Make sure we log something to dmesg whenever we return -EFSCORRUPTED up
the call stack.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Since no caller is using KM_NOSLEEP and no callee branches on KM_SLEEP,
we can remove KM_NOSLEEP and replace KM_SLEEP with 0.
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
There are many, many xfs header files which are included but
unneeded (or included twice) in the xfs code, so remove them.
nb: xfs_linux.h includes about 9 headers for everyone, so those
explicit includes get removed by this. I'm not sure what the
preference is, but if we wanted explicit includes everywhere,
a followup patch could remove those xfs_*.h includes from
xfs_linux.h and move them into the files that need them.
Or it could be left as-is.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Keep all the extree item related code together in one file.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
There is no good reason to keep these two functions separate.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We have various items that are released from ->iop_comitting. Add a
flag to just call ->iop_release from the commit path to avoid tons
of boilerplate code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The iop_unlock method is called when comitting or cancelling a
transaction. In the latter case, the transaction may or may not be
aborted. While there is no known problem with the current code in
practice, this implementation is limited in that any log item
implementation that might want to differentiate between a commit and a
cancellation must rely on the aborted state. The aborted bit is only
set when the cancelled transaction is dirty, however. This means that
there is no way to distinguish between a commit and a clean transaction
cancellation.
For example, intent log items currently rely on this distinction. The
log item is either transferred to the CIL on commit or released on
transaction cancel. There is currently no possibility for a clean intent
log item in a transaction, but if that state is ever introduced a cancel
of such a transaction will immediately result in memory leaks of the
associated log item(s). This is an interface deficiency and landmine.
To clean this up, replace the iop_unlock method with an iop_release
method that is specific to transaction cancel. The existing
iop_committing method occurs at the same time as iop_unlock in the
commit path and there is no need for two separate callbacks here.
Overload the iop_committing method with the current commit time
iop_unlock implementations to eliminate the need for the latter and
further simplify the interface.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Just check if they are present first.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The inode geometry structure isn't related to ondisk format; it's
support for the mount structure. Move it to xfs_shared.h.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Owner information for static fs metadata can be defined readonly at
build time because it never changes across filesystems. This enables us
to reduce stack usage (particularly in scrub) because we can use the
statically defined oinfo structures.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/
This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:
for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done
And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:
$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}
/^ \* This program is free software/ {
hdr = 2.0;
next
}
/any later version./ {
tag = "GPL-2.0+"
next
}
/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}
/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}
/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}
// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}
END { }
$
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Freed extents are unconditionally discarded when online discard is
enabled. Define XFS_BMAPI_NODISCARD to allow callers to bypass
discards when unnecessary. For example, this will be useful for
eofblocks trimming.
This patch does not change behavior.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The log item flags contain a field that is protected by the AIL
lock - the XFS_LI_IN_AIL flag. We use non-atomic RMW operations to
set and clear these flags, but most of the updates and checks are
not done with the AIL lock held and so are susceptible to update
races.
Fix this by changing the log item flags to use atomic bitops rather
than be reliant on the AIL lock for update serialisation.
Signed-Off-By: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
When an intent is aborted during it's initial commit through
xfs_defer_trans_abort(), there is a use after free. The current
report is for a RUI through this path in generic/388:
Freed by task 6274:
__kasan_slab_free+0x136/0x180
kmem_cache_free+0xe7/0x4b0
xfs_trans_free_items+0x198/0x2e0
__xfs_trans_commit+0x27f/0xcc0
xfs_trans_roll+0x17b/0x2a0
xfs_defer_trans_roll+0x6ad/0xe60
xfs_defer_finish+0x2a6/0x2140
xfs_alloc_file_space+0x53a/0xf90
xfs_file_fallocate+0x5c6/0xac0
vfs_fallocate+0x2f5/0x930
ioctl_preallocate+0x1dc/0x320
do_vfs_ioctl+0xfe4/0x1690
The problem is that the RUI has two active references - one in the
current transaction, and another held by the defer_ops structure
that is passed to the RUD (intent done) so that both the intent and
the intent done structures are freed on commit of the intent done.
Hence during abort, we need to release the intent item, because the
defer_ops reference is released separately via ->abort_intent
callback. Fix all the intent code to do this correctly.
Signed-Off-By: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Calling xfs_rmap_free with an unknown owner is supposed to remove any
rmaps covering that range regardless of owner. This is used by the EFI
recovery code to say "we're freeing this, it mustn't be owned by
anything anymore", but for whatever reason xfs_free_ag_extent filters
them out.
Therefore, remove the filter and make xfs_rmap_unmap actually treat it
as a wildcard owner -- free anything that's already there, and if
there's no owner at all then that's fine too.
There are two existing callers of bmap_add_free that take care the rmap
deferred ops themselves and use OWN_UNKNOWN to skip the EFI-based rmap
cleanup; convert these to use OWN_NULL (via helpers), and now we really
require that an RUI (if any) gets added to the defer ops before any EFI.
Lastly, now that xfs_free_extent filters out OWN_NULL rmap free requests,
growfs will have to consult directly with the rmap to ensure that there
aren't any rmaps in the grown region.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Use ASSERTs on the log intent item refcounts so that we fail noisily if
anyone tries to double-free the item.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
For the rmap btree to work, we have to feed the extent owner
information to the the allocation and freeing functions. This
information is what will end up in the rmap btree that tracks
allocated extents. While we technically don't need the owner
information when freeing extents, passing it allows us to validate
that the extent we are removing from the rmap btree actually
belonged to the owner we expected it to belong to.
We also define a special set of owner values for internal metadata
that would otherwise have no owner. This allows us to tell the
difference between metadata owned by different per-ag btrees, as
well as static fs metadata (e.g. AG headers) and internal journal
blocks.
There are also a couple of special cases we need to take care of -
during EFI recovery, we don't actually know who the original owner
was, so we need to pass a wildcard to indicate that we aren't
checking the owner for validity. We also need special handling in
growfs, as we "free" the space in the last AG when extending it, but
because it's new space it has no actual owner...
While touching the xfs_bmap_add_free() function, re-order the
parameters to put the struct xfs_mount first.
Extend the owner field to include both the owner type and some sort
of index within the owner. The index field will be used to support
reverse mappings when reflink is enabled.
When we're freeing extents from an EFI, we don't have the owner
information available (rmap updates have their own redo items).
xfs_free_extent therefore doesn't need to do an rmap update. Make
sure that the log replay code signals this correctly.
This is based upon a patch originally from Dave Chinner. It has been
extended to add more owner information with the intent of helping
recovery operations when things go wrong (e.g. offset of user data
block in a file).
[dchinner: de-shout the xfs_rmap_*_owner helpers]
[darrick: minor style fixes suggested by Christoph Hellwig]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Refactor the EFI intent item recovery (and cancellation) functions
into a general function that scans the AIL and an intent item type
specific handler. Move the function that recovers a single EFI item
into the extent free item code. We'll want the generalized function
when we start wiring up more redo item types.
Furthermore, ensure that log recovery only replays the redo items
that were in the AIL prior to recovery by checking the item LSN
against the largest LSN seen during log scanning. As written this
should never happen, but we can be defensive anyway.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
One of the problems we currently have with delayed logging is that
under serious memory pressure we can deadlock memory reclaim. THis
occurs when memory reclaim (such as run by kswapd) is reclaiming XFS
inodes and issues a log force to unpin inodes that are dirty in the
CIL.
The CIL is pushed, but this will only occur once it gets the CIL
context lock to ensure that all committing transactions are complete
and no new transactions start being committed to the CIL while the
push switches to a new context.
The deadlock occurs when the CIL context lock is held by a
committing process that is doing memory allocation for log vector
buffers, and that allocation is then blocked on memory reclaim
making progress. Memory reclaim, however, is blocked waiting for
a log force to make progress, and so we effectively deadlock at this
point.
To solve this problem, we have to move the CIL log vector buffer
allocation outside of the context lock so that memory reclaim can
always make progress when it needs to force the log. The problem
with doing this is that a CIL push can take place while we are
determining if we need to allocate a new log vector buffer for
an item and hence the current log vector may go away without
warning. That means we canot rely on the existing log vector being
present when we finally grab the context lock and so we must have a
replacement buffer ready to go at all times.
To ensure this, introduce a "shadow log vector" buffer that is
always guaranteed to be present when we gain the CIL context lock
and format the item. This shadow buffer may or may not be used
during the formatting, but if the log item does not have an existing
log vector buffer or that buffer is too small for the new
modifications, we swap it for the new shadow buffer and format
the modifications into that new log vector buffer.
The result of this is that for any object we modify more than once
in a given CIL checkpoint, we double the memory required
to track dirty regions in the log. For single modifications then
we consume the shadow log vectorwe allocate on commit, and that gets
consumed by the checkpoint. However, if we make multiple
modifications, then the second transaction commit will allocate a
shadow log vector and hence we will end up with double the memory
usage as only one of the log vectors is consumed by the CIL
checkpoint. The remaining shadow vector will be freed when th elog
item is freed.
This can probably be optimised in future - access to the shadow log
vector is serialised by the object lock (as opposited to the active
log vector, which is controlled by the CIL context lock) and so we
can probably free shadow log vector from some objects when the log
item is marked clean on removal from the AIL.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Several areas of code duplicate a pattern where we take the AIL lock,
check whether an item is in the AIL and remove it if so. Create a new
helper for this pattern and use it where appropriate.
Signed-off-by: Brian Foster <bfoster@redhat.com>
The EFI is initialized with a reference count of 2. One for the EFI to
ensure the item makes it to the AIL and one for the subsequently created
EFD to release the EFI once the EFD is committed. Log recovery uses the
EFI in a similar manner, but implements a hack to remove both references
in one call once the EFD is handled.
Update log recovery to use EFI reference counting in a manner consistent
with the log. When an EFI is encountered during recovery, an EFI item is
allocated and inserted to the AIL directly. Since the EFI reference is
typically dropped when the EFI is unpinned and this is analogous with
AIL insertion, drop the EFI reference at this point.
When a corresponding EFD is encountered in the log, this indicates that
the extents were freed, no processing is required and the EFI can be
dropped. Update xlog_recover_efd_pass2() to simply drop the EFD
reference at this point rather than open code the AIL removal and EFI
free.
Remaining EFIs (i.e., with no corresponding EFD) are processed in
xlog_recover_finish(). An EFD transaction is allocated and the extents
are freed, which transfers ownership of the EFI reference to the EFD
item in the log.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Freeing an extent in XFS involves logging an EFI (extent free
intention), freeing the actual extent, and logging an EFD (extent
free done). The EFI object is created with a reference count of 2:
one for the current transaction and one for the subsequently created
EFD. Under normal circumstances, the first reference is dropped when
the EFI is unpinned and the second reference is dropped when the EFD
is committed to the on-disk log.
In event of errors or filesystem shutdown, there are various
potential cleanup scenarios depending on the state of the EFI/EFD.
The cleanup scenarios are confusing and racy, as demonstrated by the
following test sequence:
# mount $dev $mnt
# fsstress -d $mnt -n 99999 -p 16 -z -f fallocate=1 \
-f punch=1 -f creat=1 -f unlink=1 &
# sleep 5
# killall -9 fsstress; wait
# godown -f $mnt
# umount
... in which the final umount can hang due to the AIL being pinned
indefinitely by one or more EFI items. This can occur due to several
conditions. For example, if the shutdown occurs after the EFI is
committed to the on-disk log and the EFD committed to the CIL, but
before the EFD committed to the log, the EFD iop_committed() abort
handler does not drop its reference to the EFI. Alternatively,
manual error injection in the xfs_bmap_finish() codepath shows that
if an error occurs after the EFI transaction is committed but before
the EFD is constructed and logged, the EFI is never released from
the AIL.
Update the EFI/EFD item handling code to use a more straightforward
and reliable approach to error handling. If an error occurs after
the EFI transaction is committed and before the EFD is constructed,
release the EFI explicitly from xfs_bmap_finish(). If the EFI
transaction is cancelled, release the EFI in the unlock handler.
Once the EFD is constructed, it is responsible for releasing the EFI
under any circumstances (including whether the EFI item aborts due
to log I/O error). Update the EFD item handlers to release the EFI
if the transaction is cancelled or aborts due to log I/O error.
Finally, update xfs_bmap_finish() to log at least one EFD extent to
the transaction before xfs_free_extent() errors are handled to
ensure the transaction is dirty and EFD item error handling is
triggered.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Release of the EFI either occurs based on the reference count or the
extent count. The extent count used is either the count tracked in
the EFI or EFD, depending on the particular situation. In either
case, the count is initialized to the final value and thus always
matches the current efi_next_extent value once the EFI is completely
constructed. For example, the EFI extent count is increased as the
extents are logged in xfs_bmap_finish() and the full free list is
always completely processed. Therefore, the count is guaranteed to
be complete once the EFI transaction is committed. The EFD uses the
efd_nextents counter to release the EFI. This counter is initialized
to the count of the EFI when the EFD is created. Thus the EFD, as
currently used, has no concept of partial EFI release based on
extent count.
Given that the EFI extent count is always released in whole, use of
the extent count for reference counting is unnecessary. Remove this
level of the API and release the EFI based on the core reference
count. The efi_next_extent counter remains because it is still used
to track the slot to log the next extent to free.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Replace uses of __psint_t with the proper uintptr_t and ptrdiff_t types,
and remove the defintions of __psint_t and __psunsigned_t.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
More on-disk format consolidation.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
More on-disk format consolidation. A few declarations that weren't on-disk
format related move into better suitable spots.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Convert all the errors the core XFs code to negative error signs
like the rest of the kernel and remove all the sign conversion we
do in the interface layers.
Errors for conversion (and comparison) found via searches like:
$ git grep " E" fs/xfs
$ git grep "return E" fs/xfs
$ git grep " E[A-Z].*;$" fs/xfs
Negation points found via searches like:
$ git grep "= -[a-z,A-Z]" fs/xfs
$ git grep "return -[a-z,A-D,F-Z]" fs/xfs
$ git grep " -[a-z].*;" fs/xfs
[ with some bits I missed from Brian Foster ]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Instead of setting up pointers to memory locations in iop_format which then
get copied into the CIL linear buffer after return move the copy into
the individual inode items. This avoids the need to always have a memory
block in the exact same layout that gets written into the log around, and
allow the log items to be much more flexible in their in-memory layouts.
The only caveat is that we need to properly align the data for each
iovec so that don't have structures misaligned in subsequent iovecs.
Note that all log item format routines now need to be careful to modify
the copy of the item that was placed into the CIL after calls to
xlog_copy_iovec instead of the in-memory copy.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Add a helper to abstract out filling the log iovecs in the log item
format handlers. This will allow us to change the way we do the log
item formatting more easily.
The copy in the name is a bit confusing for now as it just assigns a
pointer and lets the CIL code perform the copy, but that will change
soon.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_trans.h has a dependency on xfs_log.h for a couple of
structures. Most code that does transactions doesn't need to know
anything about the log, but this dependency means that they have to
include xfs_log.h. Decouple the xfs_trans.h and xfs_log.h header
files and clean up the includes to be in dependency order.
In doing this, remove the direct include of xfs_trans_reserve.h from
xfs_trans.h so that we remove the dependency between xfs_trans.h and
xfs_mount.h. Hence the xfs_trans.h include can be moved to the
indicate the actual dependencies other header files have on it.
Note that these are kernel only header files, so this does not
translate to any userspace changes at all.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
To begin optimising the CIL commit process, we need to have IOP_SIZE
return both the number of vectors and the size of the data pointed
to by the vectors. This enables us to calculate the size ofthe
memory allocation needed before the formatting step and reduces the
number of memory allocations per item by one.
While there, kill the IOP_SIZE macro.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Checking the EFI for whether it is being released from recovery
after we've already released the known active reference is a mistake
worthy of a brown paper bag. Fix the (now) obvious use after free
that it can cause.
Reported-by: Dave Jones <davej@redhat.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit 52c24ad39f)
Filesystems are occasionally being shut down with this error:
xfs_trans_ail_delete_bulk: attempting to delete a log item that is
not in the AIL.
It was diagnosed to be related to the EFI/EFD commit order when the
EFI and EFD are in different checkpoints and the EFD is committed
before the EFI here:
http://oss.sgi.com/archives/xfs/2013-01/msg00082.html
The real problem is that a single bit cannot fully describe the
states that the EFI/EFD processing can be in. These completion
states are:
EFI EFI in AIL EFD Result
committed/unpinned Yes committed OK
committed/pinned No committed Shutdown
uncommitted No committed Shutdown
Note that the "result" field is what should happen, not what does
happen. The current logic is broken and handles the first two cases
correctly by luck. That is, the code will free the EFI if the
XFS_EFI_COMMITTED bit is *not* set, rather than if it is set. The
inverted logic "works" because if both EFI and EFD are committed,
then the first __xfs_efi_release() call clears the XFS_EFI_COMMITTED
bit, and the second frees the EFI item. Hence as long as
xfs_efi_item_committed() has been called, everything appears to be
fine.
It is the third case where the logic fails - where
xfs_efd_item_committed() is called before xfs_efi_item_committed(),
and that results in the EFI being freed before it has been
committed. That is the bug that triggered the shutdown, and hence
keeping track of whether the EFI has been committed or not is
insufficient to correctly order the EFI/EFD operations w.r.t. the
AIL.
What we really want is this: the EFI is always placed into the
AIL before the last reference goes away. The only way to guarantee
that is that the EFI is not freed until after it has been unpinned
*and* the EFD has been committed. That is, restructure the logic so
that the only case that can occur is the first case.
This can be done easily by replacing the XFS_EFI_COMMITTED with an
EFI reference count. The EFI is initialised with it's own count, and
that is not released until it is unpinned. However, there is a
complication to this method - the high level EFI/EFD code in
xfs_bmap_finish() does not hold direct references to the EFI
structure, and runs a transaction commit between the EFI and EFD
processing. Hence the EFI can be freed even before the EFD is
created using such a method.
Further, log recovery uses the AIL for tracking EFI/EFDs that need
to be recovered, but it uses the AIL *differently* to the EFI
transaction commit. Hence log recovery never pins or unpins EFIs, so
we can't drop the EFI reference count indirectly to free the EFI.
However, this doesn't prevent us from using a reference count here.
There is a 1:1 relationship between EFIs and EFDs, so when we
initialise the EFI we can take a reference count for the EFD as
well. This solves the xfs_bmap_finish() issue - the EFI will never
be freed until the EFD is processed. In terms of log recovery,
during the committing of the EFD we can look for the
XFS_EFI_RECOVERED bit being set and drop the EFI reference as well,
thereby ensuring everything works correctly there as well.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Untangle the header file includes a bit by moving the definition of
xfs_agino_t to xfs_types.h. This removes the dependency that xfs_ag.h has on
xfs_inum.h, meaning we don't need to include xfs_inum.h everywhere we include
xfs_ag.h.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
xfs_trans_ail_delete_bulk() can be called from different contexts so
if the item is not in the AIL we need different shutdown for each
context. Pass in the shutdown method needed so the correct action
can be taken.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Queue delwri buffers on a local on-stack list instead of a per-buftarg one,
and write back the buffers per-process instead of by waking up xfsbufd.
This is now easily doable given that we have very few places left that write
delwri buffers:
- log recovery:
Only done at mount time, and already forcing out the buffers
synchronously using xfs_flush_buftarg
- quotacheck:
Same story.
- dquot reclaim:
Writes out dirty dquots on the LRU under memory pressure. We might
want to look into doing more of this via xfsaild, but it's already
more optimal than the synchronous inode reclaim that writes each
buffer synchronously.
- xfsaild:
This is the main beneficiary of the change. By keeping a local list
of buffers to write we reduce latency of writing out buffers, and
more importably we can remove all the delwri list promotions which
were hitting the buffer cache hard under sustained metadata loads.
The implementation is very straight forward - xfs_buf_delwri_queue now gets
a new list_head pointer that it adds the delwri buffers to, and all callers
need to eventually submit the list using xfs_buf_delwi_submit or
xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are
skipped in xfs_buf_delwri_queue, assuming they already are on another delwri
list. The biggest change to pass down the buffer list was done to the AIL
pushing. Now that we operate on buffers the trylock, push and pushbuf log
item methods are merged into a single push routine, which tries to lock the
item, and if possible add the buffer that needs writeback to the buffer list.
This leads to much simpler code than the previous split but requires the
individual IOP_PUSH instances to unlock and reacquire the AIL around calls
to blocking routines.
Given that xfsailds now also handle writing out buffers, the conditions for
log forcing and the sleep times needed some small changes. The most
important one is that we consider an AIL busy as long we still have buffers
to push, and the other one is that we do increment the pushed LSN for
buffers that are under flushing at this moment, but still count them towards
the stuck items for restart purposes. Without this we could hammer on stuck
items without ever forcing the log and not make progress under heavy random
delete workloads on fast flash storage devices.
[ Dave Chinner:
- rebase on previous patches.
- improved comments for XBF_DELWRI_Q handling
- fix XBF_ASYNC handling in queue submission (test 106 failure)
- rename delwri submit function buffer list parameters for clarity
- xfs_efd_item_push() should return XFS_ITEM_PINNED ]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The log item ops aren't nessecarily the biggest exploit vector, but marking
them const is easy enough. Also remove the unused xfs_item_ops_t typedef
while we're at it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Alex Elder <aelder@sgi.com>
After test 139, kmemleak shows:
unreferenced object 0xffff880078b405d8 (size 400):
comm "xfs_io", pid 4904, jiffies 4294909383 (age 1186.728s)
hex dump (first 32 bytes):
60 c1 17 79 00 88 ff ff 60 c1 17 79 00 88 ff ff `..y....`..y....
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<ffffffff81afb04d>] kmemleak_alloc+0x2d/0x60
[<ffffffff8115c6cf>] kmem_cache_alloc+0x13f/0x2b0
[<ffffffff814aaa97>] kmem_zone_alloc+0x77/0xf0
[<ffffffff814aab2e>] kmem_zone_zalloc+0x1e/0x50
[<ffffffff8147cd6b>] xfs_efi_init+0x4b/0xb0
[<ffffffff814a4ee8>] xfs_trans_get_efi+0x58/0x90
[<ffffffff81455fab>] xfs_bmap_finish+0x8b/0x1d0
[<ffffffff814851b4>] xfs_itruncate_finish+0x2c4/0x5d0
[<ffffffff814a970f>] xfs_setattr+0x8df/0xa70
[<ffffffff814b5c7b>] xfs_vn_setattr+0x1b/0x20
[<ffffffff8117dc00>] notify_change+0x170/0x2e0
[<ffffffff81163bf6>] do_truncate+0x66/0xa0
[<ffffffff81163d0b>] sys_ftruncate+0xdb/0xe0
[<ffffffff8103a002>] system_call_fastpath+0x16/0x1b
[<ffffffffffffffff>] 0xffffffffffffffff
The cause of the leak is that the "remove" parameter of IOP_UNPIN()
is never set when a CIL push is aborted. This means that the EFI
item is never freed if it was in the push being cancelled. The
problem is specific to delayed logging, but has uncovered a couple
of problems with the handling of IOP_UNPIN(remove).
Firstly, we cannot safely call xfs_trans_del_item() from IOP_UNPIN()
in the CIL commit failure path or the iclog write failure path
because for delayed loging we have no transaction context. Hence we
must only call xfs_trans_del_item() if the log item being unpinned
has an active log item descriptor.
Secondly, xfs_trans_uncommit() does not handle log item descriptor
freeing during the traversal of log items on a transaction. It can
reference a freed log item descriptor when unpinning an EFI item.
Hence it needs to use a safe list traversal method to allow items to
be removed from the transaction during IOP_UNPIN().
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Alex Elder <aelder@sgi.com>
EFI/EFD interactions are protected from races by the AIL lock. They
are the only type of log items that require the the AIL lock to
serialise internal state, so they need to be separated from the AIL
lock before we can do bulk insert operations on the AIL.
To acheive this, convert the counter of the number of extents in the
EFI to an atomic so it can be safely manipulated by EFD processing
without locks. Also, convert the EFI state flag manipulations to use
atomic bit operations so no locks are needed to record state
changes. Finally, use the state bits to determine when it is safe to
free the EFI and clean up the code to do this neatly.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
XFS_EFI_CANCELED has not been set in the code base since
xfs_efi_cancel() was removed back in 2006 by commit
065d312e15 ("[XFS] Remove unused
iop_abort log item operation), and even then xfs_efi_cancel() was
never called. I haven't tracked it back further than that (beyond
git history), but it indicates that the handling of EFIs in
cancelled transactions has been broken for a long time.
Basically, when we get an IOP_UNPIN(lip, 1); call from
xfs_trans_uncommit() (i.e. remove == 1), if we don't free the log
item descriptor we leak it. Fix the behviour to be correct and kill
the XFS_EFI_CANCELED flag.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
By making this member a void pointer we can get rid of a lot of pointless
casts.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Stop the function pointer casting madness and give all the xfs_item_ops the
correct prototypes.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
The unpin_remove item operation instances always share most of the
implementation with the respective unpin implementation. So instead
of keeping two different entry points add a remove flag to the unpin
operation and share the code more easily.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Currently we track log item descriptor belonging to a transaction using a
complex opencoded chunk allocator. This code has been there since day one
and seems to work around the lack of an efficient slab allocator.
This patch replaces it with dynamically allocated log item descriptors
from a dedicated slab pool, linked to the transaction by a linked list.
This allows to greatly simplify the log item descriptor tracking to the
point where it's just a couple hundred lines in xfs_trans.c instead of
a separate file. The external API has also been simplified while we're
at it - the xfs_trans_add_item and xfs_trans_del_item functions to add/
delete items from a transaction have been simplified to the bare minium,
and the xfs_trans_find_item function is replaced with a direct dereference
of the li_desc field. All debug code walking the list of log items in
a transaction is down to a simple list_for_each_entry.
Note that we could easily use a singly linked list here instead of the
double linked list from list.h as the fastpath only does deletion from
sequential traversal. But given that we don't have one available as
a library function yet I use the list.h functions for simplicity.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Dmapi support was never merged upstream, but we still have a lot of hooks
bloating XFS for it, all over the fast pathes of the filesystem.
This patch drops over 700 lines of dmapi overhead. If we'll ever get HSM
support in mainline at least the namespace events can be done much saner
in the VFS instead of the individual filesystem, so it's not like this
is much help for future work.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
The staleness of a object being unpinned can be directly derived
from the object itself - there is no need to extract it from the
object then pass it as a parameter into IOP_UNPIN().
This means we can kill the XFS_LID_BUF_STALE flag - it is set,
checked and cleared in the same places XFS_BLI_STALE flag in the
xfs_buf_log_item so it is now redundant and hence safe to remove.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Each log item type does manual initialisation of the log item.
Delayed logging introduces new fields that need initialisation, so
factor all the open coded initialisation into a common function
first.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
This macro only obsfucates the log item type assignments, so kill it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Alex Elder <aelder@sgi.com>