]
Signed-off-by: Maxim Patlasov <MPatlasov@parallels.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
'*lenp' may be less than "sizeof(kbuf)" so we must check this before the
next copy_to_user().
pdflush_proc_obsolete() is called by sysctl which 'procname' is
"nr_pdflush_threads", if the user passes buffer length less than
"sizeof(kbuf)", it will cause issue.
Signed-off-by: Chen Gang <gang.chen@asianux.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>