Commit Graph

197 Commits

Author SHA1 Message Date
Kirill A. Shutemov 73933b3315 mm: drop bogus VM_BUG_ON_PAGE assert in put_page() codepath
My commit 8d63d99a5d ("mm: avoid tail page refcounting on non-THP
compound pages") which was merged during 4.1 merge window caused
regression:

  page:ffffea0010a15040 count:0 mapcount:1 mapping:          (null) index:0x0
  flags: 0x8000000000008014(referenced|dirty|tail)
  page dumped because: VM_BUG_ON_PAGE(page_mapcount(page) != 0)
  ------------[ cut here ]------------
  kernel BUG at mm/swap.c:134!

The problem can be reproduced by playing *two* audio files at the same
time and then stopping one of players.  I used two mplayers to trigger
this.

The VM_BUG_ON_PAGE() which triggers the bug is bogus:

Sound subsystem uses compound pages for its buffers, but unlike most
__GFP_COMP sound maps compound pages to userspace with PTEs.

In our case with two players map the buffer twice and therefore elevates
page_mapcount() on tail pages by two.  When one of players exits it
unmaps the VMA and drops page_mapcount() to one and try to release
reference on the page with put_page().

My commit changes which path it takes under put_compound_page().  It hits
put_unrefcounted_compound_page() where VM_BUG_ON_PAGE() is.  It sees
page_mapcount() == 1.  The function wrongly assumes that subpages of
compound page cannot be be mapped by itself with PTEs..

The solution is simply drop the VM_BUG_ON_PAGE().

Note: there's no need to move the check under put_page_testzero().
Allocator will check the mapcount by itself before putting on free list.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Borislav Petkov <bp@alien8.de>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-24 17:49:42 -07:00
Naoya Horiguchi 822fc61367 mm: don't call __page_cache_release for hugetlb
__put_compound_page() calls __page_cache_release() to do some freeing
work, but it's obviously for thps, not for hugetlb.  We don't care because
PageLRU is always cleared and page->mem_cgroup is always NULL for hugetlb.
But it's not correct and has potential risks, so let's make it
conditional.

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hugh Dickins <hughd@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 16:35:19 -07:00
Minchan Kim cc5993bd7b mm: rename deactivate_page to deactivate_file_page
"deactivate_page" was created for file invalidation so it has too
specific logic for file-backed pages.  So, let's change the name of the
function and date to a file-specific one and yield the generic name.

Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Wang, Yalin <Yalin.Wang@sonymobile.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 16:35:17 -07:00
Linus Torvalds 6bec003528 Merge branch 'for-3.20/bdi' of git://git.kernel.dk/linux-block
Pull backing device changes from Jens Axboe:
 "This contains a cleanup of how the backing device is handled, in
  preparation for a rework of the life time rules.  In this part, the
  most important change is to split the unrelated nommu mmap flags from
  it, but also removing a backing_dev_info pointer from the
  address_space (and inode), and a cleanup of other various minor bits.

  Christoph did all the work here, I just fixed an oops with pages that
  have a swap backing.  Arnd fixed a missing export, and Oleg killed the
  lustre backing_dev_info from staging.  Last patch was from Al,
  unexporting parts that are now no longer needed outside"

* 'for-3.20/bdi' of git://git.kernel.dk/linux-block:
  Make super_blocks and sb_lock static
  mtd: export new mtd_mmap_capabilities
  fs: make inode_to_bdi() handle NULL inode
  staging/lustre/llite: get rid of backing_dev_info
  fs: remove default_backing_dev_info
  fs: don't reassign dirty inodes to default_backing_dev_info
  nfs: don't call bdi_unregister
  ceph: remove call to bdi_unregister
  fs: remove mapping->backing_dev_info
  fs: export inode_to_bdi and use it in favor of mapping->backing_dev_info
  nilfs2: set up s_bdi like the generic mount_bdev code
  block_dev: get bdev inode bdi directly from the block device
  block_dev: only write bdev inode on close
  fs: introduce f_op->mmap_capabilities for nommu mmap support
  fs: kill BDI_CAP_SWAP_BACKED
  fs: deduplicate noop_backing_dev_info
2015-02-12 13:50:21 -08:00
Kirill A. Shutemov 27ba0644ea rmap: drop support of non-linear mappings
We don't create non-linear mappings anymore.  Let's drop code which
handles them in rmap.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-10 14:30:31 -08:00
Christoph Hellwig 97b713ba3e fs: kill BDI_CAP_SWAP_BACKED
This bdi flag isn't too useful - we can determine that a vma is backed by
either swap or shmem trivially in the caller.

This also allows removing the backing_dev_info instaces for swap and shmem
in favor of noop_backing_dev_info.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-01-20 14:02:56 -07:00
Michal Hocko aabfb57296 mm: memcontrol: do not kill uncharge batching in free_pages_and_swap_cache
free_pages_and_swap_cache limits release_pages to PAGEVEC_SIZE chunks.
This is not a big deal for the normal release path but it completely kills
memcg uncharge batching which reduces res_counter spin_lock contention.
Dave has noticed this with his page fault scalability test case on a large
machine when the lock was basically dominating on all CPUs:

    80.18%    80.18%  [kernel]               [k] _raw_spin_lock
                  |
                  --- _raw_spin_lock
                     |
                     |--66.59%-- res_counter_uncharge_until
                     |          res_counter_uncharge
                     |          uncharge_batch
                     |          uncharge_list
                     |          mem_cgroup_uncharge_list
                     |          release_pages
                     |          free_pages_and_swap_cache
                     |          tlb_flush_mmu_free
                     |          |
                     |          |--90.12%-- unmap_single_vma
                     |          |          unmap_vmas
                     |          |          unmap_region
                     |          |          do_munmap
                     |          |          vm_munmap
                     |          |          sys_munmap
                     |          |          system_call_fastpath
                     |          |          __GI___munmap
                     |          |
                     |           --9.88%-- tlb_flush_mmu
                     |                     tlb_finish_mmu
                     |                     unmap_region
                     |                     do_munmap
                     |                     vm_munmap
                     |                     sys_munmap
                     |                     system_call_fastpath
                     |                     __GI___munmap

In his case the load was running in the root memcg and that part has been
handled by reverting 05b8430123 ("mm: memcontrol: use root_mem_cgroup
res_counter") because this is a clear regression, but the problem remains
inside dedicated memcgs.

There is no reason to limit release_pages to PAGEVEC_SIZE batches other
than lru_lock held times.  This logic, however, can be moved inside the
function.  mem_cgroup_uncharge_list and free_hot_cold_page_list do not
hold any lock for the whole pages_to_free list so it is safe to call them
in a single run.

The release_pages() code was previously breaking the lru_lock each
PAGEVEC_SIZE pages (ie, 14 pages).  However this code has no usage of
pagevecs so switch to breaking the lock at least every SWAP_CLUSTER_MAX
(32) pages.  This means that the lock acquisition frequency is
approximately halved and the max hold times are approximately doubled.

The now unneeded batching is removed from free_pages_and_swap_cache().

Also update the grossly out-of-date release_pages documentation.

Signed-off-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Dave Hansen <dave@sr71.net>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:59 -04:00
Johannes Weiner 747db954ca mm: memcontrol: use page lists for uncharge batching
Pages are now uncharged at release time, and all sources of batched
uncharges operate on lists of pages.  Directly use those lists, and
get rid of the per-task batching state.

This also batches statistics accounting, in addition to the res
counter charges, to reduce IRQ-disabling and re-enabling.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08 15:57:18 -07:00
Johannes Weiner 0a31bc97c8 mm: memcontrol: rewrite uncharge API
The memcg uncharging code that is involved towards the end of a page's
lifetime - truncation, reclaim, swapout, migration - is impressively
complicated and fragile.

Because anonymous and file pages were always charged before they had their
page->mapping established, uncharges had to happen when the page type
could still be known from the context; as in unmap for anonymous, page
cache removal for file and shmem pages, and swap cache truncation for swap
pages.  However, these operations happen well before the page is actually
freed, and so a lot of synchronization is necessary:

- Charging, uncharging, page migration, and charge migration all need
  to take a per-page bit spinlock as they could race with uncharging.

- Swap cache truncation happens during both swap-in and swap-out, and
  possibly repeatedly before the page is actually freed.  This means
  that the memcg swapout code is called from many contexts that make
  no sense and it has to figure out the direction from page state to
  make sure memory and memory+swap are always correctly charged.

- On page migration, the old page might be unmapped but then reused,
  so memcg code has to prevent untimely uncharging in that case.
  Because this code - which should be a simple charge transfer - is so
  special-cased, it is not reusable for replace_page_cache().

But now that charged pages always have a page->mapping, introduce
mem_cgroup_uncharge(), which is called after the final put_page(), when we
know for sure that nobody is looking at the page anymore.

For page migration, introduce mem_cgroup_migrate(), which is called after
the migration is successful and the new page is fully rmapped.  Because
the old page is no longer uncharged after migration, prevent double
charges by decoupling the page's memcg association (PCG_USED and
pc->mem_cgroup) from the page holding an actual charge.  The new bits
PCG_MEM and PCG_MEMSW represent the respective charges and are transferred
to the new page during migration.

mem_cgroup_migrate() is suitable for replace_page_cache() as well,
which gets rid of mem_cgroup_replace_page_cache().  However, care
needs to be taken because both the source and the target page can
already be charged and on the LRU when fuse is splicing: grab the page
lock on the charge moving side to prevent changing pc->mem_cgroup of a
page under migration.  Also, the lruvecs of both pages change as we
uncharge the old and charge the new during migration, and putback may
race with us, so grab the lru lock and isolate the pages iff on LRU to
prevent races and ensure the pages are on the right lruvec afterward.

Swap accounting is massively simplified: because the page is no longer
uncharged as early as swap cache deletion, a new mem_cgroup_swapout() can
transfer the page's memory+swap charge (PCG_MEMSW) to the swap entry
before the final put_page() in page reclaim.

Finally, page_cgroup changes are now protected by whatever protection the
page itself offers: anonymous pages are charged under the page table lock,
whereas page cache insertions, swapin, and migration hold the page lock.
Uncharging happens under full exclusion with no outstanding references.
Charging and uncharging also ensure that the page is off-LRU, which
serializes against charge migration.  Remove the very costly page_cgroup
lock and set pc->flags non-atomically.

[mhocko@suse.cz: mem_cgroup_charge_statistics needs preempt_disable]
[vdavydov@parallels.com: fix flags definition]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Tested-by: Jet Chen <jet.chen@intel.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Tested-by: Felipe Balbi <balbi@ti.com>
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08 15:57:17 -07:00
Johannes Weiner 00501b531c mm: memcontrol: rewrite charge API
These patches rework memcg charge lifetime to integrate more naturally
with the lifetime of user pages.  This drastically simplifies the code and
reduces charging and uncharging overhead.  The most expensive part of
charging and uncharging is the page_cgroup bit spinlock, which is removed
entirely after this series.

Here are the top-10 profile entries of a stress test that reads a 128G
sparse file on a freshly booted box, without even a dedicated cgroup (i.e.
 executing in the root memcg).  Before:

    15.36%              cat  [kernel.kallsyms]   [k] copy_user_generic_string
    13.31%              cat  [kernel.kallsyms]   [k] memset
    11.48%              cat  [kernel.kallsyms]   [k] do_mpage_readpage
     4.23%              cat  [kernel.kallsyms]   [k] get_page_from_freelist
     2.38%              cat  [kernel.kallsyms]   [k] put_page
     2.32%              cat  [kernel.kallsyms]   [k] __mem_cgroup_commit_charge
     2.18%          kswapd0  [kernel.kallsyms]   [k] __mem_cgroup_uncharge_common
     1.92%          kswapd0  [kernel.kallsyms]   [k] shrink_page_list
     1.86%              cat  [kernel.kallsyms]   [k] __radix_tree_lookup
     1.62%              cat  [kernel.kallsyms]   [k] __pagevec_lru_add_fn

After:

    15.67%           cat  [kernel.kallsyms]   [k] copy_user_generic_string
    13.48%           cat  [kernel.kallsyms]   [k] memset
    11.42%           cat  [kernel.kallsyms]   [k] do_mpage_readpage
     3.98%           cat  [kernel.kallsyms]   [k] get_page_from_freelist
     2.46%           cat  [kernel.kallsyms]   [k] put_page
     2.13%       kswapd0  [kernel.kallsyms]   [k] shrink_page_list
     1.88%           cat  [kernel.kallsyms]   [k] __radix_tree_lookup
     1.67%           cat  [kernel.kallsyms]   [k] __pagevec_lru_add_fn
     1.39%       kswapd0  [kernel.kallsyms]   [k] free_pcppages_bulk
     1.30%           cat  [kernel.kallsyms]   [k] kfree

As you can see, the memcg footprint has shrunk quite a bit.

   text    data     bss     dec     hex filename
  37970    9892     400   48262    bc86 mm/memcontrol.o.old
  35239    9892     400   45531    b1db mm/memcontrol.o

This patch (of 4):

The memcg charge API charges pages before they are rmapped - i.e.  have an
actual "type" - and so every callsite needs its own set of charge and
uncharge functions to know what type is being operated on.  Worse,
uncharge has to happen from a context that is still type-specific, rather
than at the end of the page's lifetime with exclusive access, and so
requires a lot of synchronization.

Rewrite the charge API to provide a generic set of try_charge(),
commit_charge() and cancel_charge() transaction operations, much like
what's currently done for swap-in:

  mem_cgroup_try_charge() attempts to reserve a charge, reclaiming
  pages from the memcg if necessary.

  mem_cgroup_commit_charge() commits the page to the charge once it
  has a valid page->mapping and PageAnon() reliably tells the type.

  mem_cgroup_cancel_charge() aborts the transaction.

This reduces the charge API and enables subsequent patches to
drastically simplify uncharging.

As pages need to be committed after rmap is established but before they
are added to the LRU, page_add_new_anon_rmap() must stop doing LRU
additions again.  Revive lru_cache_add_active_or_unevictable().

[hughd@google.com: fix shmem_unuse]
[hughd@google.com: Add comments on the private use of -EAGAIN]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08 15:57:17 -07:00
Mel Gorman 24b7e5819a mm: pagemap: avoid unnecessary overhead when tracepoints are deactivated
This was formerly the series "Improve sequential read throughput" which
noted some major differences in performance of tiobench since 3.0.
While there are a number of factors, two that dominated were the
introduction of the fair zone allocation policy and changes to CFQ.

The behaviour of fair zone allocation policy makes more sense than
tiobench as a benchmark and CFQ defaults were not changed due to
insufficient benchmarking.

This series is what's left.  It's one functional fix to the fair zone
allocation policy when used on NUMA machines and a reduction of overhead
in general.  tiobench was used for the comparison despite its flaws as
an IO benchmark as in this case we are primarily interested in the
overhead of page allocator and page reclaim activity.

On UMA, it makes little difference to overhead

          3.16.0-rc3   3.16.0-rc3
             vanilla lowercost-v5
User          383.61      386.77
System        403.83      401.74
Elapsed      5411.50     5413.11

On a 4-socket NUMA machine it's a bit more noticable

          3.16.0-rc3   3.16.0-rc3
             vanilla lowercost-v5
User          746.94      802.00
System      65336.22    40852.33
Elapsed     27553.52    27368.46

This patch (of 6):

The LRU insertion and activate tracepoints take PFN as a parameter
forcing the overhead to the caller.  Move the overhead to the tracepoint
fast-assign method to ensure the cost is only incurred when the
tracepoint is active.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 18:01:20 -07:00
Hugh Dickins eb39d618f9 mm: replace init_page_accessed by __SetPageReferenced
Do we really need an exported alias for __SetPageReferenced()? Its
callers better know what they're doing, in which case the page would not
be already marked referenced.  Kill init_page_accessed(), just
__SetPageReferenced() inline.

Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Prabhakar Lad <prabhakar.csengg@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 18:01:19 -07:00
Mel Gorman 2457aec637 mm: non-atomically mark page accessed during page cache allocation where possible
aops->write_begin may allocate a new page and make it visible only to have
mark_page_accessed called almost immediately after.  Once the page is
visible the atomic operations are necessary which is noticable overhead
when writing to an in-memory filesystem like tmpfs but should also be
noticable with fast storage.  The objective of the patch is to initialse
the accessed information with non-atomic operations before the page is
visible.

The bulk of filesystems directly or indirectly use
grab_cache_page_write_begin or find_or_create_page for the initial
allocation of a page cache page.  This patch adds an init_page_accessed()
helper which behaves like the first call to mark_page_accessed() but may
called before the page is visible and can be done non-atomically.

The primary APIs of concern in this care are the following and are used
by most filesystems.

	find_get_page
	find_lock_page
	find_or_create_page
	grab_cache_page_nowait
	grab_cache_page_write_begin

All of them are very similar in detail to the patch creates a core helper
pagecache_get_page() which takes a flags parameter that affects its
behavior such as whether the page should be marked accessed or not.  Then
old API is preserved but is basically a thin wrapper around this core
function.

Each of the filesystems are then updated to avoid calling
mark_page_accessed when it is known that the VM interfaces have already
done the job.  There is a slight snag in that the timing of the
mark_page_accessed() has now changed so in rare cases it's possible a page
gets to the end of the LRU as PageReferenced where as previously it might
have been repromoted.  This is expected to be rare but it's worth the
filesystem people thinking about it in case they see a problem with the
timing change.  It is also the case that some filesystems may be marking
pages accessed that previously did not but it makes sense that filesystems
have consistent behaviour in this regard.

The test case used to evaulate this is a simple dd of a large file done
multiple times with the file deleted on each iterations.  The size of the
file is 1/10th physical memory to avoid dirty page balancing.  In the
async case it will be possible that the workload completes without even
hitting the disk and will have variable results but highlight the impact
of mark_page_accessed for async IO.  The sync results are expected to be
more stable.  The exception is tmpfs where the normal case is for the "IO"
to not hit the disk.

The test machine was single socket and UMA to avoid any scheduling or NUMA
artifacts.  Throughput and wall times are presented for sync IO, only wall
times are shown for async as the granularity reported by dd and the
variability is unsuitable for comparison.  As async results were variable
do to writback timings, I'm only reporting the maximum figures.  The sync
results were stable enough to make the mean and stddev uninteresting.

The performance results are reported based on a run with no profiling.
Profile data is based on a separate run with oprofile running.

async dd
                                    3.15.0-rc3            3.15.0-rc3
                                       vanilla           accessed-v2
ext3    Max      elapsed     13.9900 (  0.00%)     11.5900 ( 17.16%)
tmpfs	Max      elapsed      0.5100 (  0.00%)      0.4900 (  3.92%)
btrfs   Max      elapsed     12.8100 (  0.00%)     12.7800 (  0.23%)
ext4	Max      elapsed     18.6000 (  0.00%)     13.3400 ( 28.28%)
xfs	Max      elapsed     12.5600 (  0.00%)      2.0900 ( 83.36%)

The XFS figure is a bit strange as it managed to avoid a worst case by
sheer luck but the average figures looked reasonable.

        samples percentage
ext3       86107    0.9783  vmlinux-3.15.0-rc4-vanilla        mark_page_accessed
ext3       23833    0.2710  vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed
ext3        5036    0.0573  vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed
ext4       64566    0.8961  vmlinux-3.15.0-rc4-vanilla        mark_page_accessed
ext4        5322    0.0713  vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed
ext4        2869    0.0384  vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed
xfs        62126    1.7675  vmlinux-3.15.0-rc4-vanilla        mark_page_accessed
xfs         1904    0.0554  vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed
xfs          103    0.0030  vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed
btrfs      10655    0.1338  vmlinux-3.15.0-rc4-vanilla        mark_page_accessed
btrfs       2020    0.0273  vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed
btrfs        587    0.0079  vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed
tmpfs      59562    3.2628  vmlinux-3.15.0-rc4-vanilla        mark_page_accessed
tmpfs       1210    0.0696  vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed
tmpfs         94    0.0054  vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed

[akpm@linux-foundation.org: don't run init_page_accessed() against an uninitialised pointer]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jan Kara <jack@suse.cz>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Tested-by: Prabhakar Lad <prabhakar.csengg@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:10 -07:00
Mel Gorman 6fb81a17d2 mm: do not use unnecessary atomic operations when adding pages to the LRU
When adding pages to the LRU we clear the active bit unconditionally.
As the page could be reachable from other paths we cannot use unlocked
operations without risk of corruption such as a parallel
mark_page_accessed.  This patch tests if is necessary to clear the
active flag before using an atomic operation.  This potentially opens a
tiny race when PageActive is checked as mark_page_accessed could be
called after PageActive was checked.  The race already exists but this
patch changes it slightly.  The consequence is that that the page may be
promoted to the active list that might have been left on the inactive
list before the patch.  It's too tiny a race and too marginal a
consequence to always use atomic operations for.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jan Kara <jack@suse.cz>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:10 -07:00
Mel Gorman e3741b506c mm: do not use atomic operations when releasing pages
There should be no references to it any more and a parallel mark should
not be reordered against us.  Use non-locked varient to clear page active.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jan Kara <jack@suse.cz>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:09 -07:00
Mel Gorman b745bc85f2 mm: page_alloc: convert hot/cold parameter and immediate callers to bool
cold is a bool, make it one.  Make the likely case the "if" part of the
block instead of the else as according to the optimisation manual this is
preferred.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jan Kara <jack@suse.cz>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:09 -07:00
Jianyu Zhan d2ee40eae9 mm: introdule compound_head_by_tail()
Currently, in put_compound_page(), we have

======
if (likely(!PageTail(page))) {                  <------  (1)
        if (put_page_testzero(page)) {
                 /*
                 ¦* By the time all refcounts have been released
                 ¦* split_huge_page cannot run anymore from under us.
                 ¦*/
                 if (PageHead(page))
                         __put_compound_page(page);
                 else
                         __put_single_page(page);
         }
         return;
}

/* __split_huge_page_refcount can run under us */
page_head = compound_head(page);        <------------ (2)
======

if at (1) ,  we fail the check, this means page is *likely* a tail page.

Then at (2), as compoud_head(page) is inlined, it is :

======
static inline struct page *compound_head(struct page *page)
{
          if (unlikely(PageTail(page))) {           <----------- (3)
              struct page *head = page->first_page;

                smp_rmb();
                if (likely(PageTail(page)))
                        return head;
        }
        return page;
}
======

here, the (3) unlikely in the case is a negative hint, because it is
*likely* a tail page.  So the check (3) in this case is not good, so I
introduce a helper for this case.

So this patch introduces compound_head_by_tail() which deals with a
possible tail page(though it could be spilt by a racy thread), and make
compound_head() a wrapper on it.

This patch has no functional change, and it reduces the object
size slightly:
   text    data     bss     dec     hex  filename
  11003    1328      16   12347    303b  mm/swap.o.orig
  10971    1328      16   12315    301b  mm/swap.o.patched

I've ran "perf top -e branch-miss" to observe branch-miss in this case.
As Michael points out, it's a slow path, so only very few times this case
happens.  But I grep'ed the code base, and found there still are some
other call sites could be benifited from this helper.  And given that it
only bloating up the source by only 5 lines, but with a reduced object
size.  I still believe this helper deserves to exsit.

Signed-off-by: Jianyu Zhan <nasa4836@gmail.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Jiang Liu <liuj97@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:03 -07:00
Jianyu Zhan 4bd3e8f7b9 mm/swap.c: split put_compound_page()
Currently, put_compound_page() carefully handles tricky cases to avoid
racing with compound page releasing or splitting, which makes it quite
lenthy (about 200+ lines) and needs deep tab indention, which makes it
quite hard to follow and maintain.

Now based on two helpers introduced in the previous patch ("mm/swap.c:
introduce put_[un]refcounted_compound_page helpers for spliting
put_compound_page"), this patch replaces those two lengthy code paths with
these two helpers, respectively.  Also, it has some comment rephrasing.

After this patch, the put_compound_page() is very compact, thus easy to
read and maintain.

After splitting, the object file is of same size as the original one.
Actually, I've diff'ed put_compound_page()'s orginal disassemble code and
the patched disassemble code, the are 100% the same!

This fact shows that this splitting has no functional change, but it
brings readability.

This patch and the previous one blow the code by 32 lines, mostly due to
comments.

Signed-off-by: Jianyu Zhan <nasa4836@gmail.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Jiang Liu <liuj97@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:03 -07:00
Jianyu Zhan c747ce7907 mm/swap.c: introduce put_[un]refcounted_compound_page helpers for splitting put_compound_page()
Currently, put_compound_page() carefully handles tricky cases to avoid
racing with compound page releasing or splitting, which makes it quite
lenthy (about 200+ lines) and needs deep tab indention, which makes it
quite hard to follow and maintain.

This patch and the next patch refactor this function.

Based on the code skeleton of put_compound_page:

put_compound_pge:
        if !PageTail(page)
        	put head page fastpath;
		return;

        /* else PageTail */
        page_head = compound_head(page)
        if !__compound_tail_refcounted(page_head)
		put head page optimal path; <---(1)
		return;
        else
		put head page slowpath; <--- (2)
                return;

This patch introduces two helpers, put_[un]refcounted_compound_page,
handling the code path (1) and code path (2), respectively.  They both are
tagged __always_inline, thus elmiating function call overhead, making them
operating the same way as before.

They are almost copied verbatim(except one place, a "goto out_put_single"
is expanded), with some comments rephrasing.

Signed-off-by: Jianyu Zhan <nasa4836@gmail.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Jiang Liu <liuj97@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:03 -07:00
Christoph Lameter 7c8e0181e6 mm: replace __get_cpu_var uses with this_cpu_ptr
Replace places where __get_cpu_var() is used for an address calculation
with this_cpu_ptr().

Signed-off-by: Christoph Lameter <cl@linux.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:03 -07:00
Jianyu Zhan 2329d3751b mm/swap.c: clean up *lru_cache_add* functions
In mm/swap.c, __lru_cache_add() is exported, but actually there are no
users outside this file.

This patch unexports __lru_cache_add(), and makes it static.  It also
exports lru_cache_add_file(), as it is use by cifs and fuse, which can
loaded as modules.

Signed-off-by: Jianyu Zhan <nasa4836@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shaohua Li <shli@kernel.org>
Cc: Bob Liu <bob.liu@oracle.com>
Cc: Seth Jennings <sjenning@linux.vnet.ibm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:00 -07:00
Johannes Weiner a528910e12 mm: thrash detection-based file cache sizing
The VM maintains cached filesystem pages on two types of lists.  One
list holds the pages recently faulted into the cache, the other list
holds pages that have been referenced repeatedly on that first list.
The idea is to prefer reclaiming young pages over those that have shown
to benefit from caching in the past.  We call the recently usedbut
ultimately was not significantly better than a FIFO policy and still
thrashed cache based on eviction speed, rather than actual demand for
cache.

This patch solves one half of the problem by decoupling the ability to
detect working set changes from the inactive list size.  By maintaining
a history of recently evicted file pages it can detect frequently used
pages with an arbitrarily small inactive list size, and subsequently
apply pressure on the active list based on actual demand for cache, not
just overall eviction speed.

Every zone maintains a counter that tracks inactive list aging speed.
When a page is evicted, a snapshot of this counter is stored in the
now-empty page cache radix tree slot.  On refault, the minimum access
distance of the page can be assessed, to evaluate whether the page
should be part of the active list or not.

This fixes the VM's blindness towards working set changes in excess of
the inactive list.  And it's the foundation to further improve the
protection ability and reduce the minimum inactive list size of 50%.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Bob Liu <bob.liu@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Metin Doslu <metin@citusdata.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ozgun Erdogan <ozgun@citusdata.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <klamm@yandex-team.ru>
Cc: Ryan Mallon <rmallon@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-03 16:21:01 -07:00
Johannes Weiner 0cd6144aad mm + fs: prepare for non-page entries in page cache radix trees
shmem mappings already contain exceptional entries where swap slot
information is remembered.

To be able to store eviction information for regular page cache, prepare
every site dealing with the radix trees directly to handle entries other
than pages.

The common lookup functions will filter out non-page entries and return
NULL for page cache holes, just as before.  But provide a raw version of
the API which returns non-page entries as well, and switch shmem over to
use it.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Bob Liu <bob.liu@oracle.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Metin Doslu <metin@citusdata.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ozgun Erdogan <ozgun@citusdata.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <klamm@yandex-team.ru>
Cc: Ryan Mallon <rmallon@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-03 16:21:00 -07:00
David Rientjes 668f9abbd4 mm: close PageTail race
Commit bf6bddf192 ("mm: introduce compaction and migration for
ballooned pages") introduces page_count(page) into memory compaction
which dereferences page->first_page if PageTail(page).

This results in a very rare NULL pointer dereference on the
aforementioned page_count(page).  Indeed, anything that does
compound_head(), including page_count() is susceptible to racing with
prep_compound_page() and seeing a NULL or dangling page->first_page
pointer.

This patch uses Andrea's implementation of compound_trans_head() that
deals with such a race and makes it the default compound_head()
implementation.  This includes a read memory barrier that ensures that
if PageTail(head) is true that we return a head page that is neither
NULL nor dangling.  The patch then adds a store memory barrier to
prep_compound_page() to ensure page->first_page is set.

This is the safest way to ensure we see the head page that we are
expecting, PageTail(page) is already in the unlikely() path and the
memory barriers are unfortunately required.

Hugetlbfs is the exception, we don't enforce a store memory barrier
during init since no race is possible.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Holger Kiehl <Holger.Kiehl@dwd.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-03-04 07:55:47 -08:00
Sasha Levin 309381feae mm: dump page when hitting a VM_BUG_ON using VM_BUG_ON_PAGE
Most of the VM_BUG_ON assertions are performed on a page.  Usually, when
one of these assertions fails we'll get a BUG_ON with a call stack and
the registers.

I've recently noticed based on the requests to add a small piece of code
that dumps the page to various VM_BUG_ON sites that the page dump is
quite useful to people debugging issues in mm.

This patch adds a VM_BUG_ON_PAGE(cond, page) which beyond doing what
VM_BUG_ON() does, also dumps the page before executing the actual
BUG_ON.

[akpm@linux-foundation.org: fix up includes]
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:50 -08:00
Andrew Morton 26296ad2df mm/swap.c: reorganize put_compound_page()
Tweak it so save a tab stop, make code layout slightly less nutty.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Pravin Shelar <pshelar@nicira.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ben Hutchings <bhutchings@solarflare.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:43 -08:00
Andrea Arcangeli 3bfcd13ec0 mm: hugetlbfs: use __compound_tail_refcounted in __get_page_tail too
Also remove hugetlb.h which isn't needed anymore as PageHeadHuge is
handled in mm.h.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Pravin Shelar <pshelar@nicira.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ben Hutchings <bhutchings@solarflare.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:43 -08:00
Andrea Arcangeli 44518d2b32 mm: tail page refcounting optimization for slab and hugetlbfs
This skips the _mapcount mangling for slab and hugetlbfs pages.

The main trouble in doing this is to guarantee that PageSlab and
PageHeadHuge remains constant for all get_page/put_page run on the tail
of slab or hugetlbfs compound pages.  Otherwise if they're set during
get_page but not set during put_page, the _mapcount of the tail page
would underflow.

PageHeadHuge will remain true until the compound page is released and
enters the buddy allocator so it won't risk to change even if the tail
page is the last reference left on the page.

PG_slab instead is cleared before the slab frees the head page with
put_page, so if the tail pin is released after the slab freed the page,
we would have a problem.  But in the slab case the tail pin cannot be
the last reference left on the page.  This is because the slab code is
free to reuse the compound page after a kfree/kmem_cache_free without
having to check if there's any tail pin left.  In turn all tail pins
must be always released while the head is still pinned by the slab code
and so we know PG_slab will be still set too.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Pravin Shelar <pshelar@nicira.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ben Hutchings <bhutchings@solarflare.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:43 -08:00
Andrea Arcangeli ebf360f9bb mm: hugetlbfs: move the put/get_page slab and hugetlbfs optimization in a faster path
We don't actually need a reference on the head page in the slab and
hugetlbfs paths, as long as we add a smp_rmb() which should be faster
than get_page_unless_zero.

[akpm@linux-foundation.org: fix typo in comment]
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Pravin Shelar <pshelar@nicira.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ben Hutchings <bhutchings@solarflare.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:43 -08:00
Andrea Arcangeli 27c73ae759 mm: hugetlbfs: fix hugetlbfs optimization
Commit 7cb2ef56e6 ("mm: fix aio performance regression for database
caused by THP") can cause dereference of a dangling pointer if
split_huge_page runs during PageHuge() if there are updates to the
tail_page->private field.

Also it is repeating compound_head twice for hugetlbfs and it is running
compound_head+compound_trans_head for THP when a single one is needed in
both cases.

The new code within the PageSlab() check doesn't need to verify that the
THP page size is never bigger than the smallest hugetlbfs page size, to
avoid memory corruption.

A longstanding theoretical race condition was found while fixing the
above (see the change right after the skip_unlock label, that is
relevant for the compound_lock path too).

By re-establishing the _mapcount tail refcounting for all compound
pages, this also fixes the below problem:

  echo 0 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

  BUG: Bad page state in process bash  pfn:59a01
  page:ffffea000139b038 count:0 mapcount:10 mapping:          (null) index:0x0
  page flags: 0x1c00000000008000(tail)
  Modules linked in:
  CPU: 6 PID: 2018 Comm: bash Not tainted 3.12.0+ #25
  Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011
  Call Trace:
    dump_stack+0x55/0x76
    bad_page+0xd5/0x130
    free_pages_prepare+0x213/0x280
    __free_pages+0x36/0x80
    update_and_free_page+0xc1/0xd0
    free_pool_huge_page+0xc2/0xe0
    set_max_huge_pages.part.58+0x14c/0x220
    nr_hugepages_store_common.isra.60+0xd0/0xf0
    nr_hugepages_store+0x13/0x20
    kobj_attr_store+0xf/0x20
    sysfs_write_file+0x189/0x1e0
    vfs_write+0xc5/0x1f0
    SyS_write+0x55/0xb0
    system_call_fastpath+0x16/0x1b

Signed-off-by: Khalid Aziz <khalid.aziz@oracle.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Tested-by: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Pravin Shelar <pshelar@nicira.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ben Hutchings <bhutchings@solarflare.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-21 16:42:27 -08:00
Mikulas Patocka 8077c0d983 bdi: test bdi_init failure
There were two places where return value from bdi_init was not tested.

Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-11-08 08:59:44 -07:00
Chris Metcalf 5fbc461636 mm: make lru_add_drain_all() selective
make lru_add_drain_all() only selectively interrupt the cpus that have
per-cpu free pages that can be drained.

This is important in nohz mode where calling mlockall(), for example,
otherwise will interrupt every core unnecessarily.

This is important on workloads where nohz cores are handling 10 Gb traffic
in userspace.  Those CPUs do not enter the kernel and place pages into LRU
pagevecs and they really, really don't want to be interrupted, or they
drop packets on the floor.

Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 15:38:02 -07:00
Khalid Aziz 7cb2ef56e6 mm: fix aio performance regression for database caused by THP
I am working with a tool that simulates oracle database I/O workload.
This tool (orion to be specific -
<http://docs.oracle.com/cd/E11882_01/server.112/e16638/iodesign.htm#autoId24>)
allocates hugetlbfs pages using shmget() with SHM_HUGETLB flag.  It then
does aio into these pages from flash disks using various common block
sizes used by database.  I am looking at performance with two of the most
common block sizes - 1M and 64K.  aio performance with these two block
sizes plunged after Transparent HugePages was introduced in the kernel.
Here are performance numbers:

		pre-THP		2.6.39		3.11-rc5
1M read		8384 MB/s	5629 MB/s	6501 MB/s
64K read	7867 MB/s	4576 MB/s	4251 MB/s

I have narrowed the performance impact down to the overheads introduced by
THP in __get_page_tail() and put_compound_page() routines.  perf top shows
>40% of cycles being spent in these two routines.  Every time direct I/O
to hugetlbfs pages starts, kernel calls get_page() to grab a reference to
the pages and calls put_page() when I/O completes to put the reference
away.  THP introduced significant amount of locking overhead to get_page()
and put_page() when dealing with compound pages because hugepages can be
split underneath get_page() and put_page().  It added this overhead
irrespective of whether it is dealing with hugetlbfs pages or transparent
hugepages.  This resulted in 20%-45% drop in aio performance when using
hugetlbfs pages.

Since hugetlbfs pages can not be split, there is no reason to go through
all the locking overhead for these pages from what I can see.  I added
code to __get_page_tail() and put_compound_page() to bypass all the
locking code when working with hugetlbfs pages.  This improved performance
significantly.  Performance numbers with this patch:

		pre-THP		3.11-rc5	3.11-rc5 + Patch
1M read		8384 MB/s	6501 MB/s	8371 MB/s
64K read	7867 MB/s	4251 MB/s	6510 MB/s

Performance with 64K read is still lower than what it was before THP, but
still a 53% improvement.  It does mean there is more work to be done but I
will take a 53% improvement for now.

Please take a look at the following patch and let me know if it looks
reasonable.

[akpm@linux-foundation.org: tweak comments]
Signed-off-by: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Pravin B Shelar <pshelar@nicira.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 15:57:55 -07:00
Kirill A. Shutemov e180cf806a thp, mm: avoid PageUnevictable on active/inactive lru lists
active/inactive lru lists can contain unevicable pages (i.e.  ramfs pages
that have been placed on the LRU lists when first allocated), but these
pages must not have PageUnevictable set - otherwise shrink_[in]active_list
goes crazy:

kernel BUG at /home/space/kas/git/public/linux-next/mm/vmscan.c:1122!

1090 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1091                 struct lruvec *lruvec, struct list_head *dst,
1092                 unsigned long *nr_scanned, struct scan_control *sc,
1093                 isolate_mode_t mode, enum lru_list lru)
1094 {
...
1108                 switch (__isolate_lru_page(page, mode)) {
1109                 case 0:
...
1116                 case -EBUSY:
...
1121                 default:
1122                         BUG();
1123                 }
1124         }
...
1130 }

__isolate_lru_page() returns EINVAL for PageUnevictable(page).

For lru_add_page_tail(), it means we should not set PageUnevictable()
for tail pages unless we're sure that it will go to LRU_UNEVICTABLE.
Let's just copy PG_active and PG_unevictable from head page in
__split_huge_page_refcount(), it will simplify lru_add_page_tail().

This will fix one more bug in lru_add_page_tail(): if
page_evictable(page_tail) is false and PageLRU(page) is true, page_tail
will go to the same lru as page, but nobody cares to sync page_tail
active/inactive state with page.  So we can end up with inactive page on
active lru.  The patch will fix it as well since we copy PG_active from
head page.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-31 14:41:03 -07:00
Naoya Horiguchi ef2a2cbdda mm/swap.c: clear PageActive before adding pages onto unevictable list
As a result of commit 13f7f78981 ("mm: pagevec: defer deciding which
LRU to add a page to until pagevec drain time"), pages on unevictable
lists can have both of PageActive and PageUnevictable set.  This is not
only confusing, but also corrupts page migration and
shrink_[in]active_list.

This patch fixes the problem by adding ClearPageActive before adding
pages into unevictable list.  It also cleans up VM_BUG_ONs.

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-31 14:41:03 -07:00
Mel Gorman c53954a092 mm: remove lru parameter from __lru_cache_add and lru_cache_add_lru
Similar to __pagevec_lru_add, this patch removes the LRU parameter from
__lru_cache_add and lru_cache_add_lru as the caller does not control the
exact LRU the page gets added to.  lru_cache_add_lru gets renamed to
lru_cache_add the name is silly without the lru parameter.  With the
parameter removed, it is required that the caller indicate if they want
the page added to the active or inactive list by setting or clearing
PageActive respectively.

[akpm@linux-foundation.org: Suggested the patch]
[gang.chen@asianux.com: fix used-unintialized warning]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Chen Gang <gang.chen@asianux.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Alexey Lyahkov <alexey.lyashkov@gmail.com>
Cc: Andrew Perepechko <anserper@ya.ru>
Cc: Robin Dong <sanbai@taobao.com>
Cc: Theodore Tso <tytso@mit.edu>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Bernd Schubert <bernd.schubert@fastmail.fm>
Cc: David Howells <dhowells@redhat.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 16:07:31 -07:00
Mel Gorman a0b8cab3b9 mm: remove lru parameter from __pagevec_lru_add and remove parts of pagevec API
Now that the LRU to add a page to is decided at LRU-add time, remove the
misleading lru parameter from __pagevec_lru_add.  A consequence of this
is that the pagevec_lru_add_file, pagevec_lru_add_anon and similar
helpers are misleading as the caller no longer has direct control over
what LRU the page is added to.  Unused helpers are removed by this patch
and existing users of pagevec_lru_add_file() are converted to use
lru_cache_add_file() directly and use the per-cpu pagevecs instead of
creating their own pagevec.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Alexey Lyahkov <alexey.lyashkov@gmail.com>
Cc: Andrew Perepechko <anserper@ya.ru>
Cc: Robin Dong <sanbai@taobao.com>
Cc: Theodore Tso <tytso@mit.edu>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Bernd Schubert <bernd.schubert@fastmail.fm>
Cc: David Howells <dhowells@redhat.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 16:07:31 -07:00
Mel Gorman 059285a25f mm: activate !PageLRU pages on mark_page_accessed if page is on local pagevec
If a page is on a pagevec then it is !PageLRU and mark_page_accessed()
may fail to move a page to the active list as expected.  Now that the
LRU is selected at LRU drain time, mark pages PageActive if they are on
the local pagevec so it gets moved to the correct list at LRU drain
time.  Using a debugging patch it was found that for a simple git
checkout based workload that pages were never added to the active file
list in practice but with this patch applied they are.

				before   after
LRU Add Active File                  0      750583
LRU Add Active Anon            2640587     2702818
LRU Add Inactive File          8833662     8068353
LRU Add Inactive Anon              207         200

Note that only pages on the local pagevec are considered on purpose.  A
!PageLRU page could be in the process of being released, reclaimed,
migrated or on a remote pagevec that is currently being drained.
Marking it PageActive is vunerable to races where PageLRU and Active
bits are checked at the wrong time.  Page reclaim will trigger
VM_BUG_ONs but depending on when the race hits, it could also free a
PageActive page to the page allocator and trigger a bad_page warning.
Similarly a potential race exists between a per-cpu drain on a pagevec
list and an activation on a remote CPU.

				lru_add_drain_cpu
				__pagevec_lru_add
				  lru = page_lru(page);
mark_page_accessed
  if (PageLRU(page))
    activate_page
  else
    SetPageActive
				  SetPageLRU(page);
				  add_page_to_lru_list(page, lruvec, lru);

In this case a PageActive page is added to the inactivate list and later
the inactive/active stats will get skewed.  While the PageActive checks
in vmscan could be removed and potentially dealt with, a skew in the
statistics would be very difficult to detect.  Hence this patch deals
just with the common case where a page being marked accessed has just
been added to the local pagevec.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Jan Kara <jack@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Alexey Lyahkov <alexey.lyashkov@gmail.com>
Cc: Andrew Perepechko <anserper@ya.ru>
Cc: Robin Dong <sanbai@taobao.com>
Cc: Theodore Tso <tytso@mit.edu>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Bernd Schubert <bernd.schubert@fastmail.fm>
Cc: David Howells <dhowells@redhat.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 16:07:31 -07:00
Mel Gorman 13f7f78981 mm: pagevec: defer deciding which LRU to add a page to until pagevec drain time
mark_page_accessed() cannot activate an inactive page that is located on
an inactive LRU pagevec.  Hints from filesystems may be ignored as a
result.  In preparation for fixing that problem, this patch removes the
per-LRU pagevecs and leaves just one pagevec.  The final LRU the page is
added to is deferred until the pagevec is drained.

This means that fewer pagevecs are available and potentially there is
greater contention on the LRU lock.  However, this only applies in the
case where there is an almost perfect mix of file, anon, active and
inactive pages being added to the LRU.  In practice I expect that we are
adding stream of pages of a particular time and that the changes in
contention will barely be measurable.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Alexey Lyahkov <alexey.lyashkov@gmail.com>
Cc: Andrew Perepechko <anserper@ya.ru>
Cc: Robin Dong <sanbai@taobao.com>
Cc: Theodore Tso <tytso@mit.edu>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Bernd Schubert <bernd.schubert@fastmail.fm>
Cc: David Howells <dhowells@redhat.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 16:07:31 -07:00
Mel Gorman c6286c9839 mm: add tracepoints for LRU activation and insertions
Andrew Perepechko reported a problem whereby pages are being prematurely
evicted as the mark_page_accessed() hint is ignored for pages that are
currently on a pagevec --
http://www.spinics.net/lists/linux-ext4/msg37340.html .

Alexey Lyahkov and Robin Dong have also reported problems recently that
could be due to hot pages reaching the end of the inactive list too
quickly and be reclaimed.

Rather than addressing this on a per-filesystem basis, this series aims
to fix the mark_page_accessed() interface by deferring what LRU a page
is added to pagevec drain time and allowing mark_page_accessed() to call
SetPageActive on a pagevec page.

Patch 1 adds two tracepoints for LRU page activation and insertion. Using
	these processes it's possible to build a model of pages in the
	LRU that can be processed offline.

Patch 2 defers making the decision on what LRU to add a page to until when
	the pagevec is drained.

Patch 3 searches the local pagevec for pages to mark PageActive on
	mark_page_accessed. The changelog explains why only the local
	pagevec is examined.

Patches 4 and 5 tidy up the API.

postmark, a dd-based test and fs-mark both single and threaded mode were
run but none of them showed any performance degradation or gain as a
result of the patch.

Using patch 1, I built a *very* basic model of the LRU to examine
offline what the average age of different page types on the LRU were in
milliseconds.  Of course, capturing the trace distorts the test as it's
written to local disk but it does not matter for the purposes of this
test.  The average age of pages in milliseconds were

				    vanilla deferdrain
Average age mapped anon:               1454       1250
Average age mapped file:             127841     155552
Average age unmapped anon:               85        235
Average age unmapped file:            73633      38884
Average age unmapped buffers:         74054     116155

The LRU activity was mostly files which you'd expect for a dd-based
workload.  Note that the average age of buffer pages is increased by the
series and it is expected this is due to the fact that the buffer pages
are now getting added to the active list when drained from the pagevecs.
Note that the average age of the unmapped file data is decreased as they
are still added to the inactive list and are reclaimed before the
buffers.

There is no guarantee this is a universal win for all workloads and it
would be nice if the filesystem people gave some thought as to whether
this decision is generally a win or a loss.

This patch:

Using these tracepoints it is possible to model LRU activity and the
average residency of pages of different types.  This can be used to
debug problems related to premature reclaim of pages of particular
types.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Alexey Lyahkov <alexey.lyashkov@gmail.com>
Cc: Andrew Perepechko <anserper@ya.ru>
Cc: Robin Dong <sanbai@taobao.com>
Cc: Theodore Tso <tytso@mit.edu>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Bernd Schubert <bernd.schubert@fastmail.fm>
Cc: David Howells <dhowells@redhat.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 16:07:31 -07:00
Kent Overstreet a27bb332c0 aio: don't include aio.h in sched.h
Faster kernel compiles by way of fewer unnecessary includes.

[akpm@linux-foundation.org: fix fallout]
[akpm@linux-foundation.org: fix build]
Signed-off-by: Kent Overstreet <koverstreet@google.com>
Cc: Zach Brown <zab@redhat.com>
Cc: Felipe Balbi <balbi@ti.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Asai Thambi S P <asamymuthupa@micron.com>
Cc: Selvan Mani <smani@micron.com>
Cc: Sam Bradshaw <sbradshaw@micron.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Benjamin LaHaise <bcrl@kvack.org>
Reviewed-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-07 20:16:25 -07:00
Shaohua Li 5bc7b8aca9 mm: thp: add split tail pages to shrink page list in page reclaim
In page reclaim, huge page is split.  split_huge_page() adds tail pages
to LRU list.  Since we are reclaiming a huge page, it's better we
reclaim all subpages of the huge page instead of just the head page.
This patch adds split tail pages to shrink page list so the tail pages
can be reclaimed soon.

Before this patch, run a swap workload:
  thp_fault_alloc 3492
  thp_fault_fallback 608
  thp_collapse_alloc 6
  thp_collapse_alloc_failed 0
  thp_split 916

With this patch:
  thp_fault_alloc 4085
  thp_fault_fallback 16
  thp_collapse_alloc 90
  thp_collapse_alloc_failed 0
  thp_split 1272

fallback allocation is reduced a lot.

[akpm@linux-foundation.org: fix CONFIG_SWAP=n build]
Signed-off-by: Shaohua Li <shli@fusionio.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-29 15:54:38 -07:00
Shaohua Li 33806f06da swap: make each swap partition have one address_space
When I use several fast SSD to do swap, swapper_space.tree_lock is
heavily contended.  This makes each swap partition have one
address_space to reduce the lock contention.  There is an array of
address_space for swap.  The swap entry type is the index to the array.

In my test with 3 SSD, this increases the swapout throughput 20%.

[akpm@linux-foundation.org: revert unneeded change to  __add_to_swap_cache]
Signed-off-by: Shaohua Li <shli@fusionio.com>
Cc: Hugh Dickins <hughd@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 17:50:17 -08:00
Hugh Dickins 39b5f29ac1 mm: remove vma arg from page_evictable
page_evictable(page, vma) is an irritant: almost all its callers pass
NULL for vma.  Remove the vma arg and use mlocked_vma_newpage(vma, page)
explicitly in the couple of places it's needed.  But in those places we
don't even need page_evictable() itself!  They're dealing with a freshly
allocated anonymous page, which has no "mapping" and cannot be mlocked yet.

Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 16:22:55 +09:00
Robin Dong d741c9cdee mm: fix nonuniform page status when writing new file with small buffer
When writing a new file with 2048 bytes buffer, such as write(fd, buffer,
2048), it will call generic_perform_write() twice for every page:

	write_begin
	mark_page_accessed(page)
	write_end

	write_begin
	mark_page_accessed(page)
	write_end

Pages 1-13 will be added to lru-pvecs in write_begin() and will *NOT* be
added to active_list even they have be accessed twice because they are not
PageLRU(page).  But when page 14th comes, all pages in lru-pvecs will be
moved to inactive_list (by __lru_cache_add() ) in first write_begin(), now
page 14th *is* PageLRU(page).  And after second write_end() only page 14th
will be in active_list.

In Hadoop environment, we do comes to this situation: after writing a
file, we find out that only 14th, 28th, 42th...  page are in active_list
and others in inactive_list.  Now kswapd works, shrinks the inactive_list,
the file only have 14th, 28th...pages in memory, the readahead request
size will be broken to only 52k (13*4k), system's performance falls
dramatically.

This problem can also replay by below steps (the machine has 8G memory):

	1. dd if=/dev/zero of=/test/file.out bs=1024 count=1048576
	2. cat another 7.5G file to /dev/null
	3. vmtouch -m 1G -v /test/file.out, it will show:

	/test/file.out
	[oooooooooooooooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO] 187847/262144

	the 'o' means same pages are in memory but same are not.

The solution for this problem is simple: the 14th page should be added to
lru_add_pvecs before mark_page_accessed() just as other pages.

[akpm@linux-foundation.org: tweak comment]
[akpm@linux-foundation.org: grab better comment from the v3 patch]
Signed-off-by: Robin Dong <sanbai@taobao.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 16:22:19 +09:00
Mel Gorman 5a178119b0 mm: add support for direct_IO to highmem pages
The patch "mm: add support for a filesystem to activate swap files and use
direct_IO for writing swap pages" added support for using direct_IO to
write swap pages but it is insufficient for highmem pages.

To support highmem pages, this patch kmaps() the page before calling the
direct_IO() handler.  As direct_IO deals with virtual addresses an
additional helper is necessary for get_kernel_pages() to lookup the struct
page for a kmap virtual address.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Eric Paris <eparis@redhat.com>
Cc: James Morris <jmorris@namei.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Cc: Neil Brown <neilb@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Cc: Xiaotian Feng <dfeng@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31 18:42:47 -07:00
Mel Gorman 18022c5d86 mm: add get_kernel_page[s] for pinning of kernel addresses for I/O
This patch adds two new APIs get_kernel_pages() and get_kernel_page() that
may be used to pin a vector of kernel addresses for IO.  The initial user
is expected to be NFS for allowing pages to be written to swap using
aops->direct_IO().  Strictly speaking, swap-over-NFS only needs to pin one
page for IO but it makes sense to express the API in terms of a vector and
add a helper for pinning single pages.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Eric Paris <eparis@redhat.com>
Cc: James Morris <jmorris@namei.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Cc: Neil Brown <neilb@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Cc: Xiaotian Feng <dfeng@redhat.com>
Cc: Mark Salter <msalter@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31 18:42:47 -07:00
Hugh Dickins fa9add641b mm/memcg: apply add/del_page to lruvec
Take lruvec further: pass it instead of zone to add_page_to_lru_list() and
del_page_from_lru_list(); and pagevec_lru_move_fn() pass lruvec down to
its target functions.

This cleanup eliminates a swathe of cruft in memcontrol.c, including
mem_cgroup_lru_add_list(), mem_cgroup_lru_del_list() and
mem_cgroup_lru_move_lists() - which never actually touched the lists.

In their place, mem_cgroup_page_lruvec() to decide the lruvec, previously
a side-effect of add, and mem_cgroup_update_lru_size() to maintain the
lru_size stats.

Whilst these are simplifications in their own right, the goal is to bring
the evaluation of lruvec next to the spin_locking of the lrus, in
preparation for a future patch.

Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29 16:22:28 -07:00
Hugh Dickins 89abfab133 mm/memcg: move reclaim_stat into lruvec
With mem_cgroup_disabled() now explicit, it becomes clear that the
zone_reclaim_stat structure actually belongs in lruvec, per-zone when
memcg is disabled but per-memcg per-zone when it's enabled.

We can delete mem_cgroup_get_reclaim_stat(), and change
update_page_reclaim_stat() to update just the one set of stats, the one
which get_scan_count() will actually use.

Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29 16:22:25 -07:00
Pravin B Shelar 5bf5f03c27 mm: fix slab->page flags corruption
Transparent huge pages can change page->flags (PG_compound_lock) without
taking Slab lock.  Since THP can not break slab pages we can safely access
compound page without taking compound lock.

Specifically this patch fixes a race between compound_unlock() and slab
functions which perform page-flags updates.  This can occur when
get_page()/put_page() is called on a page from slab.

[akpm@linux-foundation.org: tweak comment text, fix comment layout, fix label indenting]
Reported-by: Amey Bhide <abhide@nicira.com>
Signed-off-by: Pravin B Shelar <pshelar@nicira.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Acked-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29 16:22:24 -07:00
Konstantin Khlebnikov f0cb3c76ae mm: drain percpu lru add/rotate page-vectors on cpu hot-unplug
This cpu hotplug hook was accidentally removed in commit 00a62ce91e
("mm: fix Committed_AS underflow on large NR_CPUS environment")

The visible effect of this accident: some pages are borrowed in per-cpu
page-vectors.  Truncate can deal with it, but these pages cannot be
reused while this cpu is offline.  So this is like a temporary memory
leak.

Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Eric B Munson <ebmunson@us.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:58 -07:00
Hugh Dickins 7512102cf6 memcg: fix GPF when cgroup removal races with last exit
When moving tasks from old memcg (with move_charge_at_immigrate on new
memcg), followed by removal of old memcg, hit General Protection Fault in
mem_cgroup_lru_del_list() (called from release_pages called from
free_pages_and_swap_cache from tlb_flush_mmu from tlb_finish_mmu from
exit_mmap from mmput from exit_mm from do_exit).

Somewhat reproducible, takes a few hours: the old struct mem_cgroup has
been freed and poisoned by SLAB_DEBUG, but mem_cgroup_lru_del_list() is
still trying to update its stats, and take page off lru before freeing.

A task, or a charge, or a page on lru: each secures a memcg against
removal.  In this case, the last task has been moved out of the old memcg,
and it is exiting: anonymous pages are uncharged one by one from the
memcg, as they are zapped from its pagetables, so the charge gets down to
0; but the pages themselves are queued in an mmu_gather for freeing.

Most of those pages will be on lru (and force_empty is careful to
lru_add_drain_all, to add pages from pagevec to lru first), but not
necessarily all: perhaps some have been isolated for page reclaim, perhaps
some isolated for other reasons.  So, force_empty may find no task, no
charge and no page on lru, and let the removal proceed.

There would still be no problem if these pages were immediately freed; but
typically (and the put_page_testzero protocol demands it) they have to be
added back to lru before they are found freeable, then removed from lru
and freed.  We don't see the issue when adding, because the
mem_cgroup_iter() loops keep their own reference to the memcg being
scanned; but when it comes to mem_cgroup_lru_del_list().

I believe this was not an issue in v3.2: there, PageCgroupAcctLRU and
PageCgroupUsed flags were used (like a trick with mirrors) to deflect view
of pc->mem_cgroup to the stable root_mem_cgroup when neither set.
38c5d72f3e ("memcg: simplify LRU handling by new rule") mercifully
removed those convolutions, but left this General Protection Fault.

But it's surprisingly easy to restore the old behaviour: just check
PageCgroupUsed in mem_cgroup_lru_add_list() (which decides on which lruvec
to add), and reset pc to root_mem_cgroup if page is uncharged.  A risky
change?  just going back to how it worked before; testing, and an audit of
uses of pc->mem_cgroup, show no problem.

And there's a nice bonus: with mem_cgroup_lru_add_list() itself making
sure that an uncharged page goes to root lru, mem_cgroup_reset_owner() no
longer has any purpose, and we can safely revert 4e5f01c2b9 ("memcg:
clear pc->mem_cgroup if necessary").

Calling update_page_reclaim_stat() after add_page_to_lru_list() in swap.c
is not strictly necessary: the lru_lock there, with RCU before memcg
structures are freed, makes mem_cgroup_get_reclaim_stat_from_page safe
without that; but it seems cleaner to rely on one dependency less.

Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Konstantin Khlebnikov <khlebnikov@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-05 15:49:43 -08:00
Hugh Dickins b9980cdcf2 mm: fix UP THP spin_is_locked BUGs
Fix CONFIG_TRANSPARENT_HUGEPAGE=y CONFIG_SMP=n CONFIG_DEBUG_VM=y
CONFIG_DEBUG_SPINLOCK=n kernel: spin_is_locked() is then always false,
and so triggers some BUGs in Transparent HugePage codepaths.

asm-generic/bug.h mentions this problem, and provides a WARN_ON_SMP(x);
but being too lazy to add VM_BUG_ON_SMP, BUG_ON_SMP, WARN_ON_SMP_ONCE,
VM_WARN_ON_SMP_ONCE, just test NR_CPUS != 1 in the existing VM_BUG_ONs.

Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-02-08 19:03:51 -08:00
Hugh Dickins 1c1c53d43b mm: remove del_page_from_lru, add page_off_lru
del_page_from_lru() repeats del_page_from_lru_list(), also working out
which LRU the page was on, clearing the relevant bits.  Decouple those
functions: remove del_page_from_lru() and add page_off_lru().

Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:10 -08:00
Hugh Dickins 4d06f382c7 mm: no blank line after EXPORT_SYMBOL in swap.c
checkpatch rightly protests

  WARNING: EXPORT_SYMBOL(foo); should immediately follow its function/variable

so fix the five offenders in mm/swap.c.

Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:10 -08:00
Hugh Dickins 5095ae8375 mm: fewer underscores in ____pagevec_lru_add
What's so special about ____pagevec_lru_add() that it needs four leading
underscores?  Nothing, it just helped to distinguish from
__pagevec_lru_add() in 2.6.28 development.  Cut two leading underscores.

Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:10 -08:00
Hugh Dickins 2bcf887963 mm: take pagevecs off reclaim stack
Replace pagevecs in putback_lru_pages() and move_active_pages_to_lru()
by lists of pages_to_free: then apply Konstantin Khlebnikov's
free_hot_cold_page_list() to them instead of pagevec_release().

Which simplifies the flow (no need to drop and retake lock whenever
pagevec fills up) and reduces stale addresses in stack backtraces
(which often showed through the pagevecs); but more importantly,
removes another 120 bytes from the deepest stacks in page reclaim.
Although I've not recently seen an actual stack overflow here with
a vanilla kernel, move_active_pages_to_lru() has often featured in
deep backtraces.

However, free_hot_cold_page_list() does not handle compound pages
(nor need it: a Transparent HugePage would have been split by the
time it reaches the call in shrink_page_list()), but it is possible
for putback_lru_pages() or move_active_pages_to_lru() to be left
holding the last reference on a THP, so must exclude the unlikely
compound case before putting on pages_to_free.

Remove pagevec_strip(), its work now done in move_active_pages_to_lru().
The pagevec in scan_mapping_unevictable_pages() remains in mm/vmscan.c,
but that is never on the reclaim path, and cannot be replaced by a list.

Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:10 -08:00
Hugh Dickins 12d2710786 memcg: fix split_huge_page_refcounts()
This patch started off as a cleanup: __split_huge_page_refcounts() has to
cope with two scenarios, when the hugepage being split is already on LRU,
and when it is not; but why does it have to split that accounting across
three different sites?  Consolidate it in lru_add_page_tail(), handling
evictable and unevictable alike, and use standard add_page_to_lru_list()
when accounting is needed (when the head is not yet on LRU).

But a recent regression in -next, I guess the removal of PageCgroupAcctLRU
test from mem_cgroup_split_huge_fixup(), makes this now a necessary fix:
under load, the MEM_CGROUP_ZSTAT count was wrapping to a huge number,
messing up reclaim calculations and causing a freeze at rmdir of cgroup.

Add a VM_BUG_ON to mem_cgroup_lru_del_list() when we're about to wrap that
count - this has not been the only such incident.  Document that
lru_add_page_tail() is for Transparent HugePages by #ifdef around it.

Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:09 -08:00
Shaohua Li 45676885b7 thp: improve order in lru list for split huge page
Put the tail subpages of an isolated hugepage under splitting in the lru
reclaim head as they supposedly should be isolated too next.

Queues the subpages in physical order in the lru for non isolated
hugepages under splitting.  That might provide some theoretical cache
benefit to the buddy allocator later.

Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:08 -08:00
Johannes Weiner 925b7673cc mm: make per-memcg LRU lists exclusive
Now that all code that operated on global per-zone LRU lists is
converted to operate on per-memory cgroup LRU lists instead, there is no
reason to keep the double-LRU scheme around any longer.

The pc->lru member is removed and page->lru is linked directly to the
per-memory cgroup LRU lists, which removes two pointers from a
descriptor that exists for every page frame in the system.

Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Ying Han <yinghan@google.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:05 -08:00
Johannes Weiner 6290df5458 mm: collect LRU list heads into struct lruvec
Having a unified structure with a LRU list set for both global zones and
per-memcg zones allows to keep that code simple which deals with LRU
lists and does not care about the container itself.

Once the per-memcg LRU lists directly link struct pages, the isolation
function and all other list manipulations are shared between the memcg
case and the global LRU case.

Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ying Han <yinghan@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:05 -08:00
Konstantin Khlebnikov cc59850ef9 mm: add free_hot_cold_page_list() helper
This patch adds helper free_hot_cold_page_list() to free list of 0-order
pages.  It frees pages directly from list without temporary page-vector.
It also calls trace_mm_pagevec_free() to simulate pagevec_free()
behaviour.

bloat-o-meter:

add/remove: 1/1 grow/shrink: 1/3 up/down: 267/-295 (-28)
function                                     old     new   delta
free_hot_cold_page_list                        -     264    +264
get_page_from_freelist                      2129    2132      +3
__pagevec_free                               243     239      -4
split_free_page                              380     373      -7
release_pages                                606     510     -96
free_page_list                               188       -    -188

Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10 16:30:41 -08:00
Linus Torvalds 32aaeffbd4 Merge branch 'modsplit-Oct31_2011' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux
* 'modsplit-Oct31_2011' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux: (230 commits)
  Revert "tracing: Include module.h in define_trace.h"
  irq: don't put module.h into irq.h for tracking irqgen modules.
  bluetooth: macroize two small inlines to avoid module.h
  ip_vs.h: fix implicit use of module_get/module_put from module.h
  nf_conntrack.h: fix up fallout from implicit moduleparam.h presence
  include: replace linux/module.h with "struct module" wherever possible
  include: convert various register fcns to macros to avoid include chaining
  crypto.h: remove unused crypto_tfm_alg_modname() inline
  uwb.h: fix implicit use of asm/page.h for PAGE_SIZE
  pm_runtime.h: explicitly requires notifier.h
  linux/dmaengine.h: fix implicit use of bitmap.h and asm/page.h
  miscdevice.h: fix up implicit use of lists and types
  stop_machine.h: fix implicit use of smp.h for smp_processor_id
  of: fix implicit use of errno.h in include/linux/of.h
  of_platform.h: delete needless include <linux/module.h>
  acpi: remove module.h include from platform/aclinux.h
  miscdevice.h: delete unnecessary inclusion of module.h
  device_cgroup.h: delete needless include <linux/module.h>
  net: sch_generic remove redundant use of <linux/module.h>
  net: inet_timewait_sock doesnt need <linux/module.h>
  ...

Fix up trivial conflicts (other header files, and  removal of the ab3550 mfd driver) in
 - drivers/media/dvb/frontends/dibx000_common.c
 - drivers/media/video/{mt9m111.c,ov6650.c}
 - drivers/mfd/ab3550-core.c
 - include/linux/dmaengine.h
2011-11-06 19:44:47 -08:00
Andrea Arcangeli 70b50f94f1 mm: thp: tail page refcounting fix
Michel while working on the working set estimation code, noticed that
calling get_page_unless_zero() on a random pfn_to_page(random_pfn)
wasn't safe, if the pfn ended up being a tail page of a transparent
hugepage under splitting by __split_huge_page_refcount().

He then found the problem could also theoretically materialize with
page_cache_get_speculative() during the speculative radix tree lookups
that uses get_page_unless_zero() in SMP if the radix tree page is freed
and reallocated and get_user_pages is called on it before
page_cache_get_speculative has a chance to call get_page_unless_zero().

So the best way to fix the problem is to keep page_tail->_count zero at
all times.  This will guarantee that get_page_unless_zero() can never
succeed on any tail page.  page_tail->_mapcount is guaranteed zero and
is unused for all tail pages of a compound page, so we can simply
account the tail page references there and transfer them to
tail_page->_count in __split_huge_page_refcount() (in addition to the
head_page->_mapcount).

While debugging this s/_count/_mapcount/ change I also noticed get_page is
called by direct-io.c on pages returned by get_user_pages.  That wasn't
entirely safe because the two atomic_inc in get_page weren't atomic.  As
opposed to other get_user_page users like secondary-MMU page fault to
establish the shadow pagetables would never call any superflous get_page
after get_user_page returns.  It's safer to make get_page universally safe
for tail pages and to use get_page_foll() within follow_page (inside
get_user_pages()).  get_page_foll() is safe to do the refcounting for tail
pages without taking any locks because it is run within PT lock protected
critical sections (PT lock for pte and page_table_lock for
pmd_trans_huge).

The standard get_page() as invoked by direct-io instead will now take
the compound_lock but still only for tail pages.  The direct-io paths
are usually I/O bound and the compound_lock is per THP so very
finegrined, so there's no risk of scalability issues with it.  A simple
direct-io benchmarks with all lockdep prove locking and spinlock
debugging infrastructure enabled shows identical performance and no
overhead.  So it's worth it.  Ideally direct-io should stop calling
get_page() on pages returned by get_user_pages().  The spinlock in
get_page() is already optimized away for no-THP builds but doing
get_page() on tail pages returned by GUP is generally a rare operation
and usually only run in I/O paths.

This new refcounting on page_tail->_mapcount in addition to avoiding new
RCU critical sections will also allow the working set estimation code to
work without any further complexity associated to the tail page
refcounting with THP.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Michel Lespinasse <walken@google.com>
Reviewed-by: Michel Lespinasse <walken@google.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: <stable@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-11-02 16:06:57 -07:00
Paul Gortmaker b95f1b31b7 mm: Map most files to use export.h instead of module.h
The files changed within are only using the EXPORT_SYMBOL
macro variants.  They are not using core modular infrastructure
and hence don't need module.h but only the export.h header.

Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2011-10-31 09:20:12 -04:00
Shaohua Li eb709b0d06 mm: batch activate_page() to reduce lock contention
The zone->lru_lock is heavily contented in workload where activate_page()
is frequently used.  We could do batch activate_page() to reduce the lock
contention.  The batched pages will be added into zone list when the pool
is full or page reclaim is trying to drain them.

For example, in a 4 socket 64 CPU system, create a sparse file and 64
processes, processes shared map to the file.  Each process read access the
whole file and then exit.  The process exit will do unmap_vmas() and cause
a lot of activate_page() call.  In such workload, we saw about 58% total
time reduction with below patch.  Other workloads with a lot of
activate_page also benefits a lot too.

Andrew Morton suggested activate_page() and putback_lru_pages() should
follow the same path to active pages, but this is hard to implement (see
commit 7a608572a2 ("Revert "mm: batch activate_page() to reduce lock
contention")).  On the other hand, do we really need putback_lru_pages()
to follow the same path?  I tested several FIO/FFSB benchmark (about 20
scripts for each benchmark) in 3 machines here from 2 sockets to 4
sockets.  My test doesn't show anything significant with/without below
patch (there is slight difference but mostly some noise which we found
even without below patch before).  Below patch basically returns to the
same as my first post.

I tested some microbenchmarks:
  case-anon-cow-rand-mt         0.58%
  case-anon-cow-rand           -3.30%
  case-anon-cow-seq-mt         -0.51%
  case-anon-cow-seq            -5.68%
  case-anon-r-rand-mt           0.23%
  case-anon-r-rand              0.81%
  case-anon-r-seq-mt           -0.71%
  case-anon-r-seq              -1.99%
  case-anon-rx-rand-mt          2.11%
  case-anon-rx-seq-mt           3.46%
  case-anon-w-rand-mt          -0.03%
  case-anon-w-rand             -0.50%
  case-anon-w-seq-mt           -1.08%
  case-anon-w-seq              -0.12%
  case-anon-wx-rand-mt         -5.02%
  case-anon-wx-seq-mt          -1.43%
  case-fork                     1.65%
  case-fork-sleep              -0.07%
  case-fork-withmem             1.39%
  case-hugetlb                 -0.59%
  case-lru-file-mmap-read-mt   -0.54%
  case-lru-file-mmap-read       0.61%
  case-lru-file-mmap-read-rand -2.24%
  case-lru-file-readonce       -0.64%
  case-lru-file-readtwice     -11.69%
  case-lru-memcg               -1.35%
  case-mmap-pread-rand-mt       1.88%
  case-mmap-pread-rand        -15.26%
  case-mmap-pread-seq-mt        0.89%
  case-mmap-pread-seq         -69.72%
  case-mmap-xread-rand-mt       0.71%
  case-mmap-xread-seq-mt        0.38%

The most significent are:
  case-lru-file-readtwice     -11.69%
  case-mmap-pread-rand        -15.26%
  case-mmap-pread-seq         -69.72%

which use activate_page a lot.  others are basically variations because
each run has slightly difference.

In UP case, 'size mm/swap.o'
before the two patches:
   text    data     bss     dec     hex filename
   6466     896       4    7366    1cc6 mm/swap.o
after the two patches:
   text    data     bss     dec     hex filename
   6343     896       4    7243    1c4b mm/swap.o

Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Hiroyuki Kamezawa <kamezawa.hiroyuki@gmail.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25 08:39:37 -07:00
Minchan Kim 821ed6bbed mm: filter unevictable page out in deactivate_page()
It's pointless that deactive_page's operates on unevictable pages.  This
patch removes unnecessary overhead which might be a bit problem in case
that there are many unevictable page in system(ex, mprotect workload)

[akpm@linux-foundation.org: tidy up comment]
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Rik van Riel<riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25 08:39:27 -07:00
Minchan Kim bad49d9c89 mm: check PageUnevictable in lru_deactivate_fn()
The lru_deactivate_fn should not move page which in on unevictable lru
into inactive list.  Otherwise, we can meet BUG when we use
isolate_lru_pages as __isolate_lru_page could return -EINVAL.

Reported-by: Ying Han <yinghan@google.com>
Tested-by: Ying Han <yinghan@google.com>
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Rik van Riel<riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-11 18:50:44 -07:00
Shaohua Li 3dd7ae8ec0 mm: simplify code of swap.c
Clean up code and remove duplicate code. Next patch will use
pagevec_lru_move_fn introduced here too.

Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Hiroyuki Kamezawa <kamezawa.hiroyuki@gmail.com>
Cc: Andi Kleen <andi@firstfloor.org>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-22 17:44:09 -07:00
Minchan Kim 278df9f451 mm: reclaim invalidated page ASAP
invalidate_mapping_pages is very big hint to reclaimer.  It means user
doesn't want to use the page any more.  So in order to prevent working set
page eviction, this patch move the page into tail of inactive list by
PG_reclaim.

Please, remember that pages in inactive list are working set as well as
active list.  If we don't move pages into inactive list's tail, pages near
by tail of inactive list can be evicted although we have a big clue about
useless pages.  It's totally bad.

Now PG_readahead/PG_reclaim is shared.  fe3cba17 added ClearPageReclaim
into clear_page_dirty_for_io for preventing fast reclaiming readahead
marker page.

In this series, PG_reclaim is used by invalidated page, too.  If VM find
the page is invalidated and it's dirty, it sets PG_reclaim to reclaim
asap.  Then, when the dirty page will be writeback,
clear_page_dirty_for_io will clear PG_reclaim unconditionally.  It
disturbs this serie's goal.

I think it's okay to clear PG_readahead when the page is dirty, not
writeback time.  So this patch moves ClearPageReadahead.  In v4,
ClearPageReadahead in set_page_dirty has a problem which is reported by
Steven Barrett.  It's due to compound page.  Some driver(ex, audio) calls
set_page_dirty with compound page which isn't on LRU.  but my patch does
ClearPageRelcaim on compound page.  In non-CONFIG_PAGEFLAGS_EXTENDED, it
breaks PageTail flag.

I think it doesn't affect THP and pass my test with THP enabling but Cced
Andrea for double check.

Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Reported-by: Steven Barrett <damentz@liquorix.net>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-22 17:44:04 -07:00
Minchan Kim 3f58a82943 memcg: move memcg reclaimable page into tail of inactive list
The rotate_reclaimable_page function moves just written out pages, which
the VM wanted to reclaim, to the end of the inactive list.  That way the
VM will find those pages first next time it needs to free memory.

This patch applies the rule in memcg.  It can help to prevent unnecessary
working page eviction of memcg.

Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-22 17:44:03 -07:00
Minchan Kim 315601809d mm: deactivate invalidated pages
Recently, there are reported problem about thrashing.
(http://marc.info/?l=rsync&m=128885034930933&w=2) It happens by backup
workloads(ex, nightly rsync).  That's because the workload makes just
use-once pages and touches pages twice.  It promotes the page into active
list so that it results in working set page eviction.

Some app developer want to support POSIX_FADV_NOREUSE.  But other OSes
don't support it, either.
(http://marc.info/?l=linux-mm&m=128928979512086&w=2)

By other approach, app developers use POSIX_FADV_DONTNEED.  But it has a
problem.  If kernel meets page is writing during invalidate_mapping_pages,
it can't work.  It makes for application programmer to use it since they
always have to sync data before calling fadivse(..POSIX_FADV_DONTNEED) to
make sure the pages could be discardable.  At last, they can't use
deferred write of kernel so that they could see performance loss.
(http://insights.oetiker.ch/linux/fadvise.html)

In fact, invalidation is very big hint to reclaimer.  It means we don't
use the page any more.  So let's move the writing page into inactive
list's head if we can't truncate it right now.

Why I move page to head of lru on this patch, Dirty/Writeback page would
be flushed sooner or later.  It can prevent writeout of pageout which is
less effective than flusher's writeout.

Originally, I reused lru_demote of Peter with some change so added his
Signed-off-by.

Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Reported-by: Ben Gamari <bgamari.foss@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-22 17:44:03 -07:00
Linus Torvalds 83896fb5e5 Revert "mm: simplify code of swap.c"
This reverts commit d8505dee1a.

Chris Mason ended up chasing down some page allocation errors and pages
stuck waiting on the IO scheduler, and was able to narrow it down to two
commits: commit 744ed14427 ("mm: batch activate_page() to reduce lock
contention") and d8505dee1a ("mm: simplify code of swap.c").

This reverts the second one.

Reported-and-debugged-by: Chris Mason <chris.mason@oracle.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jens Axboe <jaxboe@fusionio.com>
Cc: linux-mm <linux-mm@kvack.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-17 14:42:34 -08:00
Linus Torvalds 7a608572a2 Revert "mm: batch activate_page() to reduce lock contention"
This reverts commit 744ed14427.

Chris Mason ended up chasing down some page allocation errors and pages
stuck waiting on the IO scheduler, and was able to narrow it down to two
commits: commit 744ed14427 ("mm: batch activate_page() to reduce lock
contention") and d8505dee1a ("mm: simplify code of swap.c").

This reverts the first of them.

Reported-and-debugged-by: Chris Mason <chris.mason@oracle.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jens Axboe <jaxboe@fusionio.com>
Cc: linux-mm <linux-mm@kvack.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-17 14:42:19 -08:00
Shaohua Li 744ed14427 mm: batch activate_page() to reduce lock contention
The zone->lru_lock is heavily contented in workload where activate_page()
is frequently used.  We could do batch activate_page() to reduce the lock
contention.  The batched pages will be added into zone list when the pool
is full or page reclaim is trying to drain them.

For example, in a 4 socket 64 CPU system, create a sparse file and 64
processes, processes shared map to the file.  Each process read access the
whole file and then exit.  The process exit will do unmap_vmas() and cause
a lot of activate_page() call.  In such workload, we saw about 58% total
time reduction with below patch.  Other workloads with a lot of
activate_page also benefits a lot too.

I tested some microbenchmarks:
case-anon-cow-rand-mt		0.58%
case-anon-cow-rand		-3.30%
case-anon-cow-seq-mt		-0.51%
case-anon-cow-seq		-5.68%
case-anon-r-rand-mt		0.23%
case-anon-r-rand		0.81%
case-anon-r-seq-mt		-0.71%
case-anon-r-seq			-1.99%
case-anon-rx-rand-mt		2.11%
case-anon-rx-seq-mt		3.46%
case-anon-w-rand-mt		-0.03%
case-anon-w-rand		-0.50%
case-anon-w-seq-mt		-1.08%
case-anon-w-seq			-0.12%
case-anon-wx-rand-mt		-5.02%
case-anon-wx-seq-mt		-1.43%
case-fork			1.65%
case-fork-sleep			-0.07%
case-fork-withmem		1.39%
case-hugetlb			-0.59%
case-lru-file-mmap-read-mt	-0.54%
case-lru-file-mmap-read		0.61%
case-lru-file-mmap-read-rand	-2.24%
case-lru-file-readonce		-0.64%
case-lru-file-readtwice		-11.69%
case-lru-memcg			-1.35%
case-mmap-pread-rand-mt		1.88%
case-mmap-pread-rand		-15.26%
case-mmap-pread-seq-mt		0.89%
case-mmap-pread-seq		-69.72%
case-mmap-xread-rand-mt		0.71%
case-mmap-xread-seq-mt		0.38%

The most significent are:
case-lru-file-readtwice		-11.69%
case-mmap-pread-rand		-15.26%
case-mmap-pread-seq		-69.72%

which use activate_page a lot.  others are basically variations because
each run has slightly difference.

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:50 -08:00
Shaohua Li d8505dee1a mm: simplify code of swap.c
Clean up code and remove duplicate code.  Next patch will use
pagevec_lru_move_fn introduced here too.

Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:50 -08:00
Andrea Arcangeli 71e3aac072 thp: transparent hugepage core
Lately I've been working to make KVM use hugepages transparently without
the usual restrictions of hugetlbfs.  Some of the restrictions I'd like to
see removed:

1) hugepages have to be swappable or the guest physical memory remains
   locked in RAM and can't be paged out to swap

2) if a hugepage allocation fails, regular pages should be allocated
   instead and mixed in the same vma without any failure and without
   userland noticing

3) if some task quits and more hugepages become available in the
   buddy, guest physical memory backed by regular pages should be
   relocated on hugepages automatically in regions under
   madvise(MADV_HUGEPAGE) (ideally event driven by waking up the
   kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes
   not null)

4) avoidance of reservation and maximization of use of hugepages whenever
   possible. Reservation (needed to avoid runtime fatal faliures) may be ok for
   1 machine with 1 database with 1 database cache with 1 database cache size
   known at boot time. It's definitely not feasible with a virtualization
   hypervisor usage like RHEV-H that runs an unknown number of virtual machines
   with an unknown size of each virtual machine with an unknown amount of
   pagecache that could be potentially useful in the host for guest not using
   O_DIRECT (aka cache=off).

hugepages in the virtualization hypervisor (and also in the guest!) are
much more important than in a regular host not using virtualization,
becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24
to 19 in case only the hypervisor uses transparent hugepages, and they
decrease the tlb-miss cacheline accesses from 19 to 15 in case both the
linux hypervisor and the linux guest both uses this patch (though the
guest will limit the addition speedup to anonymous regions only for
now...).  Even more important is that the tlb miss handler is much slower
on a NPT/EPT guest than for a regular shadow paging or no-virtualization
scenario.  So maximizing the amount of virtual memory cached by the TLB
pays off significantly more with NPT/EPT than without (even if there would
be no significant speedup in the tlb-miss runtime).

The first (and more tedious) part of this work requires allowing the VM to
handle anonymous hugepages mixed with regular pages transparently on
regular anonymous vmas.  This is what this patch tries to achieve in the
least intrusive possible way.  We want hugepages and hugetlb to be used in
a way so that all applications can benefit without changes (as usual we
leverage the KVM virtualization design: by improving the Linux VM at
large, KVM gets the performance boost too).

The most important design choice is: always fallback to 4k allocation if
the hugepage allocation fails!  This is the _very_ opposite of some large
pagecache patches that failed with -EIO back then if a 64k (or similar)
allocation failed...

Second important decision (to reduce the impact of the feature on the
existing pagetable handling code) is that at any time we can split an
hugepage into 512 regular pages and it has to be done with an operation
that can't fail.  This way the reliability of the swapping isn't decreased
(no need to allocate memory when we are short on memory to swap) and it's
trivial to plug a split_huge_page* one-liner where needed without
polluting the VM.  Over time we can teach mprotect, mremap and friends to
handle pmd_trans_huge natively without calling split_huge_page*.  The fact
it can't fail isn't just for swap: if split_huge_page would return -ENOMEM
(instead of the current void) we'd need to rollback the mprotect from the
middle of it (ideally including undoing the split_vma) which would be a
big change and in the very wrong direction (it'd likely be simpler not to
call split_huge_page at all and to teach mprotect and friends to handle
hugepages instead of rolling them back from the middle).  In short the
very value of split_huge_page is that it can't fail.

The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and
incremental and it'll just be an "harmless" addition later if this initial
part is agreed upon.  It also should be noted that locking-wise replacing
regular pages with hugepages is going to be very easy if compared to what
I'm doing below in split_huge_page, as it will only happen when
page_count(page) matches page_mapcount(page) if we can take the PG_lock
and mmap_sem in write mode.  collapse_huge_page will be a "best effort"
that (unlike split_huge_page) can fail at the minimal sign of trouble and
we can try again later.  collapse_huge_page will be similar to how KSM
works and the madvise(MADV_HUGEPAGE) will work similar to
madvise(MADV_MERGEABLE).

The default I like is that transparent hugepages are used at page fault
time.  This can be changed with
/sys/kernel/mm/transparent_hugepage/enabled.  The control knob can be set
to three values "always", "madvise", "never" which mean respectively that
hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions,
or never used.  /sys/kernel/mm/transparent_hugepage/defrag instead
controls if the hugepage allocation should defrag memory aggressively
"always", only inside "madvise" regions, or "never".

The pmd_trans_splitting/pmd_trans_huge locking is very solid.  The
put_page (from get_user_page users that can't use mmu notifier like
O_DIRECT) that runs against a __split_huge_page_refcount instead was a
pain to serialize in a way that would result always in a coherent page
count for both tail and head.  I think my locking solution with a
compound_lock taken only after the page_first is valid and is still a
PageHead should be safe but it surely needs review from SMP race point of
view.  In short there is no current existing way to serialize the O_DIRECT
final put_page against split_huge_page_refcount so I had to invent a new
one (O_DIRECT loses knowledge on the mapping status by the time gup_fast
returns so...).  And I didn't want to impact all gup/gup_fast users for
now, maybe if we change the gup interface substantially we can avoid this
locking, I admit I didn't think too much about it because changing the gup
unpinning interface would be invasive.

If we ignored O_DIRECT we could stick to the existing compound refcounting
code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM
(and any other mmu notifier user) would call it without FOLL_GET (and if
FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the
current task mmu notifier list yet).  But O_DIRECT is fundamental for
decent performance of virtualized I/O on fast storage so we can't avoid it
to solve the race of put_page against split_huge_page_refcount to achieve
a complete hugepage feature for KVM.

Swap and oom works fine (well just like with regular pages ;).  MMU
notifier is handled transparently too, with the exception of the young bit
on the pmd, that didn't have a range check but I think KVM will be fine
because the whole point of hugepages is that EPT/NPT will also use a huge
pmd when they notice gup returns pages with PageCompound set, so they
won't care of a range and there's just the pmd young bit to check in that
case.

NOTE: in some cases if the L2 cache is small, this may slowdown and waste
memory during COWs because 4M of memory are accessed in a single fault
instead of 8k (the payoff is that after COW the program can run faster).
So we might want to switch the copy_huge_page (and clear_huge_page too) to
not temporal stores.  I also extensively researched ways to avoid this
cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k
up to 1M (I can send those patches that fully implemented prefault) but I
concluded they're not worth it and they add an huge additional complexity
and they remove all tlb benefits until the full hugepage has been faulted
in, to save a little bit of memory and some cache during app startup, but
they still don't improve substantially the cache-trashing during startup
if the prefault happens in >4k chunks.  One reason is that those 4k pte
entries copied are still mapped on a perfectly cache-colored hugepage, so
the trashing is the worst one can generate in those copies (cow of 4k page
copies aren't so well colored so they trashes less, but again this results
in software running faster after the page fault).  Those prefault patches
allowed things like a pte where post-cow pages were local 4k regular anon
pages and the not-yet-cowed pte entries were pointing in the middle of
some hugepage mapped read-only.  If it doesn't payoff substantially with
todays hardware it will payoff even less in the future with larger l2
caches, and the prefault logic would blot the VM a lot.  If one is
emebdded transparent_hugepage can be disabled during boot with sysfs or
with the boot commandline parameter transparent_hugepage=0 (or
transparent_hugepage=2 to restrict hugepages inside madvise regions) that
will ensure not a single hugepage is allocated at boot time.  It is simple
enough to just disable transparent hugepage globally and let transparent
hugepages be allocated selectively by applications in the MADV_HUGEPAGE
region (both at page fault time, and if enabled with the
collapse_huge_page too through the kernel daemon).

This patch supports only hugepages mapped in the pmd, archs that have
smaller hugepages will not fit in this patch alone.  Also some archs like
power have certain tlb limits that prevents mixing different page size in
the same regions so they will not fit in this framework that requires
"graceful fallback" to basic PAGE_SIZE in case of physical memory
fragmentation.  hugetlbfs remains a perfect fit for those because its
software limits happen to match the hardware limits.  hugetlbfs also
remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped
to be found not fragmented after a certain system uptime and that would be
very expensive to defragment with relocation, so requiring reservation.
hugetlbfs is the "reservation way", the point of transparent hugepages is
not to have any reservation at all and maximizing the use of cache and
hugepages at all times automatically.

Some performance result:

vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep
ages3
memset page fault 1566023
memset tlb miss 453854
memset second tlb miss 453321
random access tlb miss 41635
random access second tlb miss 41658
vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3
memset page fault 1566471
memset tlb miss 453375
memset second tlb miss 453320
random access tlb miss 41636
random access second tlb miss 41637
vmx andrea # ./largepages3
memset page fault 1566642
memset tlb miss 453417
memset second tlb miss 453313
random access tlb miss 41630
random access second tlb miss 41647
vmx andrea # ./largepages3
memset page fault 1566872
memset tlb miss 453418
memset second tlb miss 453315
random access tlb miss 41618
random access second tlb miss 41659
vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage
vmx andrea # ./largepages3
memset page fault 2182476
memset tlb miss 460305
memset second tlb miss 460179
random access tlb miss 44483
random access second tlb miss 44186
vmx andrea # ./largepages3
memset page fault 2182791
memset tlb miss 460742
memset second tlb miss 459962
random access tlb miss 43981
random access second tlb miss 43988

============
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>

#define SIZE (3UL*1024*1024*1024)

int main()
{
	char *p = malloc(SIZE), *p2;
	struct timeval before, after;

	gettimeofday(&before, NULL);
	memset(p, 0, SIZE);
	gettimeofday(&after, NULL);
	printf("memset page fault %Lu\n",
	       (after.tv_sec-before.tv_sec)*1000000UL +
	       after.tv_usec-before.tv_usec);

	gettimeofday(&before, NULL);
	memset(p, 0, SIZE);
	gettimeofday(&after, NULL);
	printf("memset tlb miss %Lu\n",
	       (after.tv_sec-before.tv_sec)*1000000UL +
	       after.tv_usec-before.tv_usec);

	gettimeofday(&before, NULL);
	memset(p, 0, SIZE);
	gettimeofday(&after, NULL);
	printf("memset second tlb miss %Lu\n",
	       (after.tv_sec-before.tv_sec)*1000000UL +
	       after.tv_usec-before.tv_usec);

	gettimeofday(&before, NULL);
	for (p2 = p; p2 < p+SIZE; p2 += 4096)
		*p2 = 0;
	gettimeofday(&after, NULL);
	printf("random access tlb miss %Lu\n",
	       (after.tv_sec-before.tv_sec)*1000000UL +
	       after.tv_usec-before.tv_usec);

	gettimeofday(&before, NULL);
	for (p2 = p; p2 < p+SIZE; p2 += 4096)
		*p2 = 0;
	gettimeofday(&after, NULL);
	printf("random access second tlb miss %Lu\n",
	       (after.tv_sec-before.tv_sec)*1000000UL +
	       after.tv_usec-before.tv_usec);

	return 0;
}
============

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:42 -08:00
Andrea Arcangeli a95a82e96c thp: put_page: recheck PageHead after releasing the compound_lock
After releasing the compound_lock split_huge_page can still run and release the
page before put_page_testzero runs.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:39 -08:00
Andrea Arcangeli 9180706344 thp: alter compound get_page/put_page
Alter compound get_page/put_page to keep references on subpages too, in
order to allow __split_huge_page_refcount to split an hugepage even while
subpages have been pinned by one of the get_user_pages() variants.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:39 -08:00
Miklos Szeredi 0be8557bcd fuse: use release_pages()
Replace iterated page_cache_release() with release_pages(), which is
faster and shorter.

Needs release_pages() to be exported to modules.

Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-27 18:03:17 -07:00
Miklos Szeredi 47846b0650 mm: export lru_cache_add_*() to modules
This is needed to enable moving pages into the page cache in fuse with
splice(..., SPLICE_F_MOVE).

Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2010-05-25 15:06:06 +02:00
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00
Li Hong fc91668eaf mm: remove free_hot_page()
free_hot_page() is just a wrapper around free_hot_cold_page() with
parameter 'cold = 0'.  After adding a clear comment for
free_hot_cold_page(), it is reasonable to remove a level of call.

[akpm@linux-foundation.org: fix build]
Signed-off-by: Li Hong <lihong.hi@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Li Ming Chun <macli@brc.ubc.ca>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Americo Wang <xiyou.wangcong@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 11:26:25 -08:00
Jan Beulich 4481374ce8 mm: replace various uses of num_physpages by totalram_pages
Sizing of memory allocations shouldn't depend on the number of physical
pages found in a system, as that generally includes (perhaps a huge amount
of) non-RAM pages.  The amount of what actually is usable as storage
should instead be used as a basis here.

Some of the calculations (i.e.  those not intending to use high memory)
should likely even use (totalram_pages - totalhigh_pages).

Signed-off-by: Jan Beulich <jbeulich@novell.com>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: Dave Airlie <airlied@linux.ie>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Patrick McHardy <kaber@trash.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:38 -07:00
Johannes Weiner 6c0b13519d mm: return boolean from page_is_file_cache()
page_is_file_cache() has been used for both boolean checks and LRU
arithmetic, which was always a bit weird.

Now that page_lru_base_type() exists for LRU arithmetic, make
page_is_file_cache() a real predicate function and adjust the
boolean-using callsites to drop those pesky double negations.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:37 -07:00
Johannes Weiner 401a8e1c16 mm: introduce page_lru_base_type()
Instead of abusing page_is_file_cache() for LRU list index arithmetic, add
another helper with a more appropriate name and convert the non-boolean
users of page_is_file_cache() accordingly.

This new helper gives the LRU base type a page is supposed to live on,
inactive anon or inactive file.

[hugh.dickins@tiscali.co.uk: convert del_page_from_lru() also]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:35 -07:00
KOSAKI Motohiro 00a62ce91e mm: fix Committed_AS underflow on large NR_CPUS environment
The Committed_AS field can underflow in certain situations:

>         # while true; do cat /proc/meminfo  | grep _AS; sleep 1; done | uniq -c
>               1 Committed_AS: 18446744073709323392 kB
>              11 Committed_AS: 18446744073709455488 kB
>               6 Committed_AS:    35136 kB
>               5 Committed_AS: 18446744073709454400 kB
>               7 Committed_AS:    35904 kB
>               3 Committed_AS: 18446744073709453248 kB
>               2 Committed_AS:    34752 kB
>               9 Committed_AS: 18446744073709453248 kB
>               8 Committed_AS:    34752 kB
>               3 Committed_AS: 18446744073709320960 kB
>               7 Committed_AS: 18446744073709454080 kB
>               3 Committed_AS: 18446744073709320960 kB
>               5 Committed_AS: 18446744073709454080 kB
>               6 Committed_AS: 18446744073709320960 kB

Because NR_CPUS can be greater than 1000 and meminfo_proc_show() does
not check for underflow.

But NR_CPUS proportional isn't good calculation.  In general,
possibility of lock contention is proportional to the number of online
cpus, not theorical maximum cpus (NR_CPUS).

The current kernel has generic percpu-counter stuff.  using it is right
way.  it makes code simplify and percpu_counter_read_positive() don't
make underflow issue.

Reported-by: Dave Hansen <dave@linux.vnet.ibm.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Eric B Munson <ebmunson@us.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: <stable@kernel.org>		[All kernel versions]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-05-02 15:36:10 -07:00
David Howells 266cf658ef FS-Cache: Recruit a page flags for cache management
Recruit a page flag to aid in cache management.  The following extra flag is
defined:

 (1) PG_fscache (PG_private_2)

     The marked page is backed by a local cache and is pinning resources in the
     cache driver.

If PG_fscache is set, then things that checked for PG_private will now also
check for that.  This includes things like truncation and page invalidation.
The function page_has_private() had been added to make the checks for both
PG_private and PG_private_2 at the same time.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:36 +01:00
KOSAKI Motohiro d1d7487173 mm: remove pagevec_swap_free()
pagevec_swap_free() is now unused.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-01 08:59:13 -07:00
KOSAKI Motohiro 3e2f41f1f6 memcg: add zone_reclaim_stat
Introduce mem_cgroup_per_zone::reclaim_stat member and its statics
collecting function.

Now, get_scan_ratio() can calculate correct value on memcg reclaim.

[hugh@veritas.com: avoid reclaim_stat oops when disabled]
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 08:31:08 -08:00
KOSAKI Motohiro 6e9015716a mm: introduce zone_reclaim struct
Add zone_reclam_stat struct for later enhancement.

A later patch uses this.  This patch doesn't any behavior change (yet).

Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 08:31:07 -08:00
KAMEZAWA Hiroyuki 08e552c69c memcg: synchronized LRU
A big patch for changing memcg's LRU semantics.

Now,
  - page_cgroup is linked to mem_cgroup's its own LRU (per zone).

  - LRU of page_cgroup is not synchronous with global LRU.

  - page and page_cgroup is one-to-one and statically allocated.

  - To find page_cgroup is on what LRU, you have to check pc->mem_cgroup as
    - lru = page_cgroup_zoneinfo(pc, nid_of_pc, zid_of_pc);

  - SwapCache is handled.

And, when we handle LRU list of page_cgroup, we do following.

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc); .....................(1)
	mz = page_cgroup_zoneinfo(pc);
	spin_lock(&mz->lru_lock);
	.....add to LRU
	spin_unlock(&mz->lru_lock);
	unlock_page_cgroup(pc);

But (1) is spin_lock and we have to be afraid of dead-lock with zone->lru_lock.
So, trylock() is used at (1), now. Without (1), we can't trust "mz" is correct.

This is a trial to remove this dirty nesting of locks.
This patch changes mz->lru_lock to be zone->lru_lock.
Then, above sequence will be written as

        spin_lock(&zone->lru_lock); # in vmscan.c or swap.c via global LRU
	mem_cgroup_add/remove/etc_lru() {
		pc = lookup_page_cgroup(page);
		mz = page_cgroup_zoneinfo(pc);
		if (PageCgroupUsed(pc)) {
			....add to LRU
		}
        spin_lock(&zone->lru_lock); # in vmscan.c or swap.c via global LRU

This is much simpler.
(*) We're safe even if we don't take lock_page_cgroup(pc). Because..
    1. When pc->mem_cgroup can be modified.
       - at charge.
       - at account_move().
    2. at charge
       the PCG_USED bit is not set before pc->mem_cgroup is fixed.
    3. at account_move()
       the page is isolated and not on LRU.

Pros.
  - easy for maintenance.
  - memcg can make use of laziness of pagevec.
  - we don't have to duplicated LRU/Active/Unevictable bit in page_cgroup.
  - LRU status of memcg will be synchronized with global LRU's one.
  - # of locks are reduced.
  - account_move() is simplified very much.
Cons.
  - may increase cost of LRU rotation.
    (no impact if memcg is not configured.)

Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 08:31:05 -08:00
Hugh Dickins a2c43eed83 mm: try_to_free_swap replaces remove_exclusive_swap_page
remove_exclusive_swap_page(): its problem is in living up to its name.

It doesn't matter if someone else has a reference to the page (raised
page_count); it doesn't matter if the page is mapped into userspace
(raised page_mapcount - though that hints it may be worth keeping the
swap): all that matters is that there be no more references to the swap
(and no writeback in progress).

swapoff (try_to_unuse) has been removing pages from swapcache for years,
with no concern for page count or page mapcount, and we used to have a
comment in lookup_swap_cache() recognizing that: if you go for a page of
swapcache, you'll get the right page, but it could have been removed from
swapcache by the time you get page lock.

So, give up asking for exclusivity: get rid of
remove_exclusive_swap_page(), and remove_exclusive_swap_page_ref() and
remove_exclusive_swap_page_count() which were spawned for the recent LRU
work: replace them by the simpler try_to_free_swap() which just checks
page_swapcount().

Similarly, remove the page_count limitation from free_swap_and_count(),
but assume that it's worth holding on to the swap if page is mapped and
swap nowhere near full.  Add a vm_swap_full() test in free_swap_cache()?
It would be consistent, but I think we probably have enough for now.

Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Robin Holt <holt@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:59:03 -08:00
Hugh Dickins b5934c5318 mm: add_active_or_unevictable into rmap
lru_cache_add_active_or_unevictable() and page_add_new_anon_rmap() always
appear together.  Save some symbol table space and some jumping around by
removing lru_cache_add_active_or_unevictable(), folding its code into
page_add_new_anon_rmap(): like how we add file pages to lru just after
adding them to page cache.

Remove the nearby "TODO: is this safe?" comments (yes, it is safe), and
change page_add_new_anon_rmap()'s address BUG_ON to VM_BUG_ON as
originally intended.

Signed-off-by: Hugh Dickins <hugh@veritas.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:59:02 -08:00
KOSAKI Motohiro 1b0bd11886 mm: get rid of pagevec_release_nonlru()
speculative page references patch (commit:
e286781d5f) removed last
pagevec_release_nonlru() caller.

So this function can be removed now.

This patch doesn't have any functional change.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:59:00 -08:00
KOSAKI Motohiro 6841c8e263 mm: remove UP version of lru_add_drain_all()
Currently, lru_add_drain_all() has two version.
  (1) use schedule_on_each_cpu()
  (2) don't use schedule_on_each_cpu()

Gerald Schaefer reported it doesn't work well on SMP (not NUMA) S390
machine.

  offline_pages() calls lru_add_drain_all() followed by drain_all_pages().
  While drain_all_pages() works on each cpu, lru_add_drain_all() only runs
  on the current cpu for architectures w/o CONFIG_NUMA. This let us run
  into the BUG_ON(!PageBuddy(page)) in __offline_isolated_pages() during
  memory hotplug stress test on s390. The page in question was still on the
  pcp list, because of a race with lru_add_drain_all() and drain_all_pages()
  on different cpus.

Actually, Almost machine has CONFIG_UNEVICTABLE_LRU=y. Then almost machine use
(1) version lru_add_drain_all although the machine is UP.

Then this ifdef is not valueable.
simple removing is better.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Acked-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-12-10 08:01:53 -08:00
Rik van Riel 9ff473b9a7 vmscan: evict streaming IO first
Count the insertion of new pages in the statistics used to drive the
pageout scanning code.  This should help the kernel quickly evict
streaming file IO.

We count on the fact that new file pages start on the inactive file LRU
and new anonymous pages start on the active anon list.  This means
streaming file IO will increment the recent scanned file statistic, while
leaving the recent rotated file statistic alone, driving pageout scanning
to the file LRUs.

Pageout activity does its own list manipulation.

Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Tested-by: Gene Heskett <gene.heskett@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-12-02 15:50:40 -08:00
Lee Schermerhorn 64d6519dda swap: cull unevictable pages in fault path
In the fault paths that install new anonymous pages, check whether the
page is evictable or not using lru_cache_add_active_or_unevictable().  If
the page is evictable, just add it to the active lru list [via the pagevec
cache], else add it to the unevictable list.

This "proactive" culling in the fault path mimics the handling of mlocked
pages in Nick Piggin's series to keep mlocked pages off the lru lists.

Notes:

1) This patch is optional--e.g., if one is concerned about the
   additional test in the fault path.  We can defer the moving of
   nonreclaimable pages until when vmscan [shrink_*_list()]
   encounters them.  Vmscan will only need to handle such pages
   once, but if there are a lot of them it could impact system
   performance.

2) The 'vma' argument to page_evictable() is require to notice that
   we're faulting a page into an mlock()ed vma w/o having to scan the
   page's rmap in the fault path.   Culling mlock()ed anon pages is
   currently the only reason for this patch.

3) We can't cull swap pages in read_swap_cache_async() because the
   vma argument doesn't necessarily correspond to the swap cache
   offset passed in by swapin_readahead().  This could [did!] result
   in mlocking pages in non-VM_LOCKED vmas if [when] we tried to
   cull in this path.

4) Move set_pte_at() to after where we add page to lru to keep it
   hidden from other tasks that might walk the page table.
   We already do it in this order in do_anonymous() page.  And,
   these are COW'd anon pages.  Is this safe?

[riel@redhat.com: undo an overzealous code cleanup]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:52:31 -07:00
Nick Piggin b291f00039 mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.

This is achieved through various strategies:

1) add yet another page flag--PG_mlocked--to indicate that
   the page is locked for efficient testing in vmscan and,
   optionally, fault path.  This allows early culling of
   unevictable pages, preventing them from getting to
   page_referenced()/try_to_unmap().  Also allows separate
   accounting of mlock'd pages, as Nick's original patch
   did.

   Note:  Nick's original mlock patch used a PG_mlocked
   flag.  I had removed this in favor of the PG_unevictable
   flag + an mlock_count [new page struct member].  I
   restored the PG_mlocked flag to eliminate the new
   count field.

2) add the mlock/unevictable infrastructure to mm/mlock.c,
   with internal APIs in mm/internal.h.  This is a rework
   of Nick's original patch to these files, taking into
   account that mlocked pages are now kept on unevictable
   LRU list.

3) update vmscan.c:page_evictable() to check PageMlocked()
   and, if vma passed in, the vm_flags.  Note that the vma
   will only be passed in for new pages in the fault path;
   and then only if the "cull unevictable pages in fault
   path" patch is included.

4) add try_to_unlock() to rmap.c to walk a page's rmap and
   ClearPageMlocked() if no other vmas have it mlocked.
   Reuses as much of try_to_unmap() as possible.  This
   effectively replaces the use of one of the lru list links
   as an mlock count.  If this mechanism let's pages in mlocked
   vmas leak through w/o PG_mlocked set [I don't know that it
   does], we should catch them later in try_to_unmap().  One
   hopes this will be rare, as it will be relatively expensive.

Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>

splitlru: introduce __get_user_pages():

  New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
  because current get_user_pages() can't grab PROT_NONE pages theresore it
  cause PROT_NONE pages can't munlock.

[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:52:30 -07:00
Lee Schermerhorn 894bc31041 Unevictable LRU Infrastructure
When the system contains lots of mlocked or otherwise unevictable pages,
the pageout code (kswapd) can spend lots of time scanning over these
pages.  Worse still, the presence of lots of unevictable pages can confuse
kswapd into thinking that more aggressive pageout modes are required,
resulting in all kinds of bad behaviour.

Infrastructure to manage pages excluded from reclaim--i.e., hidden from
vmscan.  Based on a patch by Larry Woodman of Red Hat.  Reworked to
maintain "unevictable" pages on a separate per-zone LRU list, to "hide"
them from vmscan.

Kosaki Motohiro added the support for the memory controller unevictable
lru list.

Pages on the unevictable list have both PG_unevictable and PG_lru set.
Thus, PG_unevictable is analogous to and mutually exclusive with
PG_active--it specifies which LRU list the page is on.

The unevictable infrastructure is enabled by a new mm Kconfig option
[CONFIG_]UNEVICTABLE_LRU.

A new function 'page_evictable(page, vma)' in vmscan.c tests whether or
not a page may be evictable.  Subsequent patches will add the various
!evictable tests.  We'll want to keep these tests light-weight for use in
shrink_active_list() and, possibly, the fault path.

To avoid races between tasks putting pages [back] onto an LRU list and
tasks that might be moving the page from non-evictable to evictable state,
the new function 'putback_lru_page()' -- inverse to 'isolate_lru_page()'
-- tests the "evictability" of a page after placing it on the LRU, before
dropping the reference.  If the page has become unevictable,
putback_lru_page() will redo the 'putback', thus moving the page to the
unevictable list.  This way, we avoid "stranding" evictable pages on the
unevictable list.

[akpm@linux-foundation.org: fix fallout from out-of-order merge]
[riel@redhat.com: fix UNEVICTABLE_LRU and !PROC_PAGE_MONITOR build]
[nishimura@mxp.nes.nec.co.jp: remove redundant mapping check]
[kosaki.motohiro@jp.fujitsu.com: unevictable-lru-infrastructure: putback_lru_page()/unevictable page handling rework]
[kosaki.motohiro@jp.fujitsu.com: kill unnecessary lock_page() in vmscan.c]
[kosaki.motohiro@jp.fujitsu.com: revert migration change of unevictable lru infrastructure]
[kosaki.motohiro@jp.fujitsu.com: revert to unevictable-lru-infrastructure-kconfig-fix.patch]
[kosaki.motohiro@jp.fujitsu.com: restore patch failure of vmstat-unevictable-and-mlocked-pages-vm-events.patch]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Debugged-by: Benjamin Kidwell <benjkidwell@yahoo.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:50:26 -07:00