The naked attribute is supported by at least gcc >= 4.6 (for ARM,
which is the only current user), gcc >= 8 (for x86), clang >= 3.1
and icc >= 13. See https://godbolt.org/z/350Dyc
Therefore, move it out of compiler-gcc.h so that the definition
is shared by all compilers.
This also fixes Clang support for ARM32 --- 815f0ddb34
("include/linux/compiler*.h: make compiler-*.h mutually exclusive").
Fixes: 815f0ddb34 ("include/linux/compiler*.h: make compiler-*.h mutually exclusive")
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Eli Friedman <efriedma@codeaurora.org>
Cc: Christopher Li <sparse@chrisli.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Joe Perches <joe@perches.com>
Cc: Dominique Martinet <asmadeus@codewreck.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-sparse@vger.kernel.org
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Tested-by: Stefan Agner <stefan@agner.ch>
Reviewed-by: Stefan Agner <stefan@agner.ch>
Reviewed-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Commit 9c695203a7 ("compiler-gcc.h: gcc-4.5 needs noclone
and noinline on __naked functions") added noinline and noclone
as a workaround for a gcc 4.5 bug, which was resolved in 4.6.0.
Since now the minimum gcc supported version is 4.6,
we can clean it up.
See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=44290
and https://godbolt.org/z/h6NMIL
Fixes: 815f0ddb34 ("include/linux/compiler*.h: make compiler-*.h mutually exclusive")
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Eli Friedman <efriedma@codeaurora.org>
Cc: Christopher Li <sparse@chrisli.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Joe Perches <joe@perches.com>
Cc: Dominique Martinet <asmadeus@codewreck.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-sparse@vger.kernel.org
Tested-by: Stefan Agner <stefan@agner.ch>
Reviewed-by: Stefan Agner <stefan@agner.ch>
Reviewed-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Commit cafa0010cd ("Raise the minimum required gcc version to 4.6")
recently exposed a brittle part of the build for supporting non-gcc
compilers.
Both Clang and ICC define __GNUC__, __GNUC_MINOR__, and
__GNUC_PATCHLEVEL__ for quick compatibility with code bases that haven't
added compiler specific checks for __clang__ or __INTEL_COMPILER.
This is brittle, as they happened to get compatibility by posing as a
certain version of GCC. This broke when upgrading the minimal version
of GCC required to build the kernel, to a version above what ICC and
Clang claim to be.
Rather than always including compiler-gcc.h then undefining or
redefining macros in compiler-intel.h or compiler-clang.h, let's
separate out the compiler specific macro definitions into mutually
exclusive headers, do more proper compiler detection, and keep shared
definitions in compiler_types.h.
Fixes: cafa0010cd ("Raise the minimum required gcc version to 4.6")
Reported-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Suggested-by: Eli Friedman <efriedma@codeaurora.org>
Suggested-by: Joe Perches <joe@perches.com>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Various architectures fail to build properly with older versions of the
gcc compiler.
An example from Guenter Roeck in thread [1]:
>
> In file included from ./include/linux/mm.h:17:0,
> from ./include/linux/pid_namespace.h:7,
> from ./include/linux/ptrace.h:10,
> from arch/openrisc/kernel/asm-offsets.c:32:
> ./include/linux/mm_types.h:497:16: error: flexible array member in otherwise empty struct
>
> This is just an example with gcc 4.5.1 for or32. I have seen the problem
> with gcc 4.4 (for unicore32) as well.
So update the minimum required version of gcc to 4.6.
[1] https://lore.kernel.org/lkml/20180814170904.GA12768@roeck-us.net/
Miscellanea:
- Update Documentation/process/changes.rst
- Remove and consolidate version test blocks in compiler-gcc.h for
versions lower than 4.6
Signed-off-by: Joe Perches <joe@perches.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We haven't had lots of deprecation warnings lately, but the rdma use of
it made them flare up again.
They are not useful. They annoy everybody, and nobody ever does
anything about them, because it's always "somebody elses problem". And
when people start thinking that warnings are normal, they stop looking
at them, and the real warnings that mean something go unnoticed.
If you want to get rid of a function, just get rid of it. Convert every
user to the new world order.
And if you can't do that, then don't annoy everybody else with your
marking that says "I couldn't be bothered to fix this, so I'll just spam
everybody elses build logs with warnings about my laziness".
Make a kernelnewbies wiki page about things that could be cleaned up,
write a blog post about it, or talk to people on the mailing lists. But
don't add warnings to the kernel build about cleanup that you think
should happen but you aren't doing yourself.
Don't. Just don't.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I have occasionally run into a situation where it would make sense to
control a compiler warning from a source file rather than doing so from
a Makefile using the $(cc-disable-warning, ...) or $(cc-option, ...)
helpers.
The approach here is similar to what glibc uses, using __diag() and
related macros to encapsulate a _Pragma("GCC diagnostic ...") statement
that gets turned into the respective "#pragma GCC diagnostic ..." by
the preprocessor when the macro gets expanded.
Like glibc, I also have an argument to pass the affected compiler
version, but decided to actually evaluate that one. For now, this
supports GCC_4_6, GCC_4_7, GCC_4_8, GCC_4_9, GCC_5, GCC_6, GCC_7,
GCC_8 and GCC_9. Adding support for CLANG_5 and other interesting
versions is straightforward here. GNU compilers starting with gcc-4.2
could support it in principle, but "#pragma GCC diagnostic push"
was only added in gcc-4.6, so it seems simpler to not deal with those
at all. The same versions show a large number of warnings already,
so it seems easier to just leave it at that and not do a more
fine-grained control for them.
The use cases I found so far include:
- turning off the gcc-8 -Wattribute-alias warning inside of the
SYSCALL_DEFINEx() macro without having to do it globally.
- Reducing the build time for a simple re-make after a change,
once we move the warnings from ./Makefile and
./scripts/Makefile.extrawarn into linux/compiler.h
- More control over the warnings based on other configurations,
using preprocessor syntax instead of Makefile syntax. This should make
it easier for the average developer to understand and change things.
- Adding an easy way to turn the W=1 option on unconditionally
for a subdirectory or a specific file. This has been requested
by several developers in the past that want to have their subsystems
W=1 clean.
- Integrating clang better into the build systems. Clang supports
more warnings than GCC, and we probably want to classify them
as default, W=1, W=2 etc, but there are cases in which the
warnings should be classified differently due to excessive false
positives from one or the other compiler.
- Adding a way to turn the default warnings into errors (e.g. using
a new "make E=0" tag) while not also turning the W=1 warnings into
errors.
This patch for now just adds the minimal infrastructure in order to
do the first of the list above. As the #pragma GCC diagnostic
takes precedence over command line options, the next step would be
to convert a lot of the individual Makefiles that set nonstandard
options to use __diag() instead.
[paul.burton@mips.com:
- Rebase atop current master.
- Add __diag_GCC, or more generally __diag_<compiler>, abstraction to
avoid code outside of linux/compiler-gcc.h needing to duplicate
knowledge about different GCC versions.
- Add a comment argument to __diag_{ignore,warn,error} which isn't
used in the expansion of the macros but serves to push people to
document the reason for using them - per feedback from Kees Cook.
- Translate severity to GCC-specific pragmas in linux/compiler-gcc.h
rather than using GCC-specific in linux/compiler_types.h.
- Drop all but GCC 8 macros, since we only need to define macros for
versions that we need to introduce pragmas for, and as of this
series that's just GCC 8.
- Capitalize comments in linux/compiler-gcc.h to match the style of
the rest of the file.
- Line up macro definitions with tabs in linux/compiler-gcc.h.]
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Tested-by: Christophe Leroy <christophe.leroy@c-s.fr>
Tested-by: Stafford Horne <shorne@gmail.com>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
This adds wrappers for the __builtin overflow checkers present in gcc
5.1+ as well as fallback implementations for earlier compilers. It's not
that easy to implement the fully generic __builtin_X_overflow(T1 a, T2
b, T3 *d) in macros, so the fallback code assumes that T1, T2 and T3 are
the same. We obviously don't want the wrappers to have different
semantics depending on $GCC_VERSION, so we also insist on that even when
using the builtins.
There are a few problems with the 'a+b < a' idiom for checking for
overflow: For signed types, it relies on undefined behaviour and is
not actually complete (it doesn't check underflow;
e.g. INT_MIN+INT_MIN == 0 isn't caught). Due to type promotion it
is wrong for all types (signed and unsigned) narrower than
int. Similarly, when a and b does not have the same type, there are
subtle cases like
u32 a;
if (a + sizeof(foo) < a)
return -EOVERFLOW;
a += sizeof(foo);
where the test is always false on 64 bit platforms. Add to that that it
is not always possible to determine the types involved at a glance.
The new overflow.h is somewhat bulky, but that's mostly a result of
trying to be type-generic, complete (e.g. catching not only overflow
but also signed underflow) and not relying on undefined behaviour.
Linus is of course right [1] that for unsigned subtraction a-b, the
right way to check for overflow (underflow) is "b > a" and not
"__builtin_sub_overflow(a, b, &d)", but that's just one out of six cases
covered here, and included mostly for completeness.
So is it worth it? I think it is, if nothing else for the documentation
value of seeing
if (check_add_overflow(a, b, &d))
return -EGOAWAY;
do_stuff_with(d);
instead of the open-coded (and possibly wrong and/or incomplete and/or
UBsan-tickling)
if (a+b < a)
return -EGOAWAY;
do_stuff_with(a+b);
While gcc does recognize the 'a+b < a' idiom for testing unsigned add
overflow, it doesn't do nearly as good for unsigned multiplication
(there's also no single well-established idiom). So using
check_mul_overflow in kcalloc and friends may also make gcc generate
slightly better code.
[1] https://lkml.org/lkml/2015/11/2/658
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Kees Cook <keescook@chromium.org>
The original intent for always adding the anonymous struct in
task_struct was to make sure we had compiler coverage.
However, this caused pathological padding of 40 bytes at the start of
task_struct. Instead, move the anonymous struct to being only used when
struct layout randomization is enabled.
Link: http://lkml.kernel.org/r/20180327213609.GA2964@beast
Fixes: 29e48ce87f ("task_struct: Allow randomized")
Signed-off-by: Kees Cook <keescook@chromium.org>
Reported-by: Peter Zijlstra <peterz@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull x86 fixes from Thomas Gleixner:
"Yet another pile of melted spectrum related changes:
- sanitize the array_index_nospec protection mechanism: Remove the
overengineered array_index_nospec_mask_check() magic and allow
const-qualified types as index to avoid temporary storage in a
non-const local variable.
- make the microcode loader more robust by properly propagating error
codes. Provide information about new feature bits after micro code
was updated so administrators can act upon.
- optimizations of the entry ASM code which reduce code footprint and
make the code simpler and faster.
- fix the {pmd,pud}_{set,clear}_flags() implementations to work
properly on paravirt kernels by removing the address translation
operations.
- revert the harmful vmexit_fill_RSB() optimization
- use IBRS around firmware calls
- teach objtool about retpolines and add annotations for indirect
jumps and calls.
- explicitly disable jumplabel patching in __init code and handle
patching failures properly instead of silently ignoring them.
- remove indirect paravirt calls for writing the speculation control
MSR as these calls are obviously proving the same attack vector
which is tried to be mitigated.
- a few small fixes which address build issues with recent compiler
and assembler versions"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (38 commits)
KVM/VMX: Optimize vmx_vcpu_run() and svm_vcpu_run() by marking the RDMSR path as unlikely()
KVM/x86: Remove indirect MSR op calls from SPEC_CTRL
objtool, retpolines: Integrate objtool with retpoline support more closely
x86/entry/64: Simplify ENCODE_FRAME_POINTER
extable: Make init_kernel_text() global
jump_label: Warn on failed jump_label patching attempt
jump_label: Explicitly disable jump labels in __init code
x86/entry/64: Open-code switch_to_thread_stack()
x86/entry/64: Move ASM_CLAC to interrupt_entry()
x86/entry/64: Remove 'interrupt' macro
x86/entry/64: Move the switch_to_thread_stack() call to interrupt_entry()
x86/entry/64: Move ENTER_IRQ_STACK from interrupt macro to interrupt_entry
x86/entry/64: Move PUSH_AND_CLEAR_REGS from interrupt macro to helper function
x86/speculation: Move firmware_restrict_branch_speculation_*() from C to CPP
objtool: Add module specific retpoline rules
objtool: Add retpoline validation
objtool: Use existing global variables for options
x86/mm/sme, objtool: Annotate indirect call in sme_encrypt_execute()
x86/boot, objtool: Annotate indirect jump in secondary_startup_64()
x86/paravirt, objtool: Annotate indirect calls
...
Looking at functions with large stack frames across all architectures
led me discovering that BUG() suffers from the same problem as
fortify_panic(), which I've added a workaround for already.
In short, variables that go out of scope by calling a noreturn function
or __builtin_unreachable() keep using stack space in functions
afterwards.
A workaround that was identified is to insert an empty assembler
statement just before calling the function that doesn't return. I'm
adding a macro "barrier_before_unreachable()" to document this, and
insert calls to that in all instances of BUG() that currently suffer
from this problem.
The files that saw the largest change from this had these frame sizes
before, and much less with my patch:
fs/ext4/inode.c:82:1: warning: the frame size of 1672 bytes is larger than 800 bytes [-Wframe-larger-than=]
fs/ext4/namei.c:434:1: warning: the frame size of 904 bytes is larger than 800 bytes [-Wframe-larger-than=]
fs/ext4/super.c:2279:1: warning: the frame size of 1160 bytes is larger than 800 bytes [-Wframe-larger-than=]
fs/ext4/xattr.c:146:1: warning: the frame size of 1168 bytes is larger than 800 bytes [-Wframe-larger-than=]
fs/f2fs/inode.c:152:1: warning: the frame size of 1424 bytes is larger than 800 bytes [-Wframe-larger-than=]
net/netfilter/ipvs/ip_vs_core.c:1195:1: warning: the frame size of 1068 bytes is larger than 800 bytes [-Wframe-larger-than=]
net/netfilter/ipvs/ip_vs_core.c:395:1: warning: the frame size of 1084 bytes is larger than 800 bytes [-Wframe-larger-than=]
net/netfilter/ipvs/ip_vs_ftp.c:298:1: warning: the frame size of 928 bytes is larger than 800 bytes [-Wframe-larger-than=]
net/netfilter/ipvs/ip_vs_ftp.c:418:1: warning: the frame size of 908 bytes is larger than 800 bytes [-Wframe-larger-than=]
net/netfilter/ipvs/ip_vs_lblcr.c:718:1: warning: the frame size of 960 bytes is larger than 800 bytes [-Wframe-larger-than=]
drivers/net/xen-netback/netback.c:1500:1: warning: the frame size of 1088 bytes is larger than 800 bytes [-Wframe-larger-than=]
In case of ARC and CRIS, it turns out that the BUG() implementation
actually does return (or at least the compiler thinks it does),
resulting in lots of warnings about uninitialized variable use and
leaving noreturn functions, such as:
block/cfq-iosched.c: In function 'cfq_async_queue_prio':
block/cfq-iosched.c:3804:1: error: control reaches end of non-void function [-Werror=return-type]
include/linux/dmaengine.h: In function 'dma_maxpq':
include/linux/dmaengine.h:1123:1: error: control reaches end of non-void function [-Werror=return-type]
This makes them call __builtin_trap() instead, which should normally
dump the stack and kill the current process, like some of the other
architectures already do.
I tried adding barrier_before_unreachable() to panic() and
fortify_panic() as well, but that had very little effect, so I'm not
submitting that patch.
Vineet said:
: For ARC, it is double win.
:
: 1. Fixes 3 -Wreturn-type warnings
:
: | ../net/core/ethtool.c:311:1: warning: control reaches end of non-void function
: [-Wreturn-type]
: | ../kernel/sched/core.c:3246:1: warning: control reaches end of non-void function
: [-Wreturn-type]
: | ../include/linux/sunrpc/svc_xprt.h:180:1: warning: control reaches end of
: non-void function [-Wreturn-type]
:
: 2. bloat-o-meter reports code size improvements as gcc elides the
: generated code for stack return.
Link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82365
Link: http://lkml.kernel.org/r/20171219114112.939391-1-arnd@arndb.de
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Vineet Gupta <vgupta@synopsys.com> [arch/arc]
Tested-by: Vineet Gupta <vgupta@synopsys.com> [arch/arc]
Cc: Mikael Starvik <starvik@axis.com>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Christopher Li <sparse@chrisli.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: "Steven Rostedt (VMware)" <rostedt@goodmis.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull crypto fixes from Herbert Xu:
"This fixes the following issues:
- oversize stack frames on mn10300 in sha3-generic
- warning on old compilers in sha3-generic
- API error in sun4i_ss_prng
- potential dead-lock in sun4i_ss_prng
- null-pointer dereference in sha512-mb
- endless loop when DECO acquire fails in caam
- kernel oops when hashing empty message in talitos"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6:
crypto: sun4i_ss_prng - convert lock to _bh in sun4i_ss_prng_generate
crypto: sun4i_ss_prng - fix return value of sun4i_ss_prng_generate
crypto: caam - fix endless loop when DECO acquire fails
crypto: sha3-generic - Use __optimize to support old compilers
compiler-gcc.h: __nostackprotector needs gcc-4.4 and up
compiler-gcc.h: Introduce __optimize function attribute
crypto: sha3-generic - deal with oversize stack frames
crypto: talitos - fix Kernel Oops on hashing an empty file
crypto: sha512-mb - initialize pending lengths correctly
Create a new function attribute __optimize, which allows to specify an
optimization level on a per-function basis.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Without this patch, I drown in a sea of unknown attribute warnings
Link: http://lkml.kernel.org/r/20180117024539.27354-1-willy@infradead.org
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
linux/compiler.h is included indirectly by linux/types.h via
uapi/linux/types.h -> uapi/linux/posix_types.h -> linux/stddef.h
-> uapi/linux/stddef.h and is needed to provide a proper definition of
offsetof.
Unfortunately, compiler.h requires a definition of
smp_read_barrier_depends() for defining lockless_dereference() and soon
for defining READ_ONCE(), which means that all
users of READ_ONCE() will need to include asm/barrier.h to avoid splats
such as:
In file included from include/uapi/linux/stddef.h:1:0,
from include/linux/stddef.h:4,
from arch/h8300/kernel/asm-offsets.c:11:
include/linux/list.h: In function 'list_empty':
>> include/linux/compiler.h:343:2: error: implicit declaration of function 'smp_read_barrier_depends' [-Werror=implicit-function-declaration]
smp_read_barrier_depends(); /* Enforce dependency ordering from x */ \
^
A better alternative is to include asm/barrier.h in linux/compiler.h,
but this requires a type definition for "bool" on some architectures
(e.g. x86), which is defined later by linux/types.h. Type "bool" is also
used directly in linux/compiler.h, so the whole thing is pretty fragile.
This patch splits compiler.h in two: compiler_types.h contains type
annotations, definitions and the compiler-specific parts, whereas
compiler.h #includes compiler-types.h and additionally defines macros
such as {READ,WRITE.ACCESS}_ONCE().
uapi/linux/stddef.h and linux/linkage.h are then moved over to include
linux/compiler_types.h, which fixes the build for h8 and blackfin.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1508840570-22169-2-git-send-email-will.deacon@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 mm changes from Ingo Molnar:
"PCID support, 5-level paging support, Secure Memory Encryption support
The main changes in this cycle are support for three new, complex
hardware features of x86 CPUs:
- Add 5-level paging support, which is a new hardware feature on
upcoming Intel CPUs allowing up to 128 PB of virtual address space
and 4 PB of physical RAM space - a 512-fold increase over the old
limits. (Supercomputers of the future forecasting hurricanes on an
ever warming planet can certainly make good use of more RAM.)
Many of the necessary changes went upstream in previous cycles,
v4.14 is the first kernel that can enable 5-level paging.
This feature is activated via CONFIG_X86_5LEVEL=y - disabled by
default.
(By Kirill A. Shutemov)
- Add 'encrypted memory' support, which is a new hardware feature on
upcoming AMD CPUs ('Secure Memory Encryption', SME) allowing system
RAM to be encrypted and decrypted (mostly) transparently by the
CPU, with a little help from the kernel to transition to/from
encrypted RAM. Such RAM should be more secure against various
attacks like RAM access via the memory bus and should make the
radio signature of memory bus traffic harder to intercept (and
decrypt) as well.
This feature is activated via CONFIG_AMD_MEM_ENCRYPT=y - disabled
by default.
(By Tom Lendacky)
- Enable PCID optimized TLB flushing on newer Intel CPUs: PCID is a
hardware feature that attaches an address space tag to TLB entries
and thus allows to skip TLB flushing in many cases, even if we
switch mm's.
(By Andy Lutomirski)
All three of these features were in the works for a long time, and
it's coincidence of the three independent development paths that they
are all enabled in v4.14 at once"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (65 commits)
x86/mm: Enable RCU based page table freeing (CONFIG_HAVE_RCU_TABLE_FREE=y)
x86/mm: Use pr_cont() in dump_pagetable()
x86/mm: Fix SME encryption stack ptr handling
kvm/x86: Avoid clearing the C-bit in rsvd_bits()
x86/CPU: Align CR3 defines
x86/mm, mm/hwpoison: Clear PRESENT bit for kernel 1:1 mappings of poison pages
acpi, x86/mm: Remove encryption mask from ACPI page protection type
x86/mm, kexec: Fix memory corruption with SME on successive kexecs
x86/mm/pkeys: Fix typo in Documentation/x86/protection-keys.txt
x86/mm/dump_pagetables: Speed up page tables dump for CONFIG_KASAN=y
x86/mm: Implement PCID based optimization: try to preserve old TLB entries using PCID
x86: Enable 5-level paging support via CONFIG_X86_5LEVEL=y
x86/mm: Allow userspace have mappings above 47-bit
x86/mm: Prepare to expose larger address space to userspace
x86/mpx: Do not allow MPX if we have mappings above 47-bit
x86/mm: Rename tasksize_32bit/64bit to task_size_32bit/64bit()
x86/xen: Redefine XEN_ELFNOTE_INIT_P2M using PUD_SIZE * PTRS_PER_PUD
x86/mm/dump_pagetables: Fix printout of p4d level
x86/mm/dump_pagetables: Generalize address normalization
x86/boot: Fix memremap() related build failure
...
Arnd reported some false positive warnings with GCC 7:
drivers/hid/wacom_wac.o: warning: objtool: wacom_bpt3_touch()+0x2a5: stack state mismatch: cfa1=7+8 cfa2=6+16
drivers/iio/adc/vf610_adc.o: warning: objtool: vf610_adc_calculate_rates() falls through to next function vf610_adc_sample_set()
drivers/pwm/pwm-hibvt.o: warning: objtool: hibvt_pwm_get_state() falls through to next function hibvt_pwm_remove()
drivers/pwm/pwm-mediatek.o: warning: objtool: mtk_pwm_config() falls through to next function mtk_pwm_enable()
drivers/spi/spi-bcm2835.o: warning: objtool: .text: unexpected end of section
drivers/spi/spi-bcm2835aux.o: warning: objtool: .text: unexpected end of section
drivers/watchdog/digicolor_wdt.o: warning: objtool: dc_wdt_get_timeleft() falls through to next function dc_wdt_restart()
When GCC 7 detects a potential divide-by-zero condition, it sometimes
inserts a UD2 instruction for the case where the divisor is zero,
instead of letting the hardware trap on the divide instruction.
Objtool doesn't consider UD2 to be fatal unless it's annotated with
unreachable(). So it considers the GCC-generated UD2 to be non-fatal,
and it tries to follow the control flow past the UD2 and gets
confused.
Previously, objtool *did* assume UD2 was always a dead end. That
changed with the following commit:
d1091c7fa3 ("objtool: Improve detection of BUG() and other dead ends")
The motivation behind that change was that Peter was planning on using
UD2 for __WARN(), which is *not* a dead end. However, it turns out
that some emulators rely on UD2 being fatal, so he ended up using
'ud0' instead:
9a93848fe7 ("x86/debug: Implement __WARN() using UD0")
For GCC 4.5+, it should be safe to go back to the previous assumption
that UD2 is fatal, even when it's not annotated with unreachable().
But for pre-4.5 versions of GCC, the unreachable() macro isn't
supported, so such cases of UD2 need to be explicitly annotated as
reachable.
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: d1091c7fa3 ("objtool: Improve detection of BUG() and other dead ends")
Link: http://lkml.kernel.org/r/e57fa9dfede25f79487da8126ee9cdf7b856db65.1501188854.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The ASM_UNREACHABLE macro isn't GCC version-specific, so move it outside
the GCC 4.5+ check. Otherwise the 0-day robot will report objtool
warnings for uses of ASM_UNREACHABLE with GCC 4.4.
Also move the annotate_unreachable() macro so the related macros can
stay together.
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: aa5d1b8150 ("x86/asm: Add ASM_UNREACHABLE")
Link: http://lkml.kernel.org/r/fb18337dbf230fd36450d9faf19a2b2533dbcba1.1500993873.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
randstruct plugin, including the task_struct.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
Comment: Kees Cook <kees@outflux.net>
iQIcBAABCgAGBQJZbRgGAAoJEIly9N/cbcAmk2AQAIL60aQ+9RIcFAXriFhnd7Z2
x9Jqi9JNc8NgPFXx8GhE4J4eTZ5PwcjgXBpNRWY/laBkRyoBHn24ku09YxrJjmHz
ZSUsP+/iO9lVeEfbmU9Tnk50afkfwx6bHXBwkiVGQWHtybNVUqA19JbqkHeg8ubx
myKLGeUv5PPCodRIcBDD0+HaAANcsqtgbDpgmWU8s+IXWwvWCE2p7PuBw7v3HHgH
qzlPDHYQCRDw+LWsSqPaHj+9mbRO18P/ydMoZHGH4Hl3YYNtty8ZbxnraI3A7zBL
6mLUVcZ+/l88DqHc5I05T8MmLU1yl2VRxi8/jpMAkg9wkvZ5iNAtlEKIWU6eqsvk
vaImNOkViLKlWKF+oUD1YdG16d8Segrc6m4MGdI021tb+LoGuUbkY7Tl4ee+3dl/
9FM+jPv95HjJnyfRNGidh2TKTa9KJkh6DYM9aUnktMFy3ca1h/LuszOiN0LTDiHt
k5xoFURk98XslJJyXM8FPwXCXiRivrXMZbg5ixNoS4aYSBLv7Cn1M6cPnSOs7UPh
FqdNPXLRZ+vabSxvEg5+41Ioe0SHqACQIfaSsV5BfF2rrRRdaAxK4h7DBcI6owV2
7ziBN1nBBq2onYGbARN6ApyCqLcchsKtQfiZ0iFsvW7ZawnkVOOObDTCgPl3tdkr
403YXzphQVzJtpT5eRV6
=ngAW
-----END PGP SIGNATURE-----
Merge tag 'gcc-plugins-v4.13-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull structure randomization updates from Kees Cook:
"Now that IPC and other changes have landed, enable manual markings for
randstruct plugin, including the task_struct.
This is the rest of what was staged in -next for the gcc-plugins, and
comes in three patches, largest first:
- mark "easy" structs with __randomize_layout
- mark task_struct with an optional anonymous struct to isolate the
__randomize_layout section
- mark structs to opt _out_ of automated marking (which will come
later)
And, FWIW, this continues to pass allmodconfig (normal and patched to
enable gcc-plugins) builds of x86_64, i386, arm64, arm, powerpc, and
s390 for me"
* tag 'gcc-plugins-v4.13-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
randstruct: opt-out externally exposed function pointer structs
task_struct: Allow randomized layout
randstruct: Mark various structs for randomization
Create a new function attribute, __nostackprotector, that can used to turn off
stack protection on a per function basis.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Toshimitsu Kani <toshi.kani@hpe.com>
Cc: kasan-dev@googlegroups.com
Cc: kvm@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-efi@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/0576fd5c74440ad0250f16ac6609ecf587812456.1500319216.git.thomas.lendacky@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The motivation for commit abb2ea7dfd ("compiler, clang: suppress
warning for unused static inline functions") was to suppress clang's
warnings about unused static inline functions.
For configs without CONFIG_OPTIMIZE_INLINING enabled, such as any non-x86
architecture, `inline' in the kernel implies that
__attribute__((always_inline)) is used.
Some code depends on that behavior, see
https://lkml.org/lkml/2017/6/13/918:
net/built-in.o: In function `__xchg_mb':
arch/arm64/include/asm/cmpxchg.h:99: undefined reference to `__compiletime_assert_99'
arch/arm64/include/asm/cmpxchg.h:99: undefined reference to `__compiletime_assert_99
The full fix would be to identify these breakages and annotate the
functions with __always_inline instead of `inline'. But since we are
late in the 4.12-rc cycle, simply carry forward the forced inlining
behavior and work toward moving arm64, and other architectures, toward
CONFIG_OPTIMIZE_INLINING behavior.
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1706261552200.1075@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Reported-by: Sodagudi Prasad <psodagud@codeaurora.org>
Tested-by: Sodagudi Prasad <psodagud@codeaurora.org>
Tested-by: Matthias Kaehlcke <mka@chromium.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This marks most of the layout of task_struct as randomizable, but leaves
thread_info and scheduler state untouched at the start, and thread_struct
untouched at the end.
Other parts of the kernel use unnamed structures, but the 0-day builder
using gcc-4.4 blows up on static initializers. Officially, it's documented
as only working on gcc 4.6 and later, which further confuses me:
https://gcc.gnu.org/wiki/C11Status
The structure layout randomization already requires gcc 4.7, but instead
of depending on the plugin being enabled, just check the gcc versions
for wider build testing. At Linus's suggestion, the marking is hidden
in a macro to reduce how ugly it looks. Additionally, indenting is left
unchanged since it would make things harder to read.
Randomization of task_struct is modified from Brad Spengler/PaX Team's
code in the last public patch of grsecurity/PaX based on my understanding
of the code. Changes or omissions from the original code are mine and
don't reflect the original grsecurity/PaX code.
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
This randstruct plugin is modified from Brad Spengler/PaX Team's code
in the last public patch of grsecurity/PaX based on my understanding
of the code. Changes or omissions from the original code are mine and
don't reflect the original grsecurity/PaX code.
The randstruct GCC plugin randomizes the layout of selected structures
at compile time, as a probabilistic defense against attacks that need to
know the layout of structures within the kernel. This is most useful for
"in-house" kernel builds where neither the randomization seed nor other
build artifacts are made available to an attacker. While less useful for
distribution kernels (where the randomization seed must be exposed for
third party kernel module builds), it still has some value there since now
all kernel builds would need to be tracked by an attacker.
In more performance sensitive scenarios, GCC_PLUGIN_RANDSTRUCT_PERFORMANCE
can be selected to make a best effort to restrict randomization to
cacheline-sized groups of elements, and will not randomize bitfields. This
comes at the cost of reduced randomization.
Two annotations are defined,__randomize_layout and __no_randomize_layout,
which respectively tell the plugin to either randomize or not to
randomize instances of the struct in question. Follow-on patches enable
the auto-detection logic for selecting structures for randomization
that contain only function pointers. It is disabled here to assist with
bisection.
Since any randomized structs must be initialized using designated
initializers, __randomize_layout includes the __designated_init annotation
even when the plugin is disabled so that all builds will require
the needed initialization. (With the plugin enabled, annotations for
automatically chosen structures are marked as well.)
The main differences between this implemenation and grsecurity are:
- disable automatic struct selection (to be enabled in follow-up patch)
- add designated_init attribute at runtime and for manual marking
- clarify debugging output to differentiate bad cast warnings
- add whitelisting infrastructure
- support gcc 7's DECL_ALIGN and DECL_MODE changes (Laura Abbott)
- raise minimum required GCC version to 4.7
Earlier versions of this patch series were ported by Michael Leibowitz.
Signed-off-by: Kees Cook <keescook@chromium.org>
This allows structure annotations for requiring designated initialization
in GCC 5.1.0 and later:
https://gcc.gnu.org/onlinedocs/gcc/Designated-Inits.html
The structure randomization layout plugin will be using this to help
identify structures that need this form of initialization.
Signed-off-by: Kees Cook <keescook@chromium.org>
The '__unreachable' and '__func_stack_frame_non_standard' sections are
only used at compile time. They're discarded for vmlinux but they
should also be discarded for modules.
Since this is a recurring pattern, prefix the section names with
".discard.". It's a nice convention and vmlinux.lds.h already discards
such sections.
Also remove the 'a' (allocatable) flag from the __unreachable section
since it doesn't make sense for a discarded section.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Jessica Yu <jeyu@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: d1091c7fa3 ("objtool: Improve detection of BUG() and other dead ends")
Link: http://lkml.kernel.org/r/20170301180444.lhd53c5tibc4ns77@treble
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Linus reported the following commit broke module loading on his laptop:
d1091c7fa3 ("objtool: Improve detection of BUG() and other dead ends")
It showed errors like the following:
module: overflow in relocation type 10 val ffffffffc02afc81
module: 'nvme' likely not compiled with -mcmodel=kernel
The problem is that the __unreachable section addresses are stored using
the '.long' asm directive, which isn't big enough for .text section
kernel addresses. Use relative addresses instead:
".long %c0b - .\t\n"
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: d1091c7fa3 ("objtool: Improve detection of BUG() and other dead ends")
Link: http://lkml.kernel.org/r/20170301060504.oltm3iws6fmubnom@treble
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull objtool fixes from Ingo Molnar:
"A handful of objtool fixes related to unreachable code, plus a build
fix for out of tree modules"
* 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
objtool: Enclose contents of unreachable() macro in a block
objtool: Prevent GCC from merging annotate_unreachable()
objtool: Improve detection of BUG() and other dead ends
objtool: Fix CONFIG_STACK_VALIDATION=y warning for out-of-tree modules
Guenter Roeck reported a boot failure in mips64. It was bisected to the
following commit:
d1091c7fa3 ("objtool: Improve detection of BUG() and other dead ends")
The unreachable() macro was formerly only composed of a single
statement. The above commit added a second statement, but neglected to
enclose the statements in a block.
Suggested-by: Guenter Roeck <linux@roeck-us.net>
Reported-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: d1091c7fa3 ("objtool: Improve detection of BUG() and other dead ends")
Link: http://lkml.kernel.org/r/20170228042116.glmwmwiohcix7o4a@treble
Signed-off-by: Ingo Molnar <mingo@kernel.org>
0-day bot reported some new objtool warnings which were caused by the
new annotate_unreachable() macro:
fs/afs/flock.o: warning: objtool: afs_do_unlk()+0x0: duplicate frame pointer save
fs/afs/flock.o: warning: objtool: afs_do_unlk()+0x0: frame pointer state mismatch
fs/btrfs/delayed-inode.o: warning: objtool: btrfs_delete_delayed_dir_index()+0x0: duplicate frame pointer save
fs/btrfs/delayed-inode.o: warning: objtool: btrfs_delete_delayed_dir_index()+0x0: frame pointer state mismatch
fs/dlm/lock.o: warning: objtool: _grant_lock()+0x0: duplicate frame pointer save
fs/dlm/lock.o: warning: objtool: _grant_lock()+0x0: frame pointer state mismatch
fs/ocfs2/alloc.o: warning: objtool: ocfs2_mv_path()+0x0: duplicate frame pointer save
fs/ocfs2/alloc.o: warning: objtool: ocfs2_mv_path()+0x0: frame pointer state mismatch
It turns out that, for older versions of GCC, if a function has multiple
BUG() incantations, GCC will sometimes merge the corresponding
annotate_unreachable() inline asm statements into a single block. That
has the undesirable effect of removing one of the entries in the
__unreachable section, confusing objtool greatly.
A workaround for this issue is to ensure that each instance of the
inline asm statement uses a different label, so that GCC sees the
statements are unique and leaves them alone. The inline asm ‘%=’ token
could be used for that, but unfortunately older versions of GCC don't
support it. So I implemented a poor man's version of it with the
__LINE__ macro.
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: d1091c7fa3 ("objtool: Improve detection of BUG() and other dead ends")
Link: http://lkml.kernel.org/r/0c14b00baf9f68d1b0221ddb6c88b925181c8be8.1487997036.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add __mode(x) into compiler-gcc.h as part of a cleanup task I've taken
up, to replace gcc specific attributes with macros.
The next patch is a cleanup of the m68k subsystem and it requires a new
macro to wrap __attribute__ ((mode (...)))
Link: http://lkml.kernel.org/r/1485540901-1988-2-git-send-email-gidisrael@gmail.com
Signed-off-by: Gideon Israel Dsouza <gidisrael@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The BUG() macro's use of __builtin_unreachable() via the unreachable()
macro tells gcc that the instruction is a dead end, and that it's safe
to assume the current code path will not execute past the previous
instruction.
On x86, the BUG() macro is implemented with the 'ud2' instruction. When
objtool's branch analysis sees that instruction, it knows the current
code path has come to a dead end.
Peter Zijlstra has been working on a patch to change the WARN macros to
use 'ud2'. That patch will break objtool's assumption that 'ud2' is
always a dead end.
Generally it's best for objtool to avoid making those kinds of
assumptions anyway. The more ignorant it is of kernel code internals,
the better.
So create a more generic way for objtool to detect dead ends by adding
an annotation to the unreachable() macro. The annotation stores a
pointer to the end of the unreachable code path in an '__unreachable'
section. Objtool can read that section to find the dead ends.
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/41a6d33971462ebd944a1c60ad4bf5be86c17b77.1487712920.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Continuing from this commit: 52f5684c8e
("kernel: use macros from compiler.h instead of __attribute__((...))")
I submitted 4 total patches. They are part of task I've taken up to
increase compiler portability in the kernel. I've cleaned up the
subsystems under /kernel /mm /block and /security, this patch targets
/crypto.
There is <linux/compiler.h> which provides macros for various gcc specific
constructs. Eg: __weak for __attribute__((weak)). I've cleaned all
instances of gcc specific attributes with the right macros for the crypto
subsystem.
I had to make one additional change into compiler-gcc.h for the case when
one wants to use this: __attribute__((aligned) and not specify an alignment
factor. From the gcc docs, this will result in the largest alignment for
that data type on the target machine so I've named the macro
__aligned_largest. Please advise if another name is more appropriate.
Signed-off-by: Gideon Israel Dsouza <gidisrael@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
kasan_global struct is part of compiler/runtime ABI. gcc revision
241983 has added a new field to kasan_global struct. Update kernel
definition of kasan_global struct to include the new field.
Without this patch KASAN is broken with gcc 7.
Link: http://lkml.kernel.org/r/1479219743-28682-1-git-send-email-dvyukov@google.com
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: <stable@vger.kernel.org> [4.0+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The __latent_entropy gcc attribute can be used only on functions and
variables. If it is on a function then the plugin will instrument it for
gathering control-flow entropy. If the attribute is on a variable then
the plugin will initialize it with random contents. The variable must
be an integer, an integer array type or a structure with integer fields.
These specific functions have been selected because they are init
functions (to help gather boot-time entropy), are called at unpredictable
times, or they have variable loops, each of which provide some level of
latent entropy.
Signed-off-by: Emese Revfy <re.emese@gmail.com>
[kees: expanded commit message]
Signed-off-by: Kees Cook <keescook@chromium.org>
There are three usercopy warnings which are currently being silenced for
gcc 4.6 and newer:
1) "copy_from_user() buffer size is too small" compile warning/error
This is a static warning which happens when object size and copy size
are both const, and copy size > object size. I didn't see any false
positives for this one. So the function warning attribute seems to
be working fine here.
Note this scenario is always a bug and so I think it should be
changed to *always* be an error, regardless of
CONFIG_DEBUG_STRICT_USER_COPY_CHECKS.
2) "copy_from_user() buffer size is not provably correct" compile warning
This is another static warning which happens when I enable
__compiletime_object_size() for new compilers (and
CONFIG_DEBUG_STRICT_USER_COPY_CHECKS). It happens when object size
is const, but copy size is *not*. In this case there's no way to
compare the two at build time, so it gives the warning. (Note the
warning is a byproduct of the fact that gcc has no way of knowing
whether the overflow function will be called, so the call isn't dead
code and the warning attribute is activated.)
So this warning seems to only indicate "this is an unusual pattern,
maybe you should check it out" rather than "this is a bug".
I get 102(!) of these warnings with allyesconfig and the
__compiletime_object_size() gcc check removed. I don't know if there
are any real bugs hiding in there, but from looking at a small
sample, I didn't see any. According to Kees, it does sometimes find
real bugs. But the false positive rate seems high.
3) "Buffer overflow detected" runtime warning
This is a runtime warning where object size is const, and copy size >
object size.
All three warnings (both static and runtime) were completely disabled
for gcc 4.6 with the following commit:
2fb0815c9e ("gcc4: disable __compiletime_object_size for GCC 4.6+")
That commit mistakenly assumed that the false positives were caused by a
gcc bug in __compiletime_object_size(). But in fact,
__compiletime_object_size() seems to be working fine. The false
positives were instead triggered by #2 above. (Though I don't have an
explanation for why the warnings supposedly only started showing up in
gcc 4.6.)
So remove warning #2 to get rid of all the false positives, and re-enable
warnings #1 and #3 by reverting the above commit.
Furthermore, since #1 is a real bug which is detected at compile time,
upgrade it to always be an error.
Having done all that, CONFIG_DEBUG_STRICT_USER_COPY_CHECKS is no longer
needed.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Nilay Vaish <nilayvaish@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Although sparse declares __builtin_bswap*(), it can't actually do
constant folding inside them (yet). As such, things like
switch (protocol) {
case htons(ETH_P_IP):
break;
}
which we do all over the place cause sparse to warn that it expects a
constant instead of a function call.
Disable __HAVE_BUILTIN_BSWAP*__ if __CHECKER__ is defined to avoid this.
Fixes: 7322dd755e ("byteswap: try to avoid __builtin_constant_p gcc bug")
Link: http://lkml.kernel.org/r/1470914102-26389-1-git-send-email-johannes@sipsolutions.net
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
gcc as far back as at least 3.04 documents the function attribute
__malloc__. Add a shorthand for attaching that to a function
declaration. This was also suggested by Andi Kleen way back in 2002
[1], but didn't get applied, perhaps because gcc at that time generated
the exact same code with and without this attribute.
This attribute tells the compiler that the return value (if non-NULL)
can be assumed not to alias any other valid pointers at the time of the
call.
Please note that the documentation for a range of gcc versions (starting
from around 4.7) contained a somewhat confusing and self-contradicting
text:
The malloc attribute is used to tell the compiler that a function may
be treated as if any non-NULL pointer it returns cannot alias any other
pointer valid when the function returns and *that the memory has
undefined content*. [...] Standard functions with this property include
malloc and *calloc*.
(emphasis mine). The intended meaning has later been clarified [2]:
This tells the compiler that a function is malloc-like, i.e., that the
pointer P returned by the function cannot alias any other pointer valid
when the function returns, and moreover no pointers to valid objects
occur in any storage addressed by P.
What this means is that we can apply the attribute to kmalloc and
friends, and it is ok for the returned memory to have well-defined
contents (__GFP_ZERO). But it is not ok to apply it to kmemdup(), nor
to other functions which both allocate and possibly initialize the
memory with existing pointers. So unless someone is doing something
pretty perverted kstrdup() should also be a fine candidate.
[1] http://thread.gmane.org/gmane.linux.kernel/57172
[2] https://gcc.gnu.org/bugzilla/show_bug.cgi?id=56955
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
gcc support for __builtin_bswap16() was supposedly added for powerpc in
gcc 4.6, and was then later added for other architectures in gcc 4.8.
However, Stephen Rothwell reported that attempting to use it on powerpc
in gcc 4.6 fails with:
lib/vsprintf.c:160:2: error: initializer element is not constant
lib/vsprintf.c:160:2: error: (near initialization for 'decpair[0]')
lib/vsprintf.c:160:2: error: initializer element is not constant
lib/vsprintf.c:160:2: error: (near initialization for 'decpair[1]')
...
I'm not entirely sure what those errors mean, but I don't see them on
gcc 4.8. So let's consider gcc 4.8 to be the official starting point
for __builtin_bswap16().
Arnd Bergmann adds:
"I found the commit in gcc-4.8 that replaced the powerpc-specific
implementation of __builtin_bswap16 with an architecture-independent
one. Apparently the powerpc version (gcc-4.6 and 4.7) just mapped to
the lhbrx/sthbrx instructions, so it ended up not being a constant,
though the intent of the patch was mainly to add support for the
builtin to x86:
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=52624
has the patch that went into gcc-4.8 and more information."
Fixes: 7322dd755e ("byteswap: try to avoid __builtin_constant_p gcc bug")
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Tested-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-ftracer can duplicate asm blocks causing compilation to fail in
noclone functions. For example, KVM declares a global variable
in an asm like
asm("2: ... \n
.pushsection data \n
.global vmx_return \n
vmx_return: .long 2b");
and -ftracer causes a double declaration.
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Marek <mmarek@suse.cz>
Cc: stable@vger.kernel.org
Cc: kvm@vger.kernel.org
Reported-by: Linda Walsh <lkml@tlinx.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The patch "slab.h: sprinkle __assume_aligned attributes" causes *tons* of
whinges if you do 'make C=2' with sparse 0.5.0:
CHECK drivers/media/usb/pwc/pwc-if.c
include/linux/slab.h:307:43: error: attribute '__assume_aligned__': unknown attribute
include/linux/slab.h:308:58: error: attribute '__assume_aligned__': unknown attribute
include/linux/slab.h:337:73: error: attribute '__assume_aligned__': unknown attribute
include/linux/slab.h:375:74: error: attribute '__assume_aligned__': unknown attribute
include/linux/slab.h:378:80: error: attribute '__assume_aligned__': unknown attribute
sparse apparently pretends to be gcc >= 4.9, yet isn't prepared to handle
all the function attributes supported by those gccs and complains loudly.
So hide the definition of __assume_aligned from it (so that the generic
one in compiler.h gets used).
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Reported-by: Valdis Kletnieks <Valdis.Kletnieks@vt.edu>
Tested-By: Valdis Kletnieks <valdis.kletnieks@vt.edu>
Cc: Christopher Li <sparse@chrisli.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
gcc 4.9 added the function attribute assume_aligned, indicating to the
caller that the returned pointer may be assumed to have a certain minimal
alignment. This is useful if, for example, the return value is passed to
memset(). Add a shorthand macro for that.
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>