trans_pgd_create_copy() and trans_pgd_map_page() are going to be
the basis for new shared code that handles page tables for cases
which are between kernels: kexec, and hibernate.
Note: Eventually, get_safe_page() will be moved into a function pointer
passed via argument, but for now keep it as is.
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: James Morse <james.morse@arm.com>
[will: Keep these functions static until kexec needs them]
Signed-off-by: Will Deacon <will@kernel.org>
There is PMD_SECT_RDONLY that is used in pud_* function which is confusing.
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Acked-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
create_safe_exec_page() allocates a safe page and maps it at a
specific location, also this function returns the physical address
of newly allocated page.
The destination VA, and PA are specified in arguments: dst_addr,
phys_dst_addr
However, within the function it uses "dst" which has unsigned long
type, but is actually a pointers in the current virtual space. This
is confusing to read.
Rename dst to more appropriate page (page that is created), and also
change its time to "void *"
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Usually, gotos are used to handle cleanup after exception, but in case of
create_safe_exec_page and swsusp_arch_resume there are no clean-ups. So,
simply return the errors directly.
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
create_safe_exec_page() uses hibernate's allocator to create a set of page
table to map a single page that will contain the relocation code.
Remove the allocator related arguments, and use get_safe_page directly, as
it is done in other local functions in this file to simplify function
prototype.
Removing this function pointer makes it easier to refactor the code later.
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: Matthias Brugger <mbrugger@suse.com>
Signed-off-by: Will Deacon <will@kernel.org>
ttbr0 should be set to the beginning of pgdp, however, currently
in create_safe_exec_page it is set to pgdp after pgd_offset_raw(),
which works by accident.
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
There is a bug in create_safe_exec_page(), when page table is allocated
it is not checked that table is allocated successfully:
But it is dereferenced in: pgd_none(READ_ONCE(*pgdp)). Check that
allocation was successful.
Fixes: 82869ac57b ("arm64: kernel: Add support for hibernate/suspend-to-disk")
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Will Deacon <will@kernel.org>
Prior to commit:
14c127c957 ("arm64: mm: Flip kernel VA space")
... VA_START described the start of the TTBR1 address space for a given
VA size described by VA_BITS, where all kernel mappings began.
Since that commit, VA_START described a portion midway through the
address space, where the linear map ends and other kernel mappings
begin.
To avoid confusion, let's rename VA_START to PAGE_END, making it clear
that it's not the start of the TTBR1 address space and implying that
it's related to PAGE_OFFSET. Comments and other mnemonics are updated
accordingly, along with a typo fix in the decription of VMEMMAP_SIZE.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Steve Capper <steve.capper@arm.com>
Reviewed-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
In order to allow for a KASAN shadow that changes size at boot time, one
must fix the KASAN_SHADOW_END for both 48 & 52-bit VAs and "grow" the
start address. Also, it is highly desirable to maintain the same
function addresses in the kernel .text between VA sizes. Both of these
requirements necessitate us to flip the kernel address space halves s.t.
the direct linear map occupies the lower addresses.
This patch puts the direct linear map in the lower addresses of the
kernel VA range and everything else in the higher ranges.
We need to adjust:
*) KASAN shadow region placement logic,
*) KASAN_SHADOW_OFFSET computation logic,
*) virt_to_phys, phys_to_virt checks,
*) page table dumper.
These are all small changes, that need to take place atomically, so they
are bundled into this commit.
As part of the re-arrangement, a guard region of 2MB (to preserve
alignment for fixed map) is added after the vmemmap. Otherwise the
vmemmap could intersect with IS_ERR pointers.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Based on 1 normalized pattern(s):
license terms gnu general public license gpl version 2
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 161 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Steve Winslow <swinslow@gmail.com>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190528170027.447718015@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
During resume hibernate restores all physical memory. Any memory
that is accessed with the MMU disabled needs to be cleaned to the
PoC.
KVMs __hyp_text was previously ommitted as it runs with the MMU
enabled, but now that the hyp-stub is located in this section,
we must clean __hyp_text too.
This ensures secondary CPUs that come online after hibernate
has finished resuming, and load KVM via the freshly written
hyp-stub see the correct instructions.
Signed-off-by: James Morse <james.morse@arm.com>
Cc: stable@vger.kernel.org
Signed-off-by: Will Deacon <will.deacon@arm.com>
Since commit 3b8c9f1cdf ("arm64: IPI each CPU after invalidating the
I-cache for kernel mappings"), a call to flush_icache_range() will use
an IPI to cross-call other online CPUs so that any stale instructions
are flushed from their pipelines. This triggers a WARN during the
hibernation resume path, where flush_icache_range() is called with
interrupts disabled and is therefore prone to deadlock:
| Disabling non-boot CPUs ...
| CPU1: shutdown
| psci: CPU1 killed.
| CPU2: shutdown
| psci: CPU2 killed.
| CPU3: shutdown
| psci: CPU3 killed.
| WARNING: CPU: 0 PID: 1 at ../kernel/smp.c:416 smp_call_function_many+0xd4/0x350
| Modules linked in:
| CPU: 0 PID: 1 Comm: swapper/0 Not tainted 4.20.0-rc4 #1
Since all secondary CPUs have been taken offline prior to invalidating
the I-cache, there's actually no need for an IPI and we can simply call
__flush_icache_range() instead.
Cc: <stable@vger.kernel.org>
Fixes: 3b8c9f1cdf ("arm64: IPI each CPU after invalidating the I-cache for kernel mappings")
Reported-by: Kunihiko Hayashi <hayashi.kunihiko@socionext.com>
Tested-by: Kunihiko Hayashi <hayashi.kunihiko@socionext.com>
Tested-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
On a system where firmware can dynamically change the state of the
mitigation, the CPU will always come up with the mitigation enabled,
including when coming back from suspend.
If the user has requested "no mitigation" via a command line option,
let's enforce it by calling into the firmware again to disable it.
Similarily, for a resume from hibernate, the mitigation could have
been disabled by the boot kernel. Let's ensure that it is set
back on in that case.
Acked-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In many cases, page tables can be accessed concurrently by either another
CPU (due to things like fast gup) or by the hardware page table walker
itself, which may set access/dirty bits. In such cases, it is important
to use READ_ONCE/WRITE_ONCE when accessing page table entries so that
entries cannot be torn, merged or subject to apparent loss of coherence
due to compiler transformations.
Whilst there are some scenarios where this cannot happen (e.g. pinned
kernel mappings for the linear region), the overhead of using READ_ONCE
/WRITE_ONCE everywhere is minimal and makes the code an awful lot easier
to reason about. This patch consistently uses these macros in the arch
code, as well as explicitly namespacing pointers to page table entries
from the entries themselves by using adopting a 'p' suffix for the former
(as is sometimes used elsewhere in the kernel source).
Tested-by: Yury Norov <ynorov@caviumnetworks.com>
Tested-by: Richard Ruigrok <rruigrok@codeaurora.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Instead of open coding the generation of page table entries, use the
macros/functions that exist for this - pfn_p*d and p*d_populate. Most
code in the kernel already uses these macros, this patch tries to fix
up the few places that don't. This is useful for the next patch in this
series, which needs to change the page table entry logic, and it's
better to have that logic in one place.
The KVM extended ID map is special, since we're creating a level above
CONFIG_PGTABLE_LEVELS and the required function isn't available. Leave
it as is and add a comment to explain it. (The normal kernel ID map code
doesn't need this change because its page tables are created in assembly
(__create_page_tables)).
Tested-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The top 4 bits of a 52-bit physical address are positioned at bits 2..5
in the TTBR registers. Introduce a couple of macros to move the bits
there, and change all TTBR writers to use them.
Leave TTBR0 PAN code unchanged, to avoid complicating it. A system with
52-bit PA will have PAN anyway (because it's ARMv8.1 or later), and a
system without 52-bit PA can only use up to 48-bit PAs. A later patch in
this series will add a kconfig dependency to ensure PAN is configured.
In addition, when using 52-bit PA there is a special alignment
requirement on the top-level table. We don't currently have any VA_BITS
configuration that would violate the requirement, but one could be added
in the future, so add a compile-time BUG_ON to check for it.
Tested-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[catalin.marinas@arm.com: added TTBR_BADD_MASK_52 comment]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
There are a few places where we want to mask all exceptions. Today we
do this in a piecemeal fashion, typically we expect the caller to
have masked irqs and the arch code masks debug exceptions, ignoring
serror which is probably masked.
Make it clear that 'mask all exceptions' is the intention by adding
helpers to do exactly that.
This will let us unmask SError without having to add 'oh and SError'
to these paths.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Currently PTE_RDONLY is treated as a hardware only bit and not handled
by the pte_mkwrite(), pte_wrprotect() or the user PAGE_* definitions.
The set_pte_at() function is responsible for setting this bit based on
the write permission or dirty state. This patch moves the PTE_RDONLY
handling out of set_pte_at into the pte_mkwrite()/pte_wrprotect()
functions. The PAGE_* definitions to need to be updated to explicitly
include PTE_RDONLY when !PTE_WRITE.
The patch also removes the redundant PAGE_COPY(_EXEC) definitions as
they are identical to the corresponding PAGE_READONLY(_EXEC).
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Since arch_kexec_protect_crashkres() removes a mapping for crash dump
kernel image, the loaded data won't be preserved around hibernation.
In this patch, helper functions, crash_prepare_suspend()/
crash_post_resume(), are additionally called before/after hibernation so
that the relevant memory segments will be mapped again and preserved just
as the others are.
In addition, to minimize the size of hibernation image, crash_is_nosave()
is added to pfn_is_nosave() in order to recognize only the pages that hold
loaded crash dump kernel image as saveable. Hibernation excludes any pages
that are marked as Reserved and yet "nosave."
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
__pa_symbol is technically the marcro that should be used for kernel
symbols. Switch to this as a pre-requisite for DEBUG_VIRTUAL which
will do bounds checking.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
A few printk calls in arm64 omit a trailing newline, even though there
is no subsequent KERN_CONT printk associated with them, and we actually
want a newline.
This can result in unrelated lines being appended, rather than appearing
on a new line. Additionally, timestamp prefixes may appear in-line. This
makes the logs harder to read than necessary.
Avoid this by adding a trailing newline.
These were found with a shortlist generated by:
$ git grep 'pr\(intk\|_.*\)(.*)' -- arch/arm64 | grep -v pr_fmt | grep -v '\\n"'
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
CC: James Morse <james.morse@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Now that we use the MPIDR to resume on the same CPU that we hibernated on,
we no longer need to refuse to hibernate if the boot cpu is offline. (Which
we can't possibly know if kexec causes logical CPUs to be renumbered).
This reverts commit 1fe492ce64.
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
disable_nonboot_cpus() assumes that the lowest numbered online CPU is
the boot CPU, and that this is the correct CPU to run any power
management code on.
On arm64 CPU0 can be taken offline. For hibernate/resume this means we
may hibernate on a CPU other than CPU0. If the system is rebooted with
kexec 'CPU0' will be assigned to a different CPU. This complicates
hibernate/resume as now we can't trust the CPU numbers.
We currently forbid hibernate if CPU0 has been hotplugged out to avoid
this situation without kexec.
Save the MPIDR of the CPU we hibernated on in the hibernate arch-header,
use hibernate_resume_nonboot_cpu_disable() to direct which CPU we should
resume on based on the MPIDR of the CPU we hibernated on. This allows us to
hibernate/resume on any CPU, even if the logical numbers have been
shuffled by kexec.
Signed-off-by: James Morse <james.morse@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
DEBUG_PAGEALLOC removes the valid bit of page table entries to prevent
any access to unallocated memory. Hibernate uses this as a hint that those
pages don't need to be saved/restored. This patch adds the
kernel_page_present() function it uses.
hibernate.c copies the resume kernel's linear map for use during restore.
Add _copy_pte() to fill-in the holes made by DEBUG_PAGEALLOC in the resume
kernel, so we can restore data the original kernel had at these addresses.
Finally, DEBUG_PAGEALLOC means the linear-map alias of KERNEL_START to
KERNEL_END may have holes in it, so we can't lazily clean this whole
area to the PoC. Only clean the new mmuoff region, and the kernel/kvm
idmaps.
This reverts commit da24eb1f3f.
Reported-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Each time new section markers are added, kernel/vmlinux.ld.S is updated,
and new extern char __start_foo[] definitions are scattered through the
tree.
Create asm/include/sections.h to collect these definitions (and include
the existing asm-generic version).
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
In create_safe_exec_page(), we create a copy of the hibernate exit text,
along with some page tables to map this via TTBR0. We then install the
new tables in TTBR0.
In swsusp_arch_resume() we call create_safe_exec_page() before trying a
number of operations which may fail (e.g. copying the linear map page
tables). If these fail, we bail out of swsusp_arch_resume() and return
an error code, but leave TTBR0 as-is. Subsequently, the core hibernate
code will call free_basic_memory_bitmaps(), which will free all of the
memory allocations we made, including the page tables installed in
TTBR0.
Thus, we may have TTBR0 pointing at dangling freed memory for some
period of time. If the hibernate attempt was triggered by a user
requesting a hibernate test via the reboot syscall, we may return to
userspace with the clobbered TTBR0 value.
Avoid these issues by reorganising swsusp_arch_resume() such that we
have no failure paths after create_safe_exec_page(). We also add a check
that the zero page allocation succeeded, matching what we have for other
allocations.
Fixes: 82869ac57b ("arm64: kernel: Add support for hibernate/suspend-to-disk")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: James Morse <james.morse@arm.com>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: <stable@vger.kernel.org> # 4.7+
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In create_safe_exec_page we install a set of global mappings in TTBR0,
then subsequently invalidate TLBs. While TTBR0 points at the zero page,
and the TLBs should be free of stale global entries, we may have stale
ASID-tagged entries (e.g. from the EFI runtime services mappings) for
the same VAs. Per the ARM ARM these ASID-tagged entries may conflict
with newly-allocated global entries, and we must follow a
Break-Before-Make approach to avoid issues resulting from this.
This patch reworks create_safe_exec_page to invalidate TLBs while the
zero page is still in place, ensuring that there are no potential
conflicts when the new TTBR0 value is installed. As a single CPU is
online while this code executes, we do not need to perform broadcast TLB
maintenance, and can call local_flush_tlb_all(), which also subsumes
some barriers. The remaining assembly is converted to use write_sysreg()
and isb().
Other than this, we safely manipulate TTBRs in the hibernate dance. The
code we install as part of the new TTBR0 mapping (the hibernated
kernel's swsusp_arch_suspend_exit) installs a zero page into TTBR1,
invalidates TLBs, then installs its preferred value. Upon being restored
to the middle of swsusp_arch_suspend, the new image will call
__cpu_suspend_exit, which will call cpu_uninstall_idmap, installing the
zero page in TTBR0 and invalidating all TLB entries.
Fixes: 82869ac57b ("arm64: kernel: Add support for hibernate/suspend-to-disk")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: James Morse <james.morse@arm.com>
Tested-by: James Morse <james.morse@arm.com>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: <stable@vger.kernel.org> # 4.7+
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Hibernate relies on cpu hotplug to prevent secondary cores executing
the kernel text while it is being restored.
Add a call to cpus_are_stuck_in_kernel() to determine if there are
CPUs not counted by 'num_online_cpus()', and prevent hibernate in this
case.
Fixes: 82869ac57b ("arm64: kernel: Add support for hibernate/suspend-to-disk")
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Hibernation represents a system state save/restore through
a system reboot; this implies that the logical cpus carrying
out hibernation/thawing must be the same, so that the context
saved in the snapshot image on hibernation is consistent with
the state of the system on resume. If resume from hibernation
is driven through kernel command line parameter, the cpu responsible
for thawing the system will be whatever CPU firmware boots the system
on upon cold-boot (ie logical cpu 0); this means that in order to
keep system context consistent between the hibernate snapshot image
and system state on kernel resume from hibernate, logical cpu 0 must
be online on hibernation and must be the logical cpu that creates
the snapshot image.
This patch adds a PM notifier that enforces logical cpu 0 is online
when the hibernation is started (and prevents hibernation if it is
not), which is sufficient to guarantee it will be the one creating
the snapshot image therefore providing the resume cpu a consistent
snapshot of the system to resume to.
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Add support for hibernate/suspend-to-disk.
Suspend borrows code from cpu_suspend() to write cpu state onto the stack,
before calling swsusp_save() to save the memory image.
Restore creates a set of temporary page tables, covering only the
linear map, copies the restore code to a 'safe' page, then uses the copy to
restore the memory image. The copied code executes in the lower half of the
address space, and once complete, restores the original kernel's page
tables. It then calls into cpu_resume(), and follows the normal
cpu_suspend() path back into the suspend code.
To restore a kernel using KASLR, the address of the page tables, and
cpu_resume() are stored in the hibernate arch-header and the el2
vectors are pivotted via the 'safe' page in low memory.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Kevin Hilman <khilman@baylibre.com> # Tested on Juno R2
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>