The Btrfs swap code is going to need it, so give it a btrfs_ prefix and
make it non-static.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A later patch will implement swap file support for Btrfs, but before we
do that, we need to make sure that the various Btrfs ioctls cannot
change a swap file.
When a swap file is active, we must make sure that the extents of the
file are not moved and that they don't become shared. That means that
the following are not safe:
- chattr +c (enable compression)
- reflink
- dedupe
- snapshot
- defrag
Don't allow those to happen on an active swap file.
Additionally, balance, resize, device remove, and device replace are
also unsafe if they affect an active swapfile. Add a red-black tree of
block groups and devices which contain an active swapfile. Relocation
checks each block group against this tree and skips it or errors out for
balance or resize, respectively. Device remove and device replace check
the tree for the device they will operate on.
Note that we don't have to worry about chattr -C (disable nocow), which
we ignore for non-empty files, because an active swapfile must be
non-empty and can't be truncated. We also don't have to worry about
autodefrag because it's only done on COW files. Truncate and fallocate
are already taken care of by the generic code. Device add doesn't do
relocation so it's not an issue, either.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is the counterpart to merge_extent_hook, similarly, it's used only
for data/freespace inodes so let's remove it, rename it and call it
directly where necessary. No functional changes.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This callback is used only for data and free space inodes. Such inodes
are guaranteed to have their extent_io_tree::private_data set to the
inode struct. Exploit this fact to directly call the function. Also give
it a more descriptive name. No functional changes.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is the counterpart to ex-set_bit_hook (now btrfs_set_delalloc_extent),
similar to what was done before remove clear_bit_hook and rename the
function. No functional changes.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This callback is used to properly account delalloc extents for data
inodes (ordinary file inodes and freespace v1 inodes). Those can be
easily identified since they have their extent_io trees ->private_data
member point to the inode. Let's exploit this fact to remove the
needless indirection through extent_io_hooks and directly call the
function. Also give the function a name which reflects its purpose -
btrfs_set_delalloc_extent.
This patch also modified test_find_delalloc so that the extent_io_tree
used for testing doesn't have its ->private_data set which would have
caused a crash in btrfs_set_delalloc_extent due to the btrfs_inode->root
member not being initialised. The old version of the code also didn't
call set_bit_hook since the extent_io ops weren't set for the inode. No
functional changes.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This callback was only used in debug builds by btrfs_leak_debug_check.
A better approach is to move its implementation in
btrfs_leak_debug_check and ensure the latter is only executed for extent
tree which have ->private_data set i.e. relate to a data node and not
the btree one. No functional changes.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This callback is ony ever called for data page writeout so there is no
need to actually abstract it via extent_io_ops. Lets just export it,
remove the definition of the callback and call it directly in the
functions that invoke the callback. Also rename the function to
btrfs_writepage_endio_finish_ordered since what it really does is
account finished io in the ordered extent data structures. No
functional changes.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This hook is called only from __extent_writepage_io which is already
called only from the data page writeout path. So there is no need to
make an indirect call via extent_io_ops. This patch just removes the
callback definition, exports the callback function and calls it directly
at the only call site. Also give the function a more descriptive name.
No functional changes.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This callback is called only from writepage_delalloc which in turn is
guaranteed to be called from the data page writeout path. In the end
there is no reason to have the call to this function to be indrected via
the extent_io_ops structure. This patch removes the callback definition,
exports the function and calls it directly. No functional changes.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ rename to btrfs_run_delalloc_range ]
Signed-off-by: David Sterba <dsterba@suse.com>
This will be used in future patches that remove the optional
extent_io_ops callbacks.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add extra dev extent end check against device boundary.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Enhance btrfs_verify_dev_extents() to remember previous checked dev
extents, so it can verify no dev extents can overlap.
Analysis from Hans:
"Imagine allocating a DATA|DUP chunk.
In the chunk allocator, we first set...
max_stripe_size = SZ_1G;
max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE
... which is 10GiB.
Then...
/* we don't want a chunk larger than 10% of writeable space */
max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
max_chunk_size);
Imagine we only have one 7880MiB block device in this filesystem. Now
max_chunk_size is down to 788MiB.
The next step in the code is to search for max_stripe_size * dev_stripes
amount of free space on the device, which is in our example 1GiB * 2 =
2GiB. Imagine the device has exactly 1578MiB free in one contiguous
piece. This amount of bytes will be put in devices_info[ndevs - 1].max_avail
Next we recalculate the stripe_size (which is actually the device extent
length), based on the actual maximum amount of available raw disk space:
stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
stripe_size is now 789MiB
Next we do...
data_stripes = num_stripes / ncopies
...where data_stripes ends up as 1, because num_stripes is 2 (the amount
of device extents we're going to have), and DUP has ncopies 2.
Next there's a check...
if (stripe_size * data_stripes > max_chunk_size)
...which matches because 789MiB * 1 > 788MiB.
We go into the if code, and next is...
stripe_size = div_u64(max_chunk_size, data_stripes);
...which resets stripe_size to max_chunk_size: 788MiB
Next is a fun one...
/* bump the answer up to a 16MB boundary */
stripe_size = round_up(stripe_size, SZ_16M);
...which changes stripe_size from 788MiB to 800MiB.
We're not done changing stripe_size yet...
/* But don't go higher than the limits we found while searching
* for free extents
*/
stripe_size = min(devices_info[ndevs - 1].max_avail,
stripe_size);
This is bad. max_avail is twice the stripe_size (we need to fit 2 device
extents on the same device for DUP).
The result here is that 800MiB < 1578MiB, so it's unchanged. However,
the resulting DUP chunk will need 1600MiB disk space, which isn't there,
and the second dev_extent might extend into the next thing (next
dev_extent? end of device?) for 22MiB.
The last shown line of code relies on a situation where there's twice
the value of stripe_size present as value for the variable stripe_size
when it's DUP. This was actually the case before commit 92e222df7b
"btrfs: alloc_chunk: fix DUP stripe size handling", from which I quote:
"[...] in the meantime there's a check to see if the stripe_size does
not exceed max_chunk_size. Since during this check stripe_size is twice
the amount as intended, the check will reduce the stripe_size to
max_chunk_size if the actual correct to be used stripe_size is more than
half the amount of max_chunk_size."
In the previous version of the code, the 16MiB alignment (why is this
done, by the way?) would result in a 50% chance that it would actually
do an 8MiB alignment for the individual dev_extents, since it was
operating on double the size. Does this matter?
Does it matter that stripe_size can be set to anything which is not
16MiB aligned because of the amount of remaining available disk space
which is just taken?
What is the main purpose of this round_up?
The most straightforward thing to do seems something like...
stripe_size = min(
div_u64(devices_info[ndevs - 1].max_avail, dev_stripes),
stripe_size
)
..just putting half of the max_avail into stripe_size."
Link: https://lore.kernel.org/linux-btrfs/b3461a38-e5f8-f41d-c67c-2efac8129054@mendix.com/
Reported-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
[ add analysis from report ]
Signed-off-by: David Sterba <dsterba@suse.com>
We have a complex loop design for find_free_extent(), that has different
behavior for each loop, some even includes new chunk allocation.
Instead of putting such a long code into find_free_extent() and makes it
harder to read, just extract them into find_free_extent_update_loop().
With all the cleanups, the main find_free_extent() should be pretty
barebone:
find_free_extent()
|- Iterate through all block groups
| |- Get a valid block group
| |- Try to do clustered allocation in that block group
| |- Try to do unclustered allocation in that block group
| |- Check if the result is valid
| | |- If valid, then exit
| |- Jump to next block group
|
|- Push harder to find free extents
|- If not found, re-iterate all block groups
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Su Yue <suy.fnst@cn.fujitsu.com>
[ copy callchain from changelog to function comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
This patch will extract unclsutered extent allocation code into
find_free_extent_unclustered().
And this helper function will use return value to indicate what to do
next.
This should make find_free_extent() a little easier to read.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
[Update merge conflict with fb5c39d7a8 ("btrfs: don't use ctl->free_space for max_extent_size")]
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have two main methods to find free extents inside a block group:
1) clustered allocation
2) unclustered allocation
This patch will extract the clustered allocation into
find_free_extent_clustered() to make it a little easier to read.
Instead of jumping between different labels in find_free_extent(), the
helper function will use return value to indicate different behavior.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of tons of different local variables in find_free_extent(),
extract them into find_free_extent_ctl structure, and add better
explanation for them.
Some modification may looks redundant, but will later greatly simplify
function parameter list during find_free_extent() refactor.
Also add two comments to co-operate with fb5c39d7a8 ("btrfs: don't use
ctl->free_space for max_extent_size"), to make ffe_ctl->max_extent_size
update more reader-friendly.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduce a new wrapper update_bytes_pinned to replace open coded
bytes_pinned modifiers. Now the underflows of space_info::bytes_pinned
get detected and reported.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Although we have space_info::bytes_may_use underflow detection in
btrfs_free_reserved_data_space_noquota(), we have more callers who are
subtracting number from space_info::bytes_may_use.
So instead of doing underflow detection for every caller, introduce a
new wrapper update_bytes_may_use() to replace open coded bytes_may_use
modifiers.
This also introduce a macro to declare more wrappers, but currently
space_info::bytes_may_use is the mostly interesting one.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Tracking pending ordered extents per transaction was introduced in commit
50d9aa99bd ("Btrfs: make sure logged extents complete in the current
transaction V3") and later updated in commit 161c3549b4 ("Btrfs: change
how we wait for pending ordered extents").
However now that on fsync we always wait for ordered extents to complete
before logging, done in commit 5636cf7d6d ("btrfs: remove the logged
extents infrastructure"), we no longer need the stuff to track for pending
ordered extents, which was not completely removed in the mentioned commit.
So remove the remaining of the pending ordered extents infrastructure.
Reviewed-by: Liu Bo <bo.liu@linux.alibaba.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The logged_start and logged_end variables, at btrfs_log_changed_extents,
were added in commit 8c6c592831 ("btrfs: log csums for all modified
extents"). However since the recent simplification for fsync, which makes
us wait for all ordered extents to complete before logging extents, we
no longer need those variables. Commit a2120a473a ("btrfs: clean up the
left over logged_list usage") forgot to remove them.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAlwH0k8ACgkQxWXV+ddt
WDtmVg/+Kgvk7laQI9bLEr1/30eG1JfBUMHcVE1F8+g99l28m1Yihjd21j9norVd
YexBz53jgKou+zV+37CKWBYT1uDPq7CIoxctkdE2j9U0s+RmsqDrhech0dsBsfMR
jo9VnHJFuJSxGMhjfGnFV+wMtAr4q5aQptNGBl+hR1MvMneroktFv+0WiLmp0Vhj
+6Iq9WAClJYpgk//cI7nhKkscdzWwRyN3V9RUtdNeYklk1D7l1WprlaPzw22WA9u
VjQVMICjEaJeIixIwT/D8lz05QgjKlqy1z6faYG5JuJxoYQikuNv/xe2dhZVm35A
aNsBR0byf3zzuXKQZAlvXJ6/gYPvep+KI7epPyBOdycaqoZza7rQ+/MkSAgQ77Vk
yBnQuhqiw9Srjh6LDWFkNclVln2wymRKd1SqpZmFPRZre/8L+DU+I8RRaeS2/WcE
M2k+awRD0oVofbB+hxkFIoR+I1Ggkp2rxQlTT/41tGx0geWC3AGX+TlKSW6ZM5HD
lRmRXIsVocfighKEnI3Zy7ecZuwCI4/4D6+PQtyhCJb3tDigZ/a4UEYdSVucG8CG
SuQ5YMn+MyyKT0wH8xkGKDGT15YZ+u9Q/BmPHZRL6sSouFpiCQHA5miD1YA+t1d9
qMjH6Ycz46Y3j2M0BDfDcm714zoD5/bgeSy5SPC3Zh5lQCGpeIk=
=VW/F
-----END PGP SIGNATURE-----
Merge tag 'for-4.20-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fix from David Sterba:
"A patch in 4.19 introduced a sanity check that was too strict and a
filesystem cannot be mounted.
This happens for filesystems with more than 10 devices and has been
reported by a few users so we need the fix to propagate to stable"
* tag 'for-4.20-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: tree-checker: Don't check max block group size as current max chunk size limit is unreliable
[BUG]
A completely valid btrfs will refuse to mount, with error message like:
BTRFS critical (device sdb2): corrupt leaf: root=2 block=239681536 slot=172 \
bg_start=12018974720 bg_len=10888413184, invalid block group size, \
have 10888413184 expect (0, 10737418240]
This has been reported several times as the 4.19 kernel is now being
used. The filesystem refuses to mount, but is otherwise ok and booting
4.18 is a workaround.
Btrfs check returns no error, and all kernels used on this fs is later
than 2011, which should all have the 10G size limit commit.
[CAUSE]
For a 12 devices btrfs, we could allocate a chunk larger than 10G due to
stripe stripe bump up.
__btrfs_alloc_chunk()
|- max_stripe_size = 1G
|- max_chunk_size = 10G
|- data_stripe = 11
|- if (1G * 11 > 10G) {
stripe_size = 976128930;
stripe_size = round_up(976128930, SZ_16M) = 989855744
However the final stripe_size (989855744) * 11 = 10888413184, which is
still larger than 10G.
[FIX]
For the comprehensive check, we need to do the full check at chunk read
time, and rely on bg <-> chunk mapping to do the check.
We could just skip the length check for now.
Fixes: fce466eab7 ("btrfs: tree-checker: Verify block_group_item")
Cc: stable@vger.kernel.org # v4.19+
Reported-by: Wang Yugui <wangyugui@e16-tech.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAlv9qYgACgkQxWXV+ddt
WDupPQ/8DdeLZYQG1tlx2Q+X4/tqPVyAzUjguYzbIY7wvSs1zbEEedENsD8E97yC
So8ooGnP5B6/dqVidLFQBPwTXN59GybYbrDci8qh0DOJTl3+1r8byD9JC+iofrOF
tltJkZ+eCOQyyqHHzlzw15uNOg48Qzj1oXvTAcE0P6iN5UcvcfwRW/S39pjsn63C
63zc09XJ1hmJMJTWZo5h3GoD2UvzrwGXPKXNdv/NWkw9sqQbWdjvZFdqKbvY1VeM
Oa6FPAPErJqEEEePhpDYbyRcnzjJRMs0deLGpGGChGldQxgMO8ILzBwh/KalfzK7
h7LIuv1EclUqlyv0mXPqg2E/C3n2UMPqQYFsK9Lt+4Y/PkrWA2jx0lSg0fBl3k8c
7PyiTqPNPNF8LU48tPEnOzJuNPkquOycgdyQOUpHnS43OF5OLIb6tVyjK4eJHRWw
xtP65M72qM8T65+gsxYcdm0lvIDLidIwFS+2g4ibKU7EwlYkTC9AHFIAyFKTgxeP
MpkIH90mKhSxOpbq8RICgr2jWcJZYoFQ4soi1oE+bgyjv75PyhJ0eXOprCh/4KZp
nkXlPy2skkO9gGecyvr51x/opDEjEkObyOjQm2LhhWYvgcnHgW8Zp1jhQKxabHvz
iZdVIs/agOerpk1d9ZBHhIXOeS2UcE5klqVRAdf961Wobh+HNis=
=cCvI
-----END PGP SIGNATURE-----
Merge tag 'for-4.20-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"Some of these bugs are being hit during testing so we'd like to get
them merged, otherwise there are usual stability fixes for stable
trees"
* tag 'for-4.20-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: relocation: set trans to be NULL after ending transaction
Btrfs: fix race between enabling quotas and subvolume creation
Btrfs: send, fix infinite loop due to directory rename dependencies
Btrfs: ensure path name is null terminated at btrfs_control_ioctl
Btrfs: fix rare chances for data loss when doing a fast fsync
btrfs: Always try all copies when reading extent buffers
The function relocate_block_group calls btrfs_end_transaction to release
trans when update_backref_cache returns 1, and then continues the loop
body. If btrfs_block_rsv_refill fails this time, it will jump out the
loop and the freed trans will be accessed. This may result in a
use-after-free bug. The patch assigns NULL to trans after trans is
released so that it will not be accessed.
Fixes: 0647bf564f ("Btrfs: improve forever loop when doing balance relocation")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Pan Bian <bianpan2016@163.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have a race between enabling quotas end subvolume creation that cause
subvolume creation to fail with -EINVAL, and the following diagram shows
how it happens:
CPU 0 CPU 1
btrfs_ioctl()
btrfs_ioctl_quota_ctl()
btrfs_quota_enable()
mutex_lock(fs_info->qgroup_ioctl_lock)
btrfs_ioctl()
create_subvol()
btrfs_qgroup_inherit()
-> save fs_info->quota_root
into quota_root
-> stores a NULL value
-> tries to lock the mutex
qgroup_ioctl_lock
-> blocks waiting for
the task at CPU0
-> sets BTRFS_FS_QUOTA_ENABLED in fs_info
-> sets quota_root in fs_info->quota_root
(non-NULL value)
mutex_unlock(fs_info->qgroup_ioctl_lock)
-> checks quota enabled
flag is set
-> returns -EINVAL because
fs_info->quota_root was
NULL before it acquired
the mutex
qgroup_ioctl_lock
-> ioctl returns -EINVAL
Returning -EINVAL to user space will be confusing if all the arguments
passed to the subvolume creation ioctl were valid.
Fix it by grabbing the value from fs_info->quota_root after acquiring
the mutex.
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing an incremental send, due to the need of delaying directory move
(rename) operations we can end up in infinite loop at
apply_children_dir_moves().
An example scenario that triggers this problem is described below, where
directory names correspond to the numbers of their respective inodes.
Parent snapshot:
.
|--- 261/
|--- 271/
|--- 266/
|--- 259/
|--- 260/
| |--- 267
|
|--- 264/
| |--- 258/
| |--- 257/
|
|--- 265/
|--- 268/
|--- 269/
| |--- 262/
|
|--- 270/
|--- 272/
| |--- 263/
| |--- 275/
|
|--- 274/
|--- 273/
Send snapshot:
.
|-- 275/
|-- 274/
|-- 273/
|-- 262/
|-- 269/
|-- 258/
|-- 271/
|-- 268/
|-- 267/
|-- 270/
|-- 259/
| |-- 265/
|
|-- 272/
|-- 257/
|-- 260/
|-- 264/
|-- 263/
|-- 261/
|-- 266/
When processing inode 257 we delay its move (rename) operation because its
new parent in the send snapshot, inode 272, was not yet processed. Then
when processing inode 272, we delay the move operation for that inode
because inode 274 is its ancestor in the send snapshot. Finally we delay
the move operation for inode 274 when processing it because inode 275 is
its new parent in the send snapshot and was not yet moved.
When finishing processing inode 275, we start to do the move operations
that were previously delayed (at apply_children_dir_moves()), resulting in
the following iterations:
1) We issue the move operation for inode 274;
2) Because inode 262 depended on the move operation of inode 274 (it was
delayed because 274 is its ancestor in the send snapshot), we issue the
move operation for inode 262;
3) We issue the move operation for inode 272, because it was delayed by
inode 274 too (ancestor of 272 in the send snapshot);
4) We issue the move operation for inode 269 (it was delayed by 262);
5) We issue the move operation for inode 257 (it was delayed by 272);
6) We issue the move operation for inode 260 (it was delayed by 272);
7) We issue the move operation for inode 258 (it was delayed by 269);
8) We issue the move operation for inode 264 (it was delayed by 257);
9) We issue the move operation for inode 271 (it was delayed by 258);
10) We issue the move operation for inode 263 (it was delayed by 264);
11) We issue the move operation for inode 268 (it was delayed by 271);
12) We verify if we can issue the move operation for inode 270 (it was
delayed by 271). We detect a path loop in the current state, because
inode 267 needs to be moved first before we can issue the move
operation for inode 270. So we delay again the move operation for
inode 270, this time we will attempt to do it after inode 267 is
moved;
13) We issue the move operation for inode 261 (it was delayed by 263);
14) We verify if we can issue the move operation for inode 266 (it was
delayed by 263). We detect a path loop in the current state, because
inode 270 needs to be moved first before we can issue the move
operation for inode 266. So we delay again the move operation for
inode 266, this time we will attempt to do it after inode 270 is
moved (its move operation was delayed in step 12);
15) We issue the move operation for inode 267 (it was delayed by 268);
16) We verify if we can issue the move operation for inode 266 (it was
delayed by 270). We detect a path loop in the current state, because
inode 270 needs to be moved first before we can issue the move
operation for inode 266. So we delay again the move operation for
inode 266, this time we will attempt to do it after inode 270 is
moved (its move operation was delayed in step 12). So here we added
again the same delayed move operation that we added in step 14;
17) We attempt again to see if we can issue the move operation for inode
266, and as in step 16, we realize we can not due to a path loop in
the current state due to a dependency on inode 270. Again we delay
inode's 266 rename to happen after inode's 270 move operation, adding
the same dependency to the empty stack that we did in steps 14 and 16.
The next iteration will pick the same move dependency on the stack
(the only entry) and realize again there is still a path loop and then
again the same dependency to the stack, over and over, resulting in
an infinite loop.
So fix this by preventing adding the same move dependency entries to the
stack by removing each pending move record from the red black tree of
pending moves. This way the next call to get_pending_dir_moves() will
not return anything for the current parent inode.
A test case for fstests, with this reproducer, follows soon.
Signed-off-by: Robbie Ko <robbieko@synology.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
[Wrote changelog with example and more clear explanation]
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We were using the path name received from user space without checking that
it is null terminated. While btrfs-progs is well behaved and does proper
validation and null termination, someone could call the ioctl and pass
a non-null terminated patch, leading to buffer overrun problems in the
kernel. The ioctl is protected by CAP_SYS_ADMIN.
So just set the last byte of the path to a null character, similar to what
we do in other ioctls (add/remove/resize device, snapshot creation, etc).
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
After the simplification of the fast fsync patch done recently by commit
b5e6c3e170 ("btrfs: always wait on ordered extents at fsync time") and
commit e7175a6927 ("btrfs: remove the wait ordered logic in the
log_one_extent path"), we got a very short time window where we can get
extents logged without writeback completing first or extents logged
without logging the respective data checksums. Both issues can only happen
when doing a non-full (fast) fsync.
As soon as we enter btrfs_sync_file() we trigger writeback, then lock the
inode and then wait for the writeback to complete before starting to log
the inode. However before we acquire the inode's lock and after we started
writeback, it's possible that more writes happened and dirtied more pages.
If that happened and those pages get writeback triggered while we are
logging the inode (for example, the VM subsystem triggering it due to
memory pressure, or another concurrent fsync), we end up seeing the
respective extent maps in the inode's list of modified extents and will
log matching file extent items without waiting for the respective
ordered extents to complete, meaning that either of the following will
happen:
1) We log an extent after its writeback finishes but before its checksums
are added to the csum tree, leading to -EIO errors when attempting to
read the extent after a log replay.
2) We log an extent before its writeback finishes.
Therefore after the log replay we will have a file extent item pointing
to an unwritten extent (and without the respective data checksums as
well).
This could not happen before the fast fsync patch simplification, because
for any extent we found in the list of modified extents, we would wait for
its respective ordered extent to finish writeback or collect its checksums
for logging if it did not complete yet.
Fix this by triggering writeback again after acquiring the inode's lock
and before waiting for ordered extents to complete.
Fixes: e7175a6927 ("btrfs: remove the wait ordered logic in the log_one_extent path")
Fixes: b5e6c3e170 ("btrfs: always wait on ordered extents at fsync time")
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When a metadata read is served the endio routine btree_readpage_end_io_hook
is called which eventually runs the tree-checker. If tree-checker fails
to validate the read eb then it sets EXTENT_BUFFER_CORRUPT flag. This
leads to btree_read_extent_buffer_pages wrongly assuming that all
available copies of this extent buffer are wrong and failing prematurely.
Fix this modify btree_read_extent_buffer_pages to read all copies of
the data.
This failure was exhibitted in xfstests btrfs/124 which would
spuriously fail its balance operations. The reason was that when balance
was run following re-introduction of the missing raid1 disk
__btrfs_map_block would map the read request to stripe 0, which
corresponded to devid 2 (the disk which is being removed in the test):
item 2 key (FIRST_CHUNK_TREE CHUNK_ITEM 3553624064) itemoff 15975 itemsize 112
length 1073741824 owner 2 stripe_len 65536 type DATA|RAID1
io_align 65536 io_width 65536 sector_size 4096
num_stripes 2 sub_stripes 1
stripe 0 devid 2 offset 2156920832
dev_uuid 8466c350-ed0c-4c3b-b17d-6379b445d5c8
stripe 1 devid 1 offset 3553624064
dev_uuid 1265d8db-5596-477e-af03-df08eb38d2ca
This caused read requests for a checksum item that to be routed to the
stale disk which triggered the aforementioned logic involving
EXTENT_BUFFER_CORRUPT flag. This then triggered cascading failures of
the balance operation.
Fixes: a826d6dcb3 ("Btrfs: check items for correctness as we search")
CC: stable@vger.kernel.org # 4.4+
Suggested-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAlvoGIUACgkQxWXV+ddt
WDta6g//UJSLnVskCUwh8VyMdd47QArQnaLJowOH7wQn4Nqj+2hf04mCq/kv05ed
OneTezzONZc/qW9fiJGS+Dp77ln4JIDA1hWHtb/A4t9pYlksSQllJ3oiDUVsCp3q
2EbzrjuNz3iQO6TjKlaHX473CLCMQMXS2OXOUnCkF2maMJSdr86oi+j1UiSnud1/
C7uMYM3hG8nkfEfjjb1COpkS2MmzYcPruF5RDcbT/WOUfylTsjjX1E7rK/ZEqS9P
SUcp4uoZe9BNoyWMASLaM7oHE82day4X9MwQoCQFRcm0kq4CnRAZ8X4lBl+M70iW
7Olii/wNZ2SRiJf3jac/rpxoBHvEskXTHyiHTEmdHp4n1L1pL9GzGYIePQcX7uV1
Tb6ImdUUKCC//fPqyeB7cEk5yxqahmlFD3qZVs6GnQkzKrPE+ChLx+7PgcJC/XVh
C5ogNmJm+NvFOuTrYk9zSXg85B8gWHescDJrvNKVizIjw3nKmqiC+dXZljhzw+p8
HscK9EXsiS8jW9ClfJljXzIa4SeA/i7fQGe4tCKfIrCQ+OqUxWpFCEoxygchinfF
Rw90fJ0jX083oXsnfFcVdQpQ+SLSKka/aIRMvi58WRgLU3trci5NNN4TFg8TYRKP
xBDF/iF3sqXajc+xsjoqLhLioZL3Pa5VDNuhsFdois9M5JSRekU=
=K14u
-----END PGP SIGNATURE-----
Merge tag 'for-4.20-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"Several fixes to recent release (4.19, fixes tagged for stable) and
other fixes"
* tag 'for-4.20-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
Btrfs: fix missing delayed iputs on unmount
Btrfs: fix data corruption due to cloning of eof block
Btrfs: fix infinite loop on inode eviction after deduplication of eof block
Btrfs: fix deadlock on tree root leaf when finding free extent
btrfs: avoid link error with CONFIG_NO_AUTO_INLINE
btrfs: tree-checker: Fix misleading group system information
Btrfs: fix missing data checksums after a ranged fsync (msync)
btrfs: fix pinned underflow after transaction aborted
Btrfs: fix cur_offset in the error case for nocow
There's a race between close_ctree() and cleaner_kthread().
close_ctree() sets btrfs_fs_closing(), and the cleaner stops when it
sees it set, but this is racy; the cleaner might have already checked
the bit and could be cleaning stuff. In particular, if it deletes unused
block groups, it will create delayed iputs for the free space cache
inodes. As of "btrfs: don't run delayed_iputs in commit", we're no
longer running delayed iputs after a commit. Therefore, if the cleaner
creates more delayed iputs after delayed iputs are run in
btrfs_commit_super(), we will leak inodes on unmount and get a busy
inode crash from the VFS.
Fix it by parking the cleaner before we actually close anything. Then,
any remaining delayed iputs will always be handled in
btrfs_commit_super(). This also ensures that the commit in close_ctree()
is really the last commit, so we can get rid of the commit in
cleaner_kthread().
The fstest/generic/475 followed by 476 can trigger a crash that
manifests as a slab corruption caused by accessing the freed kthread
structure by a wake up function. Sample trace:
[ 5657.077612] BUG: unable to handle kernel NULL pointer dereference at 00000000000000cc
[ 5657.079432] PGD 1c57a067 P4D 1c57a067 PUD da10067 PMD 0
[ 5657.080661] Oops: 0000 [#1] PREEMPT SMP
[ 5657.081592] CPU: 1 PID: 5157 Comm: fsstress Tainted: G W 4.19.0-rc8-default+ #323
[ 5657.083703] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626cc-prebuilt.qemu-project.org 04/01/2014
[ 5657.086577] RIP: 0010:shrink_page_list+0x2f9/0xe90
[ 5657.091937] RSP: 0018:ffffb5c745c8f728 EFLAGS: 00010287
[ 5657.092953] RAX: 0000000000000074 RBX: ffffb5c745c8f830 RCX: 0000000000000000
[ 5657.094590] RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff9a8747fdf3d0
[ 5657.095987] RBP: ffffb5c745c8f9e0 R08: 0000000000000000 R09: 0000000000000000
[ 5657.097159] R10: ffff9a8747fdf5e8 R11: 0000000000000000 R12: ffffb5c745c8f788
[ 5657.098513] R13: ffff9a877f6ff2c0 R14: ffff9a877f6ff2c8 R15: dead000000000200
[ 5657.099689] FS: 00007f948d853b80(0000) GS:ffff9a877d600000(0000) knlGS:0000000000000000
[ 5657.101032] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 5657.101953] CR2: 00000000000000cc CR3: 00000000684bd000 CR4: 00000000000006e0
[ 5657.103159] Call Trace:
[ 5657.103776] shrink_inactive_list+0x194/0x410
[ 5657.104671] shrink_node_memcg.constprop.84+0x39a/0x6a0
[ 5657.105750] shrink_node+0x62/0x1c0
[ 5657.106529] try_to_free_pages+0x1a4/0x500
[ 5657.107408] __alloc_pages_slowpath+0x2c9/0xb20
[ 5657.108418] __alloc_pages_nodemask+0x268/0x2b0
[ 5657.109348] kmalloc_large_node+0x37/0x90
[ 5657.110205] __kmalloc_node+0x236/0x310
[ 5657.111014] kvmalloc_node+0x3e/0x70
Fixes: 30928e9baa ("btrfs: don't run delayed_iputs in commit")
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add trace ]
Signed-off-by: David Sterba <dsterba@suse.com>
We currently allow cloning a range from a file which includes the last
block of the file even if the file's size is not aligned to the block
size. This is fine and useful when the destination file has the same size,
but when it does not and the range ends somewhere in the middle of the
destination file, it leads to corruption because the bytes between the EOF
and the end of the block have undefined data (when there is support for
discard/trimming they have a value of 0x00).
Example:
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
$ export foo_size=$((256 * 1024 + 100))
$ xfs_io -f -c "pwrite -S 0x3c 0 $foo_size" /mnt/foo
$ xfs_io -f -c "pwrite -S 0xb5 0 1M" /mnt/bar
$ xfs_io -c "reflink /mnt/foo 0 512K $foo_size" /mnt/bar
$ od -A d -t x1 /mnt/bar
0000000 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5
*
0524288 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c
*
0786528 3c 3c 3c 3c 00 00 00 00 00 00 00 00 00 00 00 00
0786544 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*
0790528 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5
*
1048576
The bytes in the range from 786532 (512Kb + 256Kb + 100 bytes) to 790527
(512Kb + 256Kb + 4Kb - 1) got corrupted, having now a value of 0x00 instead
of 0xb5.
This is similar to the problem we had for deduplication that got recently
fixed by commit de02b9f6bb ("Btrfs: fix data corruption when
deduplicating between different files").
Fix this by not allowing such operations to be performed and return the
errno -EINVAL to user space. This is what XFS is doing as well at the VFS
level. This change however now makes us return -EINVAL instead of
-EOPNOTSUPP for cases where the source range maps to an inline extent and
the destination range's end is smaller then the destination file's size,
since the detection of inline extents is done during the actual process of
dropping file extent items (at __btrfs_drop_extents()). Returning the
-EINVAL error is done early on and solely based on the input parameters
(offsets and length) and destination file's size. This makes us consistent
with XFS and anyone else supporting cloning since this case is now checked
at a higher level in the VFS and is where the -EINVAL will be returned
from starting with kernel 4.20 (the VFS changed was introduced in 4.20-rc1
by commit 07d19dc9fb ("vfs: avoid problematic remapping requests into
partial EOF block"). So this change is more geared towards stable kernels,
as it's unlikely the new VFS checks get removed intentionally.
A test case for fstests follows soon, as well as an update to filter
existing tests that expect -EOPNOTSUPP to accept -EINVAL as well.
CC: <stable@vger.kernel.org> # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When we are writing out a free space cache, during the transaction commit
phase, we can end up in a deadlock which results in a stack trace like the
following:
schedule+0x28/0x80
btrfs_tree_read_lock+0x8e/0x120 [btrfs]
? finish_wait+0x80/0x80
btrfs_read_lock_root_node+0x2f/0x40 [btrfs]
btrfs_search_slot+0xf6/0x9f0 [btrfs]
? evict_refill_and_join+0xd0/0xd0 [btrfs]
? inode_insert5+0x119/0x190
btrfs_lookup_inode+0x3a/0xc0 [btrfs]
? kmem_cache_alloc+0x166/0x1d0
btrfs_iget+0x113/0x690 [btrfs]
__lookup_free_space_inode+0xd8/0x150 [btrfs]
lookup_free_space_inode+0x5b/0xb0 [btrfs]
load_free_space_cache+0x7c/0x170 [btrfs]
? cache_block_group+0x72/0x3b0 [btrfs]
cache_block_group+0x1b3/0x3b0 [btrfs]
? finish_wait+0x80/0x80
find_free_extent+0x799/0x1010 [btrfs]
btrfs_reserve_extent+0x9b/0x180 [btrfs]
btrfs_alloc_tree_block+0x1b3/0x4f0 [btrfs]
__btrfs_cow_block+0x11d/0x500 [btrfs]
btrfs_cow_block+0xdc/0x180 [btrfs]
btrfs_search_slot+0x3bd/0x9f0 [btrfs]
btrfs_lookup_inode+0x3a/0xc0 [btrfs]
? kmem_cache_alloc+0x166/0x1d0
btrfs_update_inode_item+0x46/0x100 [btrfs]
cache_save_setup+0xe4/0x3a0 [btrfs]
btrfs_start_dirty_block_groups+0x1be/0x480 [btrfs]
btrfs_commit_transaction+0xcb/0x8b0 [btrfs]
At cache_save_setup() we need to update the inode item of a block group's
cache which is located in the tree root (fs_info->tree_root), which means
that it may result in COWing a leaf from that tree. If that happens we
need to find a free metadata extent and while looking for one, if we find
a block group which was not cached yet we attempt to load its cache by
calling cache_block_group(). However this function will try to load the
inode of the free space cache, which requires finding the matching inode
item in the tree root - if that inode item is located in the same leaf as
the inode item of the space cache we are updating at cache_save_setup(),
we end up in a deadlock, since we try to obtain a read lock on the same
extent buffer that we previously write locked.
So fix this by using the tree root's commit root when searching for a
block group's free space cache inode item when we are attempting to load
a free space cache. This is safe since block groups once loaded stay in
memory forever, as well as their caches, so after they are first loaded
we will never need to read their inode items again. For new block groups,
once they are created they get their ->cached field set to
BTRFS_CACHE_FINISHED meaning we will not need to read their inode item.
Reported-by: Andrew Nelson <andrew.s.nelson@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CAPTELenq9x5KOWuQ+fa7h1r3nsJG8vyiTH8+ifjURc_duHh2Wg@mail.gmail.com/
Fixes: 9d66e233c7 ("Btrfs: load free space cache if it exists")
Tested-by: Andrew Nelson <andrew.s.nelson@gmail.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Note: this patch fixes a problem in a feature outside of btrfs ("kernel
hacking: add a config option to disable compiler auto-inlining") and is
applied ahead of time due to cross-subsystem dependencies.
On 32-bit ARM with gcc-8, I see a link error with the addition of the
CONFIG_NO_AUTO_INLINE option:
fs/btrfs/super.o: In function `btrfs_statfs':
super.c:(.text+0x67b8): undefined reference to `__aeabi_uldivmod'
super.c:(.text+0x67fc): undefined reference to `__aeabi_uldivmod'
super.c:(.text+0x6858): undefined reference to `__aeabi_uldivmod'
super.c:(.text+0x6920): undefined reference to `__aeabi_uldivmod'
super.c:(.text+0x693c): undefined reference to `__aeabi_uldivmod'
fs/btrfs/super.o:super.c:(.text+0x6958): more undefined references to `__aeabi_uldivmod' follow
So far this is the only file that shows the behavior, so I'd propose
to just work around it by marking the functions as 'static inline'
that normally get inlined here.
The reference to __aeabi_uldivmod comes from a div_u64() which has an
optimization for a constant division that uses a straight '/' operator
when the result should be known to the compiler. My interpretation is
that as we turn off inlining, gcc still expects the result to be constant
but fails to use that constant value.
Link: https://lkml.kernel.org/r/20181103153941.1881966-1-arnd@arndb.de
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Changbin Du <changbin.du@gmail.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
[ add the note ]
Signed-off-by: David Sterba <dsterba@suse.com>
block_group_err shows the group system as a decimal value with a '0x'
prefix, which is somewhat misleading.
Fix it to print hexadecimal, as was intended.
Fixes: fce466eab7 ("btrfs: tree-checker: Verify block_group_item")
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Shaokun Zhang <zhangshaokun@hisilicon.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Recently we got a massive simplification for fsync, where for the fast
path we no longer log new extents while their respective ordered extents
are still running.
However that simplification introduced a subtle regression for the case
where we use a ranged fsync (msync). Consider the following example:
CPU 0 CPU 1
mmap write to range [2Mb, 4Mb[
mmap write to range [512Kb, 1Mb[
msync range [512K, 1Mb[
--> triggers fast fsync
(BTRFS_INODE_NEEDS_FULL_SYNC
not set)
--> creates extent map A for this
range and adds it to list of
modified extents
--> starts ordered extent A for
this range
--> waits for it to complete
writeback triggered for range
[2Mb, 4Mb[
--> create extent map B and
adds it to the list of
modified extents
--> creates ordered extent B
--> start looking for and logging
modified extents
--> logs extent maps A and B
--> finds checksums for extent A
in the csum tree, but not for
extent B
fsync (msync) finishes
--> ordered extent B
finishes and its
checksums are added
to the csum tree
<power cut>
After replaying the log, we have the extent covering the range [2Mb, 4Mb[
but do not have the data checksum items covering that file range.
This happens because at the very beginning of an fsync (btrfs_sync_file())
we start and wait for IO in the given range [512Kb, 1Mb[ and therefore
wait for any ordered extents in that range to complete before we start
logging the extents. However if right before we start logging the extent
in our range [512Kb, 1Mb[, writeback is started for any other dirty range,
such as the range [2Mb, 4Mb[ due to memory pressure or a concurrent fsync
or msync (btrfs_sync_file() starts writeback before acquiring the inode's
lock), an ordered extent is created for that other range and a new extent
map is created to represent that range and added to the inode's list of
modified extents.
That means that we will see that other extent in that list when collecting
extents for logging (done at btrfs_log_changed_extents()) and log the
extent before the respective ordered extent finishes - namely before the
checksum items are added to the checksums tree, which is where
log_extent_csums() looks for the checksums, therefore making us log an
extent without logging its checksums. Before that massive simplification
of fsync, this wasn't a problem because besides looking for checkums in
the checksums tree, we also looked for them in any ordered extent still
running.
The consequence of data checksums missing for a file range is that users
attempting to read the affected file range will get -EIO errors and dmesg
reports the following:
[10188.358136] BTRFS info (device sdc): no csum found for inode 297 start 57344
[10188.359278] BTRFS warning (device sdc): csum failed root 5 ino 297 off 57344 csum 0x98f94189 expected csum 0x00000000 mirror 1
So fix this by skipping extents outside of our logging range at
btrfs_log_changed_extents() and leaving them on the list of modified
extents so that any subsequent ranged fsync may collect them if needed.
Also, if we find a hole extent outside of the range still log it, just
to prevent having gaps between extent items after replaying the log,
otherwise fsck will complain when we are not using the NO_HOLES feature
(fstest btrfs/056 triggers such case).
Fixes: e7175a6927 ("btrfs: remove the wait ordered logic in the log_one_extent path")
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When the cow_file_range fails, the related resources are unlocked
according to the range [start..end), so the unlock cannot be repeated in
run_delalloc_nocow.
In some cases (e.g. cur_offset <= end && cow_start != -1), cur_offset is
not updated correctly, so move the cur_offset update before
cow_file_range.
kernel BUG at mm/page-writeback.c:2663!
Internal error: Oops - BUG: 0 [#1] SMP
CPU: 3 PID: 31525 Comm: kworker/u8:7 Tainted: P O
Hardware name: Realtek_RTD1296 (DT)
Workqueue: writeback wb_workfn (flush-btrfs-1)
task: ffffffc076db3380 ti: ffffffc02e9ac000 task.ti: ffffffc02e9ac000
PC is at clear_page_dirty_for_io+0x1bc/0x1e8
LR is at clear_page_dirty_for_io+0x14/0x1e8
pc : [<ffffffc00033c91c>] lr : [<ffffffc00033c774>] pstate: 40000145
sp : ffffffc02e9af4f0
Process kworker/u8:7 (pid: 31525, stack limit = 0xffffffc02e9ac020)
Call trace:
[<ffffffc00033c91c>] clear_page_dirty_for_io+0x1bc/0x1e8
[<ffffffbffc514674>] extent_clear_unlock_delalloc+0x1e4/0x210 [btrfs]
[<ffffffbffc4fb168>] run_delalloc_nocow+0x3b8/0x948 [btrfs]
[<ffffffbffc4fb948>] run_delalloc_range+0x250/0x3a8 [btrfs]
[<ffffffbffc514c0c>] writepage_delalloc.isra.21+0xbc/0x1d8 [btrfs]
[<ffffffbffc516048>] __extent_writepage+0xe8/0x248 [btrfs]
[<ffffffbffc51630c>] extent_write_cache_pages.isra.17+0x164/0x378 [btrfs]
[<ffffffbffc5185a8>] extent_writepages+0x48/0x68 [btrfs]
[<ffffffbffc4f5828>] btrfs_writepages+0x20/0x30 [btrfs]
[<ffffffc00033d758>] do_writepages+0x30/0x88
[<ffffffc0003ba0f4>] __writeback_single_inode+0x34/0x198
[<ffffffc0003ba6c4>] writeback_sb_inodes+0x184/0x3c0
[<ffffffc0003ba96c>] __writeback_inodes_wb+0x6c/0xc0
[<ffffffc0003bac20>] wb_writeback+0x1b8/0x1c0
[<ffffffc0003bb0f0>] wb_workfn+0x150/0x250
[<ffffffc0002b0014>] process_one_work+0x1dc/0x388
[<ffffffc0002b02f0>] worker_thread+0x130/0x500
[<ffffffc0002b6344>] kthread+0x10c/0x110
[<ffffffc000284590>] ret_from_fork+0x10/0x40
Code: d503201f a9025bb5 a90363b7 f90023b9 (d4210000)
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Robbie Ko <robbieko@synology.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Rework the vfs_clone_file_range and vfs_dedupe_file_range infrastructure to use
a common .remap_file_range method and supply generic bounds and sanity checking
functions that are shared with the data write path. The current VFS
infrastructure has problems with rlimit, LFS file sizes, file time stamps,
maximum filesystem file sizes, stripping setuid bits, etc and so they are
addressed in these commits.
We also introduce the ability for the ->remap_file_range methods to return short
clones so that clones for vfs_copy_file_range() don't get rejected if the entire
range can't be cloned. It also allows filesystems to sliently skip deduplication
of partial EOF blocks if they are not capable of doing so without requiring
errors to be thrown to userspace.
All existing filesystems are converted to user the new .remap_file_range method,
and both XFS and ocfs2 are modified to make use of the new generic checking
infrastructure.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJb29gEAAoJEK3oKUf0dfodpOAQAL2VbHjvKXEwNMDTKscSRMmZ
Z0xXo3gamFKQ+VGOqy2g2lmAYQs9SAnTuCGTJ7zIAp7u+q8gzUy5FzKAwLS4Id6L
8siaY6nzlicfO04d0MdXnWz0f3xykChgzfdQfVUlUi7WrDioBUECLPmx4a+USsp1
DQGjLOZfoOAmn2rijdnH9RTEaHqg+8mcTaLN9TRav4gGqrWxldFKXw2y6ouFC7uo
/hxTRNXR9VI+EdbDelwBNXl9nU9gQA0WLOvRKwgUrtv6bSJohTPsmXt7EbBtNcVR
cl3zDNc1sLD1bLaRLEUAszI/33wXaaQgom1iB51obIcHHef+JxRNG/j6rUMfzxZI
VaauGv5EIvtaKN0LTAqVVLQ8t2MQFYfOr8TykmO+1UFog204aKRANdVMHDSjxD/0
dTGKJGcq+HnKQ+JHDbTdvuXEL8sUUl1FiLjOQbZPw63XmuddLKFUA2TOjXn6htbU
1h1MG5d9KjGLpabp2BQheczD08NuSmcrOBNt7IoeI3+nxr3HpMwprfB9TyaERy9X
iEgyVXmjjc9bLLRW7A2wm77aW64NvPs51wKMnvuNgNwnCewrGS6cB8WVj2zbQjH1
h3f3nku44s9ctNPSBzb/sJLnpqmZQ5t0oSmrMSN+5+En6rNTacoJCzxHRJBA7z/h
Z+C6y1GTZw0euY6Zjiwu
=CE/A
-----END PGP SIGNATURE-----
Merge tag 'xfs-4.20-merge-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull vfs dedup fixes from Dave Chinner:
"This reworks the vfs data cloning infrastructure.
We discovered many issues with these interfaces late in the 4.19 cycle
- the worst of them (data corruption, setuid stripping) were fixed for
XFS in 4.19-rc8, but a larger rework of the infrastructure fixing all
the problems was needed. That rework is the contents of this pull
request.
Rework the vfs_clone_file_range and vfs_dedupe_file_range
infrastructure to use a common .remap_file_range method and supply
generic bounds and sanity checking functions that are shared with the
data write path. The current VFS infrastructure has problems with
rlimit, LFS file sizes, file time stamps, maximum filesystem file
sizes, stripping setuid bits, etc and so they are addressed in these
commits.
We also introduce the ability for the ->remap_file_range methods to
return short clones so that clones for vfs_copy_file_range() don't get
rejected if the entire range can't be cloned. It also allows
filesystems to sliently skip deduplication of partial EOF blocks if
they are not capable of doing so without requiring errors to be thrown
to userspace.
Existing filesystems are converted to user the new remap_file_range
method, and both XFS and ocfs2 are modified to make use of the new
generic checking infrastructure"
* tag 'xfs-4.20-merge-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (28 commits)
xfs: remove [cm]time update from reflink calls
xfs: remove xfs_reflink_remap_range
xfs: remove redundant remap partial EOF block checks
xfs: support returning partial reflink results
xfs: clean up xfs_reflink_remap_blocks call site
xfs: fix pagecache truncation prior to reflink
ocfs2: remove ocfs2_reflink_remap_range
ocfs2: support partial clone range and dedupe range
ocfs2: fix pagecache truncation prior to reflink
ocfs2: truncate page cache for clone destination file before remapping
vfs: clean up generic_remap_file_range_prep return value
vfs: hide file range comparison function
vfs: enable remap callers that can handle short operations
vfs: plumb remap flags through the vfs dedupe functions
vfs: plumb remap flags through the vfs clone functions
vfs: make remap_file_range functions take and return bytes completed
vfs: remap helper should update destination inode metadata
vfs: pass remap flags to generic_remap_checks
vfs: pass remap flags to generic_remap_file_range_prep
vfs: combine the clone and dedupe into a single remap_file_range
...
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAlvYVlMACgkQxWXV+ddt
WDv9xxAAmN+R9y+wOKjPkDoM7jr8hRR12YnTC8R4X8oD8QTnSXWOrmfO2prYpe7d
RyUxpuhqY+q+qvCxkp+BREa86a0zswhn/Z6HfLbHn4CaEhtchkMKR/gFOiYeL2B1
ZIJtqgnqOGP3N1oxfn3Zr586W3ECUJq+4EUD/1OWCxZHvn1DWWd7L3VL0884hAhE
kDVWhMdBm0nX1SOet/8haI0N98NLdyltsGdz80ooi65qR52YE4u2IoqXEg2z0AEM
EApA6vQeOIIuZaRznIl2xFiIMbQCoMRb2sQgwIPmWoXrfboJUHyHfFrKRv5gGUHg
DXjOXTvVdu9EEqm+1HughwZL/KRkr+OcXHHWwP+v51zsiyfbic+fegpM6a+Z0NjD
LCo5D1NSLulhpZHr14F3qM27+LYHEC4xxXrrzRoVq4DCoSq7xgj3ip49uXe1F4Rw
AyLeJGGOp8aqvPiD0BfgMVi4+YhWJUd/ob9Ldn9z+2y0XGQ2FDM58iCt+49+YIQi
e2ywGaHt3aXghPAo/mvnckfZMLNZ7DJPwA7K6ayJ3N23dqGW2CORkKrGy7xVGoZn
2AjIN1pSRLlknQJZsa6Yp1mPxnrBQfutTVxxUfKOtmEzydxMVS0g92+Lu/JRb4pu
F/tpq/lC7dpTvP08EWw0sLjIhLeqMKzbXk38pSfUm39yDgQ10e8=
=CiDs
-----END PGP SIGNATURE-----
Merge tag 'for-4.20-part2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull more btrfs updates from David Sterba:
"This contains a few minor updates and fixes that were under testing or
arrived shortly after the merge window freeze, mostly stable material"
* tag 'for-4.20-part2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
Btrfs: fix use-after-free when dumping free space
Btrfs: fix use-after-free during inode eviction
btrfs: move the dio_sem higher up the callchain
btrfs: don't run delayed_iputs in commit
btrfs: fix insert_reserved error handling
btrfs: only free reserved extent if we didn't insert it
btrfs: don't use ctl->free_space for max_extent_size
btrfs: set max_extent_size properly
btrfs: reset max_extent_size properly
MAINTAINERS: update my email address for btrfs
btrfs: delayed-ref: extract find_first_ref_head from find_ref_head
Btrfs: fix deadlock when writing out free space caches
Btrfs: fix assertion on fsync of regular file when using no-holes feature
Btrfs: fix null pointer dereference on compressed write path error
Change the remap_file_range functions to take a number of bytes to
operate upon and return the number of bytes they operated on. This is a
requirement for allowing fs implementations to return short clone/dedupe
results to the user, which will enable us to obey resource limits in a
graceful manner.
A subsequent patch will enable copy_file_range to signal to the
->clone_file_range implementation that it can handle a short length,
which will be returned in the function's return value. For now the
short return is not implemented anywhere so the behavior won't change --
either copy_file_range manages to clone the entire range or it tries an
alternative.
Neither clone ioctl can take advantage of this, alas.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Combine the clone_file_range and dedupe_file_range operations into a
single remap_file_range file operation dispatch since they're
fundamentally the same operation. The differences between the two can
be made in the prep functions.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Pull XArray conversion from Matthew Wilcox:
"The XArray provides an improved interface to the radix tree data
structure, providing locking as part of the API, specifying GFP flags
at allocation time, eliminating preloading, less re-walking the tree,
more efficient iterations and not exposing RCU-protected pointers to
its users.
This patch set
1. Introduces the XArray implementation
2. Converts the pagecache to use it
3. Converts memremap to use it
The page cache is the most complex and important user of the radix
tree, so converting it was most important. Converting the memremap
code removes the only other user of the multiorder code, which allows
us to remove the radix tree code that supported it.
I have 40+ followup patches to convert many other users of the radix
tree over to the XArray, but I'd like to get this part in first. The
other conversions haven't been in linux-next and aren't suitable for
applying yet, but you can see them in the xarray-conv branch if you're
interested"
* 'xarray' of git://git.infradead.org/users/willy/linux-dax: (90 commits)
radix tree: Remove multiorder support
radix tree test: Convert multiorder tests to XArray
radix tree tests: Convert item_delete_rcu to XArray
radix tree tests: Convert item_kill_tree to XArray
radix tree tests: Move item_insert_order
radix tree test suite: Remove multiorder benchmarking
radix tree test suite: Remove __item_insert
memremap: Convert to XArray
xarray: Add range store functionality
xarray: Move multiorder_check to in-kernel tests
xarray: Move multiorder_shrink to kernel tests
xarray: Move multiorder account test in-kernel
radix tree test suite: Convert iteration test to XArray
radix tree test suite: Convert tag_tagged_items to XArray
radix tree: Remove radix_tree_clear_tags
radix tree: Remove radix_tree_maybe_preload_order
radix tree: Remove split/join code
radix tree: Remove radix_tree_update_node_t
page cache: Finish XArray conversion
dax: Convert page fault handlers to XArray
...
Pull more ->lookup() cleanups from Al Viro:
"Some ->lookup() instances are still overcomplicating the life
for themselves, open-coding the stuff that would be handled by
d_splice_alias() just fine.
Simplify a couple of such cases caught this cycle and document
d_splice_alias() intended use"
* 'work.lookup' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
Document d_splice_alias() calling conventions for ->lookup() users.
simplify btrfs_lookup()
clean erofs_lookup()
At inode.c:evict_inode_truncate_pages(), when we iterate over the
inode's extent states, we access an extent state record's "state" field
after we unlocked the inode's io tree lock. This can lead to a
use-after-free issue because after we unlock the io tree that extent
state record might have been freed due to being merged into another
adjacent extent state record (a previous inflight bio for a read
operation finished in the meanwhile which unlocked a range in the io
tree and cause a merge of extent state records, as explained in the
comment before the while loop added in commit 6ca0709756 ("Btrfs: fix
hang during inode eviction due to concurrent readahead")).
Fix this by keeping a copy of the extent state's flags in a local
variable and using it after unlocking the io tree.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=201189
Fixes: b9d0b38928 ("btrfs: Add handler for invalidate page")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This could result in a really bad case where we do something like
evict
evict_refill_and_join
btrfs_commit_transaction
btrfs_run_delayed_iputs
evict
evict_refill_and_join
btrfs_commit_transaction
... forever
We have plenty of other places where we run delayed iputs that are much
safer, let those do the work.
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We were not handling the reserved byte accounting properly for data
references. Metadata was fine, if it errored out the error paths would
free the bytes_reserved count and pin the extent, but it even missed one
of the error cases. So instead move this handling up into
run_one_delayed_ref so we are sure that both cases are properly cleaned
up in case of a transaction abort.
CC: stable@vger.kernel.org # 4.18+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When we insert the file extent once the ordered extent completes we free
the reserved extent reservation as it'll have been migrated to the
bytes_used counter. However if we error out after this step we'll still
clear the reserved extent reservation, resulting in a negative
accounting of the reserved bytes for the block group and space info.
Fix this by only doing the free if we didn't successfully insert a file
extent for this extent.
CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
max_extent_size is supposed to be the largest contiguous range for the
space info, and ctl->free_space is the total free space in the block
group. We need to keep track of these separately and _only_ use the
max_free_space if we don't have a max_extent_size, as that means our
original request was too large to search any of the block groups for and
therefore wouldn't have a max_extent_size set.
CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We can't use entry->bytes if our entry is a bitmap entry, we need to use
entry->max_extent_size in that case. Fix up all the logic to make this
consistent.
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we use up our block group before allocating a new one we'll easily
get a max_extent_size that's set really really low, which will result in
a lot of fragmentation. We need to make sure we're resetting the
max_extent_size when we add a new chunk or add new space.
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The find_ref_head shouldn't return the first entry even if no exact match
is found. So move the hidden behavior to higher level.
Besides, remove the useless local variables in the btrfs_select_ref_head.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
[ reformat comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
When writing out a block group free space cache we can end deadlocking
with ourselves on an extent buffer lock resulting in a warning like the
following:
[245043.379979] WARNING: CPU: 4 PID: 2608 at fs/btrfs/locking.c:251 btrfs_tree_lock+0x1be/0x1d0 [btrfs]
[245043.392792] CPU: 4 PID: 2608 Comm: btrfs-transacti Tainted: G
W I 4.16.8 #1
[245043.395489] RIP: 0010:btrfs_tree_lock+0x1be/0x1d0 [btrfs]
[245043.396791] RSP: 0018:ffffc9000424b840 EFLAGS: 00010246
[245043.398093] RAX: 0000000000000a30 RBX: ffff8807e20a3d20 RCX: 0000000000000001
[245043.399414] RDX: 0000000000000001 RSI: 0000000000000002 RDI: ffff8807e20a3d20
[245043.400732] RBP: 0000000000000001 R08: ffff88041f39a700 R09: ffff880000000000
[245043.402021] R10: 0000000000000040 R11: ffff8807e20a3d20 R12: ffff8807cb220630
[245043.403296] R13: 0000000000000001 R14: ffff8807cb220628 R15: ffff88041fbdf000
[245043.404780] FS: 0000000000000000(0000) GS:ffff88082fc80000(0000) knlGS:0000000000000000
[245043.406050] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[245043.407321] CR2: 00007fffdbdb9f10 CR3: 0000000001c09005 CR4: 00000000000206e0
[245043.408670] Call Trace:
[245043.409977] btrfs_search_slot+0x761/0xa60 [btrfs]
[245043.411278] btrfs_insert_empty_items+0x62/0xb0 [btrfs]
[245043.412572] btrfs_insert_item+0x5b/0xc0 [btrfs]
[245043.413922] btrfs_create_pending_block_groups+0xfb/0x1e0 [btrfs]
[245043.415216] do_chunk_alloc+0x1e5/0x2a0 [btrfs]
[245043.416487] find_free_extent+0xcd0/0xf60 [btrfs]
[245043.417813] btrfs_reserve_extent+0x96/0x1e0 [btrfs]
[245043.419105] btrfs_alloc_tree_block+0xfb/0x4a0 [btrfs]
[245043.420378] __btrfs_cow_block+0x127/0x550 [btrfs]
[245043.421652] btrfs_cow_block+0xee/0x190 [btrfs]
[245043.422979] btrfs_search_slot+0x227/0xa60 [btrfs]
[245043.424279] ? btrfs_update_inode_item+0x59/0x100 [btrfs]
[245043.425538] ? iput+0x72/0x1e0
[245043.426798] write_one_cache_group.isra.49+0x20/0x90 [btrfs]
[245043.428131] btrfs_start_dirty_block_groups+0x102/0x420 [btrfs]
[245043.429419] btrfs_commit_transaction+0x11b/0x880 [btrfs]
[245043.430712] ? start_transaction+0x8e/0x410 [btrfs]
[245043.432006] transaction_kthread+0x184/0x1a0 [btrfs]
[245043.433341] kthread+0xf0/0x130
[245043.434628] ? btrfs_cleanup_transaction+0x4e0/0x4e0 [btrfs]
[245043.435928] ? kthread_create_worker_on_cpu+0x40/0x40
[245043.437236] ret_from_fork+0x1f/0x30
[245043.441054] ---[ end trace 15abaa2aaf36827f ]---
This is because at write_one_cache_group() when we are COWing a leaf from
the extent tree we end up allocating a new block group (chunk) and,
because we have hit a threshold on the number of bytes reserved for system
chunks, we attempt to finalize the creation of new block groups from the
current transaction, by calling btrfs_create_pending_block_groups().
However here we also need to modify the extent tree in order to insert
a block group item, and if the location for this new block group item
happens to be in the same leaf that we were COWing earlier, we deadlock
since btrfs_search_slot() tries to write lock the extent buffer that we
locked before at write_one_cache_group().
We have already hit similar cases in the past and commit d9a0540a79
("Btrfs: fix deadlock when finalizing block group creation") fixed some
of those cases by delaying the creation of pending block groups at the
known specific spots that could lead to a deadlock. This change reworks
that commit to be more generic so that we don't have to add similar logic
to every possible path that can lead to a deadlock. This is done by
making __btrfs_cow_block() disallowing the creation of new block groups
(setting the transaction's can_flush_pending_bgs to false) before it
attempts to allocate a new extent buffer for either the extent, chunk or
device trees, since those are the trees that pending block creation
modifies. Once the new extent buffer is allocated, it allows creation of
pending block groups to happen again.
This change depends on a recent patch from Josef which is not yet in
Linus' tree, named "btrfs: make sure we create all new block groups" in
order to avoid occasional warnings at btrfs_trans_release_chunk_metadata().
Fixes: d9a0540a79 ("Btrfs: fix deadlock when finalizing block group creation")
CC: stable@vger.kernel.org # 4.4+
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=199753
Link: https://lore.kernel.org/linux-btrfs/CAJtFHUTHna09ST-_EEiyWmDH6gAqS6wa=zMNMBsifj8ABu99cw@mail.gmail.com/
Reported-by: E V <eliventer@gmail.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When using the NO_HOLES feature and logging a regular file, we were
expecting that if we find an inline extent, that either its size in RAM
(uncompressed and unenconded) matches the size of the file or if it does
not, that it matches the sector size and it represents compressed data.
This assertion does not cover a case where the length of the inline extent
is smaller than the sector size and also smaller the file's size, such
case is possible through fallocate. Example:
$ mkfs.btrfs -f -O no-holes /dev/sdb
$ mount /dev/sdb /mnt
$ xfs_io -f -c "pwrite -S 0xb60 0 21" /mnt/foobar
$ xfs_io -c "falloc 40 40" /mnt/foobar
$ xfs_io -c "fsync" /mnt/foobar
In the above example we trigger the assertion because the inline extent's
length is 21 bytes while the file size is 80 bytes. The fallocate() call
merely updated the file's size and did not touch the existing inline
extent, as expected.
So fix this by adjusting the assertion so that an inline extent length
smaller than the file size is valid if the file size is smaller than the
filesystem's sector size.
A test case for fstests follows soon.
Reported-by: Anatoly Trosinenko <anatoly.trosinenko@gmail.com>
Fixes: a89ca6f24f ("Btrfs: fix fsync after truncate when no_holes feature is enabled")
CC: stable@vger.kernel.org # 4.14+
Link: https://lore.kernel.org/linux-btrfs/CAE5jQCfRSBC7n4pUTFJcmHh109=gwyT9mFkCOL+NKfzswmR=_Q@mail.gmail.com/
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At inode.c:compress_file_range(), under the "free_pages_out" label, we can
end up dereferencing the "pages" pointer when it has a NULL value. This
case happens when "start" has a value of 0 and we fail to allocate memory
for the "pages" pointer. When that happens we jump to the "cont" label and
then enter the "if (start == 0)" branch where we immediately call the
cow_file_range_inline() function. If that function returns 0 (success
creating an inline extent) or an error (like -ENOMEM for example) we jump
to the "free_pages_out" label and then access "pages[i]" leading to a NULL
pointer dereference, since "nr_pages" has a value greater than zero at
that point.
Fix this by setting "nr_pages" to 0 when we fail to allocate memory for
the "pages" pointer.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=201119
Fixes: 771ed689d2 ("Btrfs: Optimize compressed writeback and reads")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Liu Bo <bo.liu@linux.alibaba.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Using bool is more suitable than int here, and add the comment about the
return_bigger.
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The avg_delayed_ref_runtime can be referenced from the transaction
handle.
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It can be referenced from the transaction handle.
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since trans is only used for referring to delayed_refs, there is no need
to pass it instead of delayed_refs to btrfs_delayed_ref_lock().
No functional change.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since trans is only used for referring to delayed_refs, there is no need
to pass it instead of delayed_refs to btrfs_select_ref_head(). No
functional change.
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is no reason to put this check in (!qgroup)'s else branch because
if qgroup is null, it will goto out directly. So move it out to reduce
indentation level. No functional change.
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 581c176041 ("btrfs: Validate child tree block's level and first
key") has made tree block level check mandatory.
So if tree block level doesn't match, we won't get a valid extent
buffer. The extra WARN_ON() check can be removed completely.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
And add one line comment explaining what we're doing for each loop.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Some qgroup trace events like btrfs_qgroup_release_data() and
btrfs_qgroup_free_delayed_ref() can still be triggered even if qgroup is
not enabled.
This is caused by the lack of qgroup status check before calling some
qgroup functions. Thankfully the functions can handle quota disabled
case well and just do nothing for qgroup disabled case.
This patch will do earlier check before triggering related trace events.
And for enabled <-> disabled race case:
1) For enabled->disabled case
Disable will wipe out all qgroups data including reservation and
excl/rfer. Even if we leak some reservation or numbers, it will
still be cleared, so nothing will go wrong.
2) For disabled -> enabled case
Current btrfs_qgroup_release_data() will use extent_io tree to ensure
we won't underflow reservation. And for delayed_ref we use
head->qgroup_reserved to record the reserved space, so in that case
head->qgroup_reserved should be 0 and we won't underflow.
CC: stable@vger.kernel.org # 4.14+
Reported-by: Chris Murphy <lists@colorremedies.com>
Link: https://lore.kernel.org/linux-btrfs/CAJCQCtQau7DtuUUeycCkZ36qjbKuxNzsgqJ7+sJ6W0dK_NLE3w@mail.gmail.com/
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In a scenario like the following:
mkdir /mnt/A # inode 258
mkdir /mnt/B # inode 259
touch /mnt/B/bar # inode 260
sync
mv /mnt/B/bar /mnt/A/bar
mv -T /mnt/A /mnt/B
fsync /mnt/B/bar
<power fail>
After replaying the log we end up with file bar having 2 hard links, both
with the name 'bar' and one in the directory with inode number 258 and the
other in the directory with inode number 259. Also, we end up with the
directory inode 259 still existing and with the directory inode 258 still
named as 'A', instead of 'B'. In this scenario, file 'bar' should only
have one hard link, located at directory inode 258, the directory inode
259 should not exist anymore and the name for directory inode 258 should
be 'B'.
This incorrect behaviour happens because when attempting to log the old
parents of an inode, we skip any parents that no longer exist. Fix this
by forcing a full commit if an old parent no longer exists.
A test case for fstests follows soon.
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When replaying a log which contains a tmpfile (which necessarily has a
link count of 0) we end up calling inc_nlink(), at
fs/btrfs/tree-log.c:replay_one_buffer(), which produces a warning like
the following:
[195191.943673] WARNING: CPU: 0 PID: 6924 at fs/inode.c:342 inc_nlink+0x33/0x40
[195191.943723] CPU: 0 PID: 6924 Comm: mount Not tainted 4.19.0-rc6-btrfs-next-38 #1
[195191.943724] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626ccb91-prebuilt.qemu-project.org 04/01/2014
[195191.943726] RIP: 0010:inc_nlink+0x33/0x40
[195191.943728] RSP: 0018:ffffb96e425e3870 EFLAGS: 00010246
[195191.943730] RAX: 0000000000000000 RBX: ffff8c0d1e6af4f0 RCX: 0000000000000006
[195191.943731] RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff8c0d1e6af4f0
[195191.943731] RBP: 0000000000000097 R08: 0000000000000001 R09: 0000000000000000
[195191.943732] R10: 0000000000000000 R11: 0000000000000000 R12: ffffb96e425e3a60
[195191.943733] R13: ffff8c0d10cff0c8 R14: ffff8c0d0d515348 R15: ffff8c0d78a1b3f8
[195191.943735] FS: 00007f570ee24480(0000) GS:ffff8c0dfb200000(0000) knlGS:0000000000000000
[195191.943736] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[195191.943737] CR2: 00005593286277c8 CR3: 00000000bb8f2006 CR4: 00000000003606f0
[195191.943739] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[195191.943740] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[195191.943741] Call Trace:
[195191.943778] replay_one_buffer+0x797/0x7d0 [btrfs]
[195191.943802] walk_up_log_tree+0x1c1/0x250 [btrfs]
[195191.943809] ? rcu_read_lock_sched_held+0x3f/0x70
[195191.943825] walk_log_tree+0xae/0x1d0 [btrfs]
[195191.943840] btrfs_recover_log_trees+0x1d7/0x4d0 [btrfs]
[195191.943856] ? replay_dir_deletes+0x280/0x280 [btrfs]
[195191.943870] open_ctree+0x1c3b/0x22a0 [btrfs]
[195191.943887] btrfs_mount_root+0x6b4/0x800 [btrfs]
[195191.943894] ? rcu_read_lock_sched_held+0x3f/0x70
[195191.943899] ? pcpu_alloc+0x55b/0x7c0
[195191.943906] ? mount_fs+0x3b/0x140
[195191.943908] mount_fs+0x3b/0x140
[195191.943912] ? __init_waitqueue_head+0x36/0x50
[195191.943916] vfs_kern_mount+0x62/0x160
[195191.943927] btrfs_mount+0x134/0x890 [btrfs]
[195191.943936] ? rcu_read_lock_sched_held+0x3f/0x70
[195191.943938] ? pcpu_alloc+0x55b/0x7c0
[195191.943943] ? mount_fs+0x3b/0x140
[195191.943952] ? btrfs_remount+0x570/0x570 [btrfs]
[195191.943954] mount_fs+0x3b/0x140
[195191.943956] ? __init_waitqueue_head+0x36/0x50
[195191.943960] vfs_kern_mount+0x62/0x160
[195191.943963] do_mount+0x1f9/0xd40
[195191.943967] ? memdup_user+0x4b/0x70
[195191.943971] ksys_mount+0x7e/0xd0
[195191.943974] __x64_sys_mount+0x21/0x30
[195191.943977] do_syscall_64+0x60/0x1b0
[195191.943980] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[195191.943983] RIP: 0033:0x7f570e4e524a
[195191.943986] RSP: 002b:00007ffd83589478 EFLAGS: 00000206 ORIG_RAX: 00000000000000a5
[195191.943989] RAX: ffffffffffffffda RBX: 0000563f335b2060 RCX: 00007f570e4e524a
[195191.943990] RDX: 0000563f335b2240 RSI: 0000563f335b2280 RDI: 0000563f335b2260
[195191.943992] RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000020
[195191.943993] R10: 00000000c0ed0000 R11: 0000000000000206 R12: 0000563f335b2260
[195191.943994] R13: 0000563f335b2240 R14: 0000000000000000 R15: 00000000ffffffff
[195191.944002] irq event stamp: 8688
[195191.944010] hardirqs last enabled at (8687): [<ffffffff9cb004c3>] console_unlock+0x503/0x640
[195191.944012] hardirqs last disabled at (8688): [<ffffffff9ca037dd>] trace_hardirqs_off_thunk+0x1a/0x1c
[195191.944018] softirqs last enabled at (8638): [<ffffffff9cc0a5d1>] __set_page_dirty_nobuffers+0x101/0x150
[195191.944020] softirqs last disabled at (8634): [<ffffffff9cc26bbe>] wb_wakeup_delayed+0x2e/0x60
[195191.944022] ---[ end trace 5d6e873a9a0b811a ]---
This happens because the inode does not have the flag I_LINKABLE set,
which is a runtime only flag, not meant to be persisted, set when the
inode is created through open(2) if the flag O_EXCL is not passed to it.
Except for the warning, there are no other consequences (like corruptions
or metadata inconsistencies).
Since it's pointless to replay a tmpfile as it would be deleted in a
later phase of the log replay procedure (it has a link count of 0), fix
this by not logging tmpfiles and if a tmpfile is found in a log (created
by a kernel without this change), skip the replay of the inode.
A test case for fstests follows soon.
Fixes: 471d557afe ("Btrfs: fix loss of prealloc extents past i_size after fsync log replay")
CC: stable@vger.kernel.org # 4.18+
Reported-by: Martin Steigerwald <martin@lichtvoll.de>
Link: https://lore.kernel.org/linux-btrfs/3666619.NTnn27ZJZE@merkaba/
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We don't need it, rsv->size is set once and never changes throughout
its lifetime, so just use that for the reserve size.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
I ran into an issue where there was some reference being held on an
inode that I couldn't track. This assert wasn't triggered, but it at
least rules out we're doing something stupid.
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Allocating new chunks modifies both the extent and chunk tree, which can
trigger new chunk allocations. So instead of doing list_for_each_safe,
just do while (!list_empty()) so we make sure we don't exit with other
pending bg's still on our list.
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Liu Bo <bo.liu@linux.alibaba.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We need to clear the max_extent_size when we clear bits from a bitmap
since it could have been from the range that contains the
max_extent_size.
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Liu Bo <bo.liu@linux.alibaba.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we're allocating a new space cache inode it's likely going to be
under a transaction handle, so we need to use memalloc_nofs_save() in
order to avoid deadlocks, and more importantly lockdep messages that
make xfstests fail.
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We want to release the unused reservation we have since it refills the
delayed refs reserve, which will make everything go smoother when
running the delayed refs if we're short on our reservation.
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Btrfs's btree locking has two modes, spinning mode and blocking mode,
while searching btree, locking is always acquired in spinning mode and
then converted to blocking mode if necessary, and in some hot paths we may
switch the locking back to spinning mode by btrfs_clear_path_blocking().
When acquiring locks, both of reader and writer need to wait for blocking
readers and writers to complete before doing read_lock()/write_lock().
The problem is that btrfs_clear_path_blocking() needs to switch nodes
in the path to blocking mode at first (by btrfs_set_path_blocking) to
make lockdep happy before doing its actual clearing blocking job.
When switching to blocking mode from spinning mode, it consists of
step 1) bumping up blocking readers counter and
step 2) read_unlock()/write_unlock(),
this has caused serious ping-pong effect if there're a great amount of
concurrent readers/writers, as waiters will be woken up and go to
sleep immediately.
1) Killing this kind of ping-pong results in a big improvement in my 1600k
files creation script,
MNT=/mnt/btrfs
mkfs.btrfs -f /dev/sdf
mount /dev/def $MNT
time fsmark -D 10000 -S0 -n 100000 -s 0 -L 1 -l /tmp/fs_log.txt \
-d $MNT/0 -d $MNT/1 \
-d $MNT/2 -d $MNT/3 \
-d $MNT/4 -d $MNT/5 \
-d $MNT/6 -d $MNT/7 \
-d $MNT/8 -d $MNT/9 \
-d $MNT/10 -d $MNT/11 \
-d $MNT/12 -d $MNT/13 \
-d $MNT/14 -d $MNT/15
w/o patch:
real 2m27.307s
user 0m12.839s
sys 13m42.831s
w/ patch:
real 1m2.273s
user 0m15.802s
sys 8m16.495s
1.1) latency histogram from funclatency[1]
Overall with the patch, there're ~50% less write lock acquisition and
the 95% max latency that write lock takes also reduces to ~100ms from
>500ms.
--------------------------------------------
w/o patch:
--------------------------------------------
Function = btrfs_tree_lock
msecs : count distribution
0 -> 1 : 2385222 |****************************************|
2 -> 3 : 37147 | |
4 -> 7 : 20452 | |
8 -> 15 : 13131 | |
16 -> 31 : 3877 | |
32 -> 63 : 3900 | |
64 -> 127 : 2612 | |
128 -> 255 : 974 | |
256 -> 511 : 165 | |
512 -> 1023 : 13 | |
Function = btrfs_tree_read_lock
msecs : count distribution
0 -> 1 : 6743860 |****************************************|
2 -> 3 : 2146 | |
4 -> 7 : 190 | |
8 -> 15 : 38 | |
16 -> 31 : 4 | |
--------------------------------------------
w/ patch:
--------------------------------------------
Function = btrfs_tree_lock
msecs : count distribution
0 -> 1 : 1318454 |****************************************|
2 -> 3 : 6800 | |
4 -> 7 : 3664 | |
8 -> 15 : 2145 | |
16 -> 31 : 809 | |
32 -> 63 : 219 | |
64 -> 127 : 10 | |
Function = btrfs_tree_read_lock
msecs : count distribution
0 -> 1 : 6854317 |****************************************|
2 -> 3 : 2383 | |
4 -> 7 : 601 | |
8 -> 15 : 92 | |
2) dbench also proves the improvement,
dbench -t 120 -D /mnt/btrfs 16
w/o patch:
Throughput 158.363 MB/sec
w/ patch:
Throughput 449.52 MB/sec
3) xfstests didn't show any additional failures.
One thing to note is that callers may set path->leave_spinning to have
all nodes in the path stay in spinning mode, which means callers are
ready to not sleep before releasing the path, but it won't cause
problems if they don't want to sleep in blocking mode.
[1]: https://github.com/iovisor/bcc/blob/master/tools/funclatency.py
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The value of blocking_readers is increased only when the lock is taken
for read, no way we can fail the condition with the write lock.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The replace_wait and bio_counter were mistakenly added to fs_info in
commit c404e0dc2c ("Btrfs: fix use-after-free in the finishing
procedure of the device replace"), but they logically belong to
fs_info::dev_replace. Besides, bio_counter is a very generic name and is
confusing in bare fs_info context.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The exit sequence in btrfs_dev_replace_start does not allow to simply
add a label to the right place so the error handling after starting
transaction failure jumps there. Currently there's a lock that pairs
with the unlock in the section, which is unnecessary and only raises
questions. Add a variable to track the locking status and avoid the
extra locking.
Reviewed-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Too trivial, the purpose can be simply documented in a comment.
Reviewed-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The wrapper is too trivial, open coding does not make it less readable.
Reviewed-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's a single caller and the function name does not say it's actually
taking the lock, so open coding makes it more explicit.
For now, btrfs_dev_replace_read_lock is used instead of read_lock so
it's paired with the unlocking wrapper in the same block.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This member seems to be copied from the extent_buffer locking scheme and
is at least used to assert that the read lock/unlock is properly nested.
In some way. While the _inc/_dec are called inside the read lock
section, the asserts are both inside and outside, so the ordering is not
guaranteed and we can see read/inc/dec ordered in any way
(theoretically).
A missing call of btrfs_dev_replace_clear_lock_blocking could cause
unexpected read_locks count, so this at least looks like a valid
assertion, but this will become unnecessary with later updates.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Although we have tree level check at tree read runtime, it's completely
based on its parent level.
We still need to do accurate level check to avoid invalid tree blocks
sneak into kernel space.
The check itself is simple, for leaf its level should always be 0.
For nodes its level should be in range [1, BTRFS_MAX_LEVEL - 1].
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For qgroup_trace_extent_swap(), if we find one leaf that needs to be
traced, we will also iterate all file extents and trace them.
This is OK if we're relocating data block groups, but if we're
relocating metadata block groups, balance code itself has ensured that
both subtree of file tree and reloc tree contain the same contents.
That's to say, if we're relocating metadata block groups, all file
extents in reloc and file tree should match, thus no need to trace them.
This should reduce the total number of dirty extents processed in metadata
block group balance.
[[Benchmark]] (with all previous enhancement)
Hardware:
VM 4G vRAM, 8 vCPUs,
disk is using 'unsafe' cache mode,
backing device is SAMSUNG 850 evo SSD.
Host has 16G ram.
Mkfs parameter:
--nodesize 4K (To bump up tree size)
Initial subvolume contents:
4G data copied from /usr and /lib.
(With enough regular small files)
Snapshots:
16 snapshots of the original subvolume.
each snapshot has 3 random files modified.
balance parameter:
-m
So the content should be pretty similar to a real world root fs layout.
| v4.19-rc1 | w/ patchset | diff (*)
---------------------------------------------------------------
relocated extents | 22929 | 22851 | -0.3%
qgroup dirty extents | 227757 | 140886 | -38.1%
time (sys) | 65.253s | 37.464s | -42.6%
time (real) | 74.032s | 44.722s | -39.6%
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Reloc tree doesn't contribute to qgroup numbers, as we have accounted
them at balance time (see replace_path()).
Skipping the unneeded subtree tracing should reduce the overhead.
[[Benchmark]]
Hardware:
VM 4G vRAM, 8 vCPUs,
disk is using 'unsafe' cache mode,
backing device is SAMSUNG 850 evo SSD.
Host has 16G ram.
Mkfs parameter:
--nodesize 4K (To bump up tree size)
Initial subvolume contents:
4G data copied from /usr and /lib.
(With enough regular small files)
Snapshots:
16 snapshots of the original subvolume.
each snapshot has 3 random files modified.
balance parameter:
-m
So the content should be pretty similar to a real world root fs layout.
| v4.19-rc1 | w/ patchset | diff (*)
---------------------------------------------------------------
relocated extents | 22929 | 22900 | -0.1%
qgroup dirty extents | 227757 | 167139 | -26.6%
time (sys) | 65.253s | 50.123s | -23.2%
time (real) | 74.032s | 52.551s | -29.0%
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Before this patch, with quota enabled during balance, we need to mark
the whole subtree dirty for quota.
E.g.
OO = Old tree blocks (from file tree)
NN = New tree blocks (from reloc tree)
File tree (src) Reloc tree (dst)
OO (a) NN (a)
/ \ / \
(b) OO OO (c) (b) NN NN (c)
/ \ / \ / \ / \
OO OO OO OO (d) OO OO OO NN (d)
For old balance + quota case, quota will mark the whole src and dst tree
dirty, including all the 3 old tree blocks in reloc tree.
It's doable for small file tree or new tree blocks are all located at
lower level.
But for large file tree or new tree blocks are all located at higher
level, this will lead to mark the whole tree dirty, and be unbelievably
slow.
This patch will change how we handle such balance with quota enabled
case.
Now we will search from (b) and (c) for any new tree blocks whose
generation is equal to @last_snapshot, and only mark them dirty.
In above case, we only need to trace tree blocks NN(b), NN(c) and NN(d).
(NN(a) will be traced when COW happens for nodeptr modification). And
also for tree blocks OO(b), OO(c), OO(d). (OO(a) will be traced when COW
happens for nodeptr modification.)
For above case, we could skip 3 tree blocks, but for larger tree, we can
skip tons of unmodified tree blocks, and hugely speed up balance.
This patch will introduce a new function,
btrfs_qgroup_trace_subtree_swap(), which will do the following main
work:
1) Read out real root eb
And setup basic dst_path for later calls
2) Call qgroup_trace_new_subtree_blocks()
To trace all new tree blocks in reloc tree and their counter
parts in the file tree.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduce new function, qgroup_trace_new_subtree_blocks(), to iterate
all new tree blocks in a reloc tree.
So that qgroup could skip unrelated tree blocks during balance, which
should hugely speedup balance speed when quota is enabled.
The function qgroup_trace_new_subtree_blocks() itself only cares about
new tree blocks in reloc tree.
All its main works are:
1) Read out tree blocks according to parent pointers
2) Do recursive depth-first search
Will call the same function on all its children tree blocks, with
search level set to current level -1.
And will also skip all children whose generation is smaller than
@last_snapshot.
3) Call qgroup_trace_extent_swap() to trace tree blocks
So although we have parameter list related to source file tree, it's not
used at all, but only passed to qgroup_trace_extent_swap().
Thus despite the tree read code, the core should be pretty short and all
about recursive depth-first search.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduce a new function, qgroup_trace_extent_swap(), which will be used
later for balance qgroup speedup.
The basis idea of balance is swapping tree blocks between reloc tree and
the real file tree.
The swap will happen in highest tree block, but there may be a lot of
tree blocks involved.
For example:
OO = Old tree blocks
NN = New tree blocks allocated during balance
File tree (257) Reloc tree for 257
L2 OO NN
/ \ / \
L1 OO OO (a) OO NN (a)
/ \ / \ / \ / \
L0 OO OO OO OO OO OO NN NN
(b) (c) (b) (c)
When calling qgroup_trace_extent_swap(), we will pass:
@src_eb = OO(a)
@dst_path = [ nodes[1] = NN(a), nodes[0] = NN(c) ]
@dst_level = 0
@root_level = 1
In that case, qgroup_trace_extent_swap() will search from OO(a) to
reach OO(c), then mark both OO(c) and NN(c) as qgroup dirty.
The main work of qgroup_trace_extent_swap() can be split into 3 parts:
1) Tree search from @src_eb
It should acts as a simplified btrfs_search_slot().
The key for search can be extracted from @dst_path->nodes[dst_level]
(first key).
2) Mark the final tree blocks in @src_path and @dst_path qgroup dirty
NOTE: In above case, OO(a) and NN(a) won't be marked qgroup dirty.
They should be marked during preivous (@dst_level = 1) iteration.
3) Mark file extents in leaves dirty
We don't have good way to pick out new file extents only.
So we still follow the old method by scanning all file extents in
the leave.
This function can free us from keeping two pathes, thus later we only need
to care about how to iterate all new tree blocks in reloc tree.
Signed-off-by: Qu Wenruo <wqu@suse.com>
[ copy changelog to function comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
Number of qgroup dirty extents is directly linked to the performance
overhead, so add a new trace event, trace_qgroup_num_dirty_extents(), to
record how many dirty extents is processed in
btrfs_qgroup_account_extents().
This will be pretty handy to analyze later balance performance
improvement.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
fs/btrfs/relocation.c:build_backref_tree() is some code from 2009 era,
although it works pretty fine, it's not that easy to understand.
Especially combined with the complex btrfs backref format.
This patch adds some basic comment for the backref build part of the
code, making it less hard to read, at least for backref searching part.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The only aops we define for symlinks are identical to the aops for
regular files. This has been the case since symlink support was added in
commit 2b8d99a723 ("Btrfs: symlinks and hard links"). As far as I can
tell, there wasn't a good reason to have separate aops then, and there
isn't now, so let's just do what most other filesystems do and reuse the
same structure.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During buffered writes, we follow this basic series of steps:
again:
lock all the pages
wait for writeback on all the pages
Take the extent range lock
wait for ordered extents on the whole range
clean all the pages
if (copy_from_user_in_atomic() hits a fault) {
drop our locks
goto again;
}
dirty all the pages
release all the locks
The extra waiting, cleaning and locking are there to make sure we don't
modify pages in flight to the drive, after they've been crc'd.
If some of the pages in the range were already dirty when the write
began, and we need to goto again, we create a window where a dirty page
has been cleaned and unlocked. It may be reclaimed before we're able to
lock it again, which means we'll read the old contents off the drive and
lose any modifications that had been pending writeback.
We don't actually need to clean the pages. All of the other locking in
place makes sure we don't start IO on the pages, so we can just leave
them dirty for the duration of the write.
Fixes: 73d59314e6 (the original btrfs merge)
CC: stable@vger.kernel.org # v4.4+
Signed-off-by: Chris Mason <clm@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The helper does the same math and we take care about the special case
when flags is 0 too.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Refactor the delayed refs loop by using the newly introduced
btrfs_run_delayed_refs_for_head function. This greatly simplifies
__btrfs_run_delayed_refs and makes it more obvious what is happening.
We now have 1 loop which iterates the existing delayed_heads and then
each selected ref head is processed by the new helper. All existing
semantics of the code are preserved so no functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This patch introduces a new helper encompassing the implicit inner loop
in __btrfs_run_delayed_refs which processes all the refs for a given
head. The code is mostly copy/paste, the only difference is that if we
detect a newer reference then -EAGAIN is returned so that callers can
react correctly.
Also, at the end of the loop the head is relocked and
btrfs_merge_delayed_refs is run again to retain the pre-refactoring
semantics.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is in preparation to refactor the giant loop in
__btrfs_run_delayed_refs. As a first step define a new function
which implements acquiring a reference to a btrfs_delayed_refs_head and
use it. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Avoid the inline ifdefs and use two sections for self-tests enabled and
disabled.
Though there could be no ifdef and unconditional test_bit of
BTRFS_FS_STATE_DUMMY_FS_INFO, the static inline can help to optimize out
any code that would depend on conditions using btrfs_is_testing.
As this is only for the testing code, drop unlikely().
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The data used only for tests are better placed at the end of the
structure so that they don't change the structure layout. All new
members of btrfs_root should be placed before.
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The helper find_lock_delalloc_range is now conditionally built static,
dpending on whether the self-tests are enabled or not. There's a macro
that is supposed to hide the export, used only once. To discourage
further use, drop it an add a public wrapper for the helper needed by
tests.
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
rb_first_cached() trades an extra pointer "leftmost" for doing the same
job as rb_first() but in O(1).
While resolving indirect refs and missing refs, it always looks for the
first rb entry in a while loop, it's helpful to use rb_first_cached
instead.
For more details about the optimization see patch "Btrfs: delayed-refs:
use rb_first_cached for href_root".
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
rb_first_cached() trades an extra pointer "leftmost" for doing the
same job as rb_first() but in O(1).
As evict_inode_truncate_pages() removes all extent mapping by always
looking for the first rb entry, it's helpful to use rb_first_cached
instead.
For more details about the optimization see patch "Btrfs: delayed-refs:
use rb_first_cached for href_root".
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
rb_first_cached() trades an extra pointer "leftmost" for doing the same job as
rb_first() but in O(1).
Functions manipulating delayed_item need to get the first entry, this converts
it to use rb_first_cached().
For more details about the optimization see patch "Btrfs: delayed-refs:
use rb_first_cached for href_root".
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
rb_first_cached() trades an extra pointer "leftmost" for doing the same
job as rb_first() but in O(1).
Functions manipulating href->ref_tree need to get the first entry, this
converts href->ref_tree to use rb_first_cached().
For more details about the optimization see patch "Btrfs: delayed-refs:
use rb_first_cached for href_root".
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
rb_first_cached() trades an extra pointer "leftmost" for doing the same
job as rb_first() but in O(1).
Functions manipulating href_root need to get the first entry, this
converts href_root to use rb_first_cached().
This patch is first in the sequenct of similar updates to other rbtrees
and this is analysis of the expected behaviour and improvements.
There's a common pattern:
while (node = rb_first) {
entry = rb_entry(node)
next = rb_next(node)
rb_erase(node)
cleanup(entry)
}
rb_first needs to traverse the tree up to logN depth, rb_erase can
completely reshuffle the tree. With the caching we'll skip the traversal
in rb_first. That's a cached memory access vs looped pointer
dereference trade-off that IMHO has a clear winner.
Measurements show there's not much difference in a sample tree with
10000 nodes: 4.5s / rb_first and 4.8s / rb_first_cached. Real effects of
caching and pointer chasing are unpredictable though.
Further optimzations can be done to avoid the expensive rb_erase step.
In some cases it's ok to process the nodes in any order, so the tree can
be traversed in post-order, not rebalancing the children nodes and just
calling free. Care must be taken regarding the next node.
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog from mail discussions ]
Signed-off-by: David Sterba <dsterba@suse.com>
While testing my backport I noticed there was a panic if I ran
generic/416 generic/417 generic/418 all in a row. This just happened to
uncover a race where we had outstanding IO after we destroy all of our
workqueues, and then we'd go to queue the endio work on those free'd
workqueues.
This is because we aren't waiting for the caching threads to be done
before freeing everything up, so to fix this make sure we wait on any
outstanding caching that's being done before we free up the block group,
so we're sure to be done with all IO by the time we get to
btrfs_stop_all_workers(). This fixes the panic I was seeing
consistently in testing.
------------[ cut here ]------------
kernel BUG at fs/btrfs/volumes.c:6112!
SMP PTI
Modules linked in:
CPU: 1 PID: 27165 Comm: kworker/u4:7 Not tainted 4.16.0-02155-g3553e54a578d-dirty #875
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2.el7 04/01/2014
Workqueue: btrfs-cache btrfs_cache_helper
RIP: 0010:btrfs_map_bio+0x346/0x370
RSP: 0000:ffffc900061e79d0 EFLAGS: 00010202
RAX: 0000000000000000 RBX: ffff880071542e00 RCX: 0000000000533000
RDX: ffff88006bb74380 RSI: 0000000000000008 RDI: ffff880078160000
RBP: 0000000000000001 R08: ffff8800781cd200 R09: 0000000000503000
R10: ffff88006cd21200 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff8800781cd200 R15: ffff880071542e00
FS: 0000000000000000(0000) GS:ffff88007fd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000000817ffc4 CR3: 0000000078314000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
btree_submit_bio_hook+0x8a/0xd0
submit_one_bio+0x5d/0x80
read_extent_buffer_pages+0x18a/0x320
btree_read_extent_buffer_pages+0xbc/0x200
? alloc_extent_buffer+0x359/0x3e0
read_tree_block+0x3d/0x60
read_block_for_search.isra.30+0x1a5/0x360
btrfs_search_slot+0x41b/0xa10
btrfs_next_old_leaf+0x212/0x470
caching_thread+0x323/0x490
normal_work_helper+0xc5/0x310
process_one_work+0x141/0x340
worker_thread+0x44/0x3c0
kthread+0xf8/0x130
? process_one_work+0x340/0x340
? kthread_bind+0x10/0x10
ret_from_fork+0x35/0x40
RIP: btrfs_map_bio+0x346/0x370 RSP: ffffc900061e79d0
---[ end trace 827eb13e50846033 ]---
Kernel panic - not syncing: Fatal exception
Kernel Offset: disabled
---[ end Kernel panic - not syncing: Fatal exception
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 499f377f49 (btrfs: iterate over unused chunk space in FITRIM)
fixed free space trimming, but introduced latency when it was running.
This is due to it pinning the transaction using both a incremented
refcount and holding the commit root sem for the duration of a single
trim operation.
This was to ensure safety but it's unnecessary. We already hold the the
chunk mutex so we know that the chunk we're using can't be allocated
while we're trimming it.
In order to check against chunks allocated already in this transaction,
we need to check the pending chunks list. To to that safely without
joining the transaction (or attaching than then having to commit it) we
need to ensure that the dev root's commit root doesn't change underneath
us and the pending chunk lists stays around until we're done with it.
We can ensure the former by holding the commit root sem and the latter
by pinning the transaction. We do this now, but the critical section
covers the trim operation itself and we don't need to do that.
This patch moves the pinning and unpinning logic into helpers and unpins
the transaction after performing the search and check for pending
chunks.
Limiting the critical section of the transaction pinning improves the
latency substantially on slower storage (e.g. image files over NFS).
Fixes: 499f377f49 ("btrfs: iterate over unused chunk space in FITRIM")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We check whether any device the file system is using supports discard in
the ioctl call, but then we attempt to trim free extents on every device
regardless of whether discard is supported. Due to the way we mask off
EOPNOTSUPP, we can end up issuing the trim operations on each free range
on devices that don't support it, just wasting time.
Fixes: 499f377f49 ("btrfs: iterate over unused chunk space in FITRIM")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_trim_fs iterates over the fs_devices->alloc_list while holding the
device_list_mutex. The problem is that ->alloc_list is protected by the
chunk mutex. We don't want to hold the chunk mutex over the trim of the
entire file system. Fortunately, the ->dev_list list is protected by
the dev_list mutex and while it will give us all devices, including
read-only devices, we already just skip the read-only devices. Then we
can continue to take and release the chunk mutex while scanning each
device.
Fixes: 499f377f49 ("btrfs: iterate over unused chunk space in FITRIM")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
fstrim on some btrfs only trims the unallocated space, not trimming any
space in existing block groups.
[CAUSE]
Before fstrim_range passed to btrfs_trim_fs(), it gets truncated to
range [0, super->total_bytes). So later btrfs_trim_fs() will only be
able to trim block groups in range [0, super->total_bytes).
While for btrfs, any bytenr aligned to sectorsize is valid, since btrfs
uses its logical address space, there is nothing limiting the location
where we put block groups.
For filesystem with frequent balance, it's quite easy to relocate all
block groups and bytenr of block groups will start beyond
super->total_bytes.
In that case, btrfs will not trim existing block groups.
[FIX]
Just remove the truncation in btrfs_ioctl_fitrim(), so btrfs_trim_fs()
can get the unmodified range, which is normally set to [0, U64_MAX].
Reported-by: Chris Murphy <lists@colorremedies.com>
Fixes: f4c697e640 ("btrfs: return EINVAL if start > total_bytes in fitrim ioctl")
CC: <stable@vger.kernel.org> # v4.4+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Function btrfs_trim_fs() doesn't handle errors in a consistent way. If
error happens when trimming existing block groups, it will skip the
remaining blocks and continue to trim unallocated space for each device.
The return value will only reflect the final error from device trimming.
This patch will fix such behavior by:
1) Recording the last error from block group or device trimming
The return value will also reflect the last error during trimming.
Make developer more aware of the problem.
2) Continuing trimming if possible
If we failed to trim one block group or device, we could still try
the next block group or device.
3) Report number of failures during block group and device trimming
It would be less noisy, but still gives user a brief summary of
what's going wrong.
Such behavior can avoid confusion for cases like failure to trim the
first block group and then only unallocated space is trimmed.
Reported-by: Chris Murphy <lists@colorremedies.com>
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add bg_ret and dev_ret to the messages ]
Signed-off-by: David Sterba <dsterba@suse.com>
When we fail to start a transaction in btrfs_dev_replace_start, we leave
dev_replace->replace_start set to STARTED but clear ->srcdev and
->tgtdev. Later, that can result in an Oops in
btrfs_dev_replace_progress when having state set to STARTED or SUSPENDED
implies that ->srcdev is valid.
Also fix error handling when the state is already STARTED or SUSPENDED
while starting. That, too, will clear ->srcdev and ->tgtdev even though
it doesn't own them. This should be an impossible case to hit since we
should be protected by the BTRFS_FS_EXCL_OP bit being set. Let's add an
ASSERT there while we're at it.
Fixes: e93c89c1aa (Btrfs: add new sources for device replace code)
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
remove_extent_mapping uses the variable "ret" for return value, but it
is not modified after initialzation. Further, I find that any of the
callers do not handle the return value and the callees are only simple
functions so the return values does not need to be passed.
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In btrfs_search_old_slot get_old_root is always used with the assumption
it cannot fail. However, this is not true in rare circumstance it can
fail and return null. This will lead to null point dereference when the
header is read. Fix this by checking the return value and properly
handling NULL by setting ret to -EIO and returning gracefully.
Coverity-id: 1087503
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In btrfs_orphan_cleanup the final 'if (ret) goto out' cannot ever be
executed. This is due to the last assignment to 'ret' depending on the
return value of btrfs_iget. If an error other than -ENOENT is returned
then the loop is prematurely terminated by 'goto out'. On the other
hand, if the error value is ENOENT then a subsequent if branch is
executed that always re-assigns 'ret' and in case it's an error just
terminates the loop. No functional changes.
Coverity-id: 1437392
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When we delete an inode,
btrfs_evict_inode() {
truncate_inode_pages_final()
truncate_inode_pages_range()
lock_page()
truncate_cleanup_page()
btrfs_invalidatepage()
wait_on_page_writeback
btrfs_lookup_ordered_range()
cancel_dirty_page()
unlock_page()
...
btrfs_wait_ordered_range()
...
As VFS has called ->invalidatepage() to get all ordered extents done (if
there are any) and truncated all page cache pages (no dirty pages to
writeback after this step), wait_ordered_range() is just a noop.
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
As long as @eb is marked with EXTENT_BUFFER_DIRTY, all of its pages
are dirty, so no need to set pages dirty again.
Ftrace showed that the loop took 10us on my dev box, so removing this
can save us at least 10us if eb is already dirty and otherwise avoid a
potentially expensive calls to set_page_dirty.
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Just in case that someone breaks the rule that pages are dirty as long
as eb is dirty. The next patch will dirty the pages conditionally.
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In the callchain:
btrfs_search_slot()
if (level != 0)
setup_nodes_for_search()
balance_level()
It is just impossible to have level=0 in balance_level, we can drop the
check.
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Unify the error handling of directory item lookups using IS_ERR_OR_NULL.
No functional changes.
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
kcalloc is defined as:
kcalloc(size_t n, size_t size, gfp_t flags)
Although this won't cause problems in practice, btrfsic_read_block()
uses kcalloc with n and size in the opposite order.
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of returning an error value and using one of the parameters for
returning the actual object we are interested in just refactor the
function to directly return btrfs_device *. Also bubble up the error
handling for the special BTRFS_ERROR_DEV_MISSING_NOT_FOUND value into
btrfs_rm_device. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function returns a numeric error value and additionally the
device found in one of its input parameters. Simplify this by making
the function directly return a pointer to btrfs_device. Additionally
adjust the caller to handle the case when we want to remove the
'missing' device and ENOENT is returned to return the expected
positive error value, parsed by progs. Finally, unexport the function
since it's not called outside of volume.c. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently this function returns an error code as well as uses one of
its arguments as a return value for struct btrfs_device. Change the
function so that it returns btrfs_device directly and use the usual
"encode error in pointer" mechanics if something goes wrong. No
functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since commit d7df2c796d ("Btrfs attach delayed ref updates to delayed
ref heads"), check_delayed_ref() won't return -ENOENT.
In btrfs_cross_ref_exist(), two variables 'ret' and 'ret2' are
originally used to handle -ENOENT error case. Since the code is not
needed anymore, let's just remove 'ret2'.
Signed-off-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Unless it's going to read inline extents from btree leaf to page,
btrfs_get_extent won't sleep during the period of holding path lock.
This sets leave_spinning at first and sets path to blocking mode right
before reading inline extent if that's the case. The benefit is that a
path in spinning mode typically has lower impact (faster) on waiters
rather than that in the blocking mode.
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This fixes btrfs_get_extent to be consistent with our existing
declaration style.
Note: For the record, indentation styles that are accepted are both,
aligning under the opening ( and tab or double tab indentation on the
next line. Preferrably not spliting the type or long expressions in the
argument lists.
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
[ add note ]
Signed-off-by: David Sterba <dsterba@suse.com>
Pointer 'tree' is being assigned but is never used hence it is redundant
and can be removed. This is a leftover from cleanup patch
00032d38ea ("btrfs: drop extent_io_ops::merge_bio_hook
callback").
Cleans up clang warning:
warning: variable 'tree' set but not used [-Wunused-but-set-variable]
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pointer inode is being assigned but is never used hence it is redundant
and can be removed. It's been unused since the introduction in
38c227d87c ("Btrfs: snapshot-aware defrag").
Cleans up clang warning:
variable ‘inode’ set but not used [-Wunused-but-set-variable]
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since commit 8b62f87bad ("Btrfs: rework outstanding_extents"),
manual operations of outstanding_extent in btrfs_inode are replaced by
btrfs_mod_outstanding_extents().
The one in cluster_pages_for_defrag seems to be lost, so replace it
of btrfs_mod_outstanding_extents().
Fixes: 8b62f87bad ("Btrfs: rework outstanding_extents")
Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Here we're not releasing any space, but transferring bytes from
->bytes_may_use to ->bytes_reserved. The last change to the code in
commit 18513091af ("btrfs: update btrfs_space_info's
bytes_may_use timely") removed a conditional tracepoint and the logic
changed too but the tracepiont remained.
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
trace_btrfs_get_extent() has nothing to do with path, place
btrfs_free_path ahead so that we can unlock path on error.
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
As next_state() is already defined to get the next state, use it in
find_first_extent_bit. No functional changes.
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
For certain crafted image, whose csum root leaf has missing backref, if
we try to trigger write with data csum, it could cause deadlock with the
following kernel WARN_ON():
WARNING: CPU: 1 PID: 41 at fs/btrfs/locking.c:230 btrfs_tree_lock+0x3e2/0x400
CPU: 1 PID: 41 Comm: kworker/u4:1 Not tainted 4.18.0-rc1+ #8
Workqueue: btrfs-endio-write btrfs_endio_write_helper
RIP: 0010:btrfs_tree_lock+0x3e2/0x400
Call Trace:
btrfs_alloc_tree_block+0x39f/0x770
__btrfs_cow_block+0x285/0x9e0
btrfs_cow_block+0x191/0x2e0
btrfs_search_slot+0x492/0x1160
btrfs_lookup_csum+0xec/0x280
btrfs_csum_file_blocks+0x2be/0xa60
add_pending_csums+0xaf/0xf0
btrfs_finish_ordered_io+0x74b/0xc90
finish_ordered_fn+0x15/0x20
normal_work_helper+0xf6/0x500
btrfs_endio_write_helper+0x12/0x20
process_one_work+0x302/0x770
worker_thread+0x81/0x6d0
kthread+0x180/0x1d0
ret_from_fork+0x35/0x40
[CAUSE]
That crafted image has missing backref for csum tree root leaf. And
when we try to allocate new tree block, since there is no
EXTENT/METADATA_ITEM for csum tree root, btrfs consider it's free slot
and use it.
The extent tree of the image looks like:
Normal image | This fuzzed image
----------------------------------+--------------------------------
BG 29360128 | BG 29360128
One empty slot | One empty slot
29364224: backref to UUID tree | 29364224: backref to UUID tree
Two empty slots | Two empty slots
29376512: backref to CSUM tree | One empty slot (bad type) <<<
29380608: backref to D_RELOC tree | 29380608: backref to D_RELOC tree
... | ...
Since bytenr 29376512 has no METADATA/EXTENT_ITEM, when btrfs try to
alloc tree block, it's an valid slot for btrfs.
And for finish_ordered_write, when we need to insert csum, we try to CoW
csum tree root.
By accident, empty slots at bytenr BG_OFFSET, BG_OFFSET + 8K,
BG_OFFSET + 12K is already used by tree block COW for other trees, the
next empty slot is BG_OFFSET + 16K, which should be the backref for CSUM
tree.
But due to the bad type, btrfs can recognize it and still consider it as
an empty slot, and will try to use it for csum tree CoW.
Then in the following call trace, we will try to lock the new tree
block, which turns out to be the old csum tree root which is already
locked:
btrfs_search_slot() called on csum tree root, which is at 29376512
|- btrfs_cow_block()
|- btrfs_set_lock_block()
| |- Now locks tree block 29376512 (old csum tree root)
|- __btrfs_cow_block()
|- btrfs_alloc_tree_block()
|- btrfs_reserve_extent()
| Now it returns tree block 29376512, which extent tree
| shows its empty slot, but it's already hold by csum tree
|- btrfs_init_new_buffer()
|- btrfs_tree_lock()
| Triggers WARN_ON(eb->lock_owner == current->pid)
|- wait_event()
Wait lock owner to release the lock, but it's
locked by ourself, so it will deadlock
[FIX]
This patch will do the lock_owner and current->pid check at
btrfs_init_new_buffer().
So above deadlock can be avoided.
Since such problem can only happen in crafted image, we will still
trigger kernel warning for later aborted transaction, but with a little
more meaningful warning message.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=200405
Reported-by: Xu Wen <wen.xu@gatech.edu>
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
When mounting certain crafted image, btrfs will trigger kernel BUG_ON()
when trying to recover balance:
kernel BUG at fs/btrfs/extent-tree.c:8956!
invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
CPU: 1 PID: 662 Comm: mount Not tainted 4.18.0-rc1-custom+ #10
RIP: 0010:walk_up_proc+0x336/0x480 [btrfs]
RSP: 0018:ffffb53540c9b890 EFLAGS: 00010202
Call Trace:
walk_up_tree+0x172/0x1f0 [btrfs]
btrfs_drop_snapshot+0x3a4/0x830 [btrfs]
merge_reloc_roots+0xe1/0x1d0 [btrfs]
btrfs_recover_relocation+0x3ea/0x420 [btrfs]
open_ctree+0x1af3/0x1dd0 [btrfs]
btrfs_mount_root+0x66b/0x740 [btrfs]
mount_fs+0x3b/0x16a
vfs_kern_mount.part.9+0x54/0x140
btrfs_mount+0x16d/0x890 [btrfs]
mount_fs+0x3b/0x16a
vfs_kern_mount.part.9+0x54/0x140
do_mount+0x1fd/0xda0
ksys_mount+0xba/0xd0
__x64_sys_mount+0x21/0x30
do_syscall_64+0x60/0x210
entry_SYSCALL_64_after_hwframe+0x49/0xbe
[CAUSE]
Extent tree corruption. In this particular case, reloc tree root's
owner is DATA_RELOC_TREE (should be TREE_RELOC), thus its backref is
corrupted and we failed the owner check in walk_up_tree().
[FIX]
It's pretty hard to take care of every extent tree corruption, but at
least we can remove such BUG_ON() and exit more gracefully.
And since in this particular image, DATA_RELOC_TREE and TREE_RELOC share
the same root (which is obviously invalid), we needs to make
__del_reloc_root() more robust to detect such invalid sharing to avoid
possible NULL dereference as root->node can be NULL in this case.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=200411
Reported-by: Xu Wen <wen.xu@gatech.edu>
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_pin_log_trans defines the variable "ret" for return value, but it
is not modified after initialization. Further, I find that none of the
callers do handles the return value, so it is safe to drop the unneeded
"ret" and make it return void.
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_free_reserved_bytes uses the variable "ret" for return value,
but it is not modified after initialzation. Further, I find that any of
the callers do not handle the return value, so it is safe to drop the
unneeded "ret" and return void. There are no callees that would need the
function to handle or pass the value either.
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
@path is always NULL when it comes to the if branch.
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
In the following case, rescan won't zero out the number of qgroup 1/0:
$ mkfs.btrfs -fq $DEV
$ mount $DEV /mnt
$ btrfs quota enable /mnt
$ btrfs qgroup create 1/0 /mnt
$ btrfs sub create /mnt/sub
$ btrfs qgroup assign 0/257 1/0 /mnt
$ dd if=/dev/urandom of=/mnt/sub/file bs=1k count=1000
$ btrfs sub snap /mnt/sub /mnt/snap
$ btrfs quota rescan -w /mnt
$ btrfs qgroup show -pcre /mnt
qgroupid rfer excl max_rfer max_excl parent child
-------- ---- ---- -------- -------- ------ -----
0/5 16.00KiB 16.00KiB none none --- ---
0/257 1016.00KiB 16.00KiB none none 1/0 ---
0/258 1016.00KiB 16.00KiB none none --- ---
1/0 1016.00KiB 16.00KiB none none --- 0/257
So far so good, but:
$ btrfs qgroup remove 0/257 1/0 /mnt
WARNING: quotas may be inconsistent, rescan needed
$ btrfs quota rescan -w /mnt
$ btrfs qgroup show -pcre /mnt
qgoupid rfer excl max_rfer max_excl parent child
-------- ---- ---- -------- -------- ------ -----
0/5 16.00KiB 16.00KiB none none --- ---
0/257 1016.00KiB 16.00KiB none none --- ---
0/258 1016.00KiB 16.00KiB none none --- ---
1/0 1016.00KiB 16.00KiB none none --- ---
^^^^^^^^^^ ^^^^^^^^ not cleared
[CAUSE]
Before rescan we call qgroup_rescan_zero_tracking() to zero out all
qgroups' accounting numbers.
However we don't mark all qgroups dirty, but rely on rescan to do so.
If we have any high level qgroup without children, it won't be marked
dirty during rescan, since we cannot reach that qgroup.
This will cause QGROUP_INFO items of childless qgroups never get updated
in the quota tree, thus their numbers will stay the same in "btrfs
qgroup show" output.
[FIX]
Just mark all qgroups dirty in qgroup_rescan_zero_tracking(), so even if
we have childless qgroups, their QGROUP_INFO items will still get
updated during rescan.
Reported-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com>
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com>
Tested-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
struct scrub_ctx has an ->is_dev_replace member, so there's no point in
passing around is_dev_replace where sctx is available.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When the replace is running the fs_devices::num_devices also includes
the replaced device, however in some operations like device delete and
balance it needs the actual num_devices without the repalced devices.
The function btrfs_num_devices() just provides that.
And here is a scenario how balance and repalce items could co-exist:
Consider balance is started and paused, now start the replace followed
by a unmount or system power-cycle. During following mount, the
open_ctree() first restarts the balance so it must check for the device
replace otherwise our num_devices calculation will be wrong.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
In preparation to add helper function to deduce the num_devices with
replace running, use assert instead of BUG_ON or WARN_ON. The number of
devices would not normally drop to 0 due to other checks so the assert
is sufficient.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog, adjust the assert condition ]
Signed-off-by: David Sterba <dsterba@suse.com>
Kfree has taken the NULL pointer into account. So remove the check
before kfree.
The issue is detected with the help of Coccinelle.
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
As we're going to return right after the call, it's not necessary to get
update the new write_lock_level from unlock_up.
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are two members in struct btrfs_root which indicate root's
objectid: objectid and root_key.objectid.
They are both set to the same value in __setup_root():
static void __setup_root(struct btrfs_root *root,
struct btrfs_fs_info *fs_info,
u64 objectid)
{
...
root->objectid = objectid;
...
root->root_key.objectid = objecitd;
...
}
and not changed to other value after initialization.
grep in btrfs directory shows both are used in many places:
$ grep -rI "root->root_key.objectid" | wc -l
133
$ grep -rI "root->objectid" | wc -l
55
(4.17, inc. some noise)
It is confusing to have two similar variable names and it seems
that there is no rule about which should be used in a certain case.
Since ->root_key itself is needed for tree reloc tree, let's remove
'objecitd' member and unify code to use ->root_key.objectid in all places.
Signed-off-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since ret must be 0 here, don't have to return. No functional change
and code readability is not hurt.
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All callers pass the root tree of dir, we can push that down to the
function itself.
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Using true and false here is closer to the expected semantic than using
0 and 1. No functional change.
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Only when send_in_progress, we have to do something different such as
btrfs_warn() and return -EPERM. Therefore, we could check
send_in_progress first and process error handling, after the
root_item_lock has been got.
Just for better readability. No functional change.
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduce xarray value entries and tagged pointers to replace radix
tree exceptional entries. This is a slight change in encoding to allow
the use of an extra bit (we can now store BITS_PER_LONG - 1 bits in a
value entry). It is also a change in emphasis; exceptional entries are
intimidating and different. As the comment explains, you can choose
to store values or pointers in the xarray and they are both first-class
citizens.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAluRLa8ACgkQxWXV+ddt
WDvc+BAAqxTMVngZ60WfktXzsS56OB6fu/R3DORgYcSZ0BCD4zTwoDlCjLhrCK6E
cmC+BMj+AspDQYiYESwGyFcN10sK0X7w7fa3wypTc4GNWxpkRm0Z6zT/kCvLUhdI
NlkMqAfsZ9N6iIXcR0qOxI7G55e3mpXPZGdFTk5rmDTv/9TqU0TMp9s8Zw5scn6R
ctdE+iE0lpRfNjF8ZDH1BtYIV4g2X81sZF/fkGz621HQfMTCjjPHFdlz+jlirBaf
BrYR4w4zjVuMKd3ZC5FHffVchbkvt29h6fAr4sEpJTwFJwd8pjI7GuPYWDQ918NB
TGX6EUP6usQqDK2zD405jCS6MbMshJm3uh5kmEpeNgK/tKJTln8Sbef/Xs93yIn2
+k9BMKOIcUHHBiv6PgCaZomcWCpii2S2u6vncqCnNuI4wK1RN3gHJc5YPhJArlrB
NUFJiTCQE6LWYOP2Hw+rggcrtBxli0bX7Mqp5FYFVdh5KBvolJE1o3B/JS8qpqRF
u0dPwbLHtTpTpXM5EfmM8a45S+DxuxTDBh3vdoAOM9LN/ivpeqqnFbHrIGmrTMjo
pQJ8aTrCwYMEMNu6oCV1cniFrOYRZ439hYjg524MjVXYCRyxhzAdVmVTEBaLjWCW
9GlGqEC7YZY2wLi5lPEGqxsIaVVELpettJB9KbBKmYB47VFWEf0=
=fu93
-----END PGP SIGNATURE-----
Merge tag 'for-4.19-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- fix for improper fsync after hardlink
- fix for a corruption during file deduplication
- use after free fixes
- RCU warning fix
- fix for buffered write to nodatacow file
* tag 'for-4.19-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: Fix suspicious RCU usage warning in btrfs_debug_in_rcu
btrfs: use after free in btrfs_quota_enable
btrfs: btrfs_shrink_device should call commit transaction at the end
btrfs: fix qgroup_free wrong num_bytes in btrfs_subvolume_reserve_metadata
Btrfs: fix data corruption when deduplicating between different files
Btrfs: sync log after logging new name
Btrfs: fix unexpected failure of nocow buffered writes after snapshotting when low on space
Commit 672d599041 ("btrfs: Use wrapper macro for rcu string to remove
duplicate code") replaces some open coded RCU string handling with macro.
It turns out that btrfs_debug_in_rcu() is used for the first time and
the macro lacks lock/unlock of RCU string for non-debug case (i.e. when
the message is not printed), leading to suspicious RCU usage warning
when CONFIG_PROVE_RCU is on.
Fix this by adding a wrapper to call lock/unlock for the non-debug case
too.
Fixes: 672d599041 ("btrfs: Use wrapper macro for rcu string to remove duplicate code")
Reported-by: David Howells <dhowells@redhat.com>
Tested-by: David Howells <dhowells@redhat.com>
Signed-off-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The issue here is that btrfs_commit_transaction() frees "trans" on both
the error and the success path. So the problem would be if
btrfs_commit_transaction() succeeds, and then qgroup_rescan_init()
fails. That means that "ret" is non-zero and "trans" is non-NULL and it
leads to a use after free inside the btrfs_end_transaction() macro.
Fixes: 340f1aa27f ("btrfs: qgroups: Move transaction management inside btrfs_quota_enable/disable")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Test case btrfs/164 reports use-after-free:
[ 6712.084324] general protection fault: 0000 [#1] PREEMPT SMP
..
[ 6712.195423] btrfs_update_commit_device_size+0x75/0xf0 [btrfs]
[ 6712.201424] btrfs_commit_transaction+0x57d/0xa90 [btrfs]
[ 6712.206999] btrfs_rm_device+0x627/0x850 [btrfs]
[ 6712.211800] btrfs_ioctl+0x2b03/0x3120 [btrfs]
Reason for this is that btrfs_shrink_device adds the resized device to
the fs_devices::resized_devices after it has called the last commit
transaction.
So the list fs_devices::resized_devices is not empty when
btrfs_shrink_device returns. Now the parent function
btrfs_rm_device calls:
btrfs_close_bdev(device);
call_rcu(&device->rcu, free_device_rcu);
and then does the transactio ncommit. It goes through the
fs_devices::resized_devices in btrfs_update_commit_device_size and
leads to use-after-free.
Fix this by making sure btrfs_shrink_device calls the last needed
btrfs_commit_transaction before the return. This is consistent with what
the grow counterpart does and this makes sure the on-disk state is
persistent when the function returns.
Reported-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Tested-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
After btrfs_qgroup_reserve_meta_prealloc(), num_bytes will be assigned
again by btrfs_calc_trans_metadata_size(). Once block_rsv fails, we
can't properly free the num_bytes of the previous qgroup_reserve. Use a
separate variable to store the num_bytes of the qgroup_reserve.
Delete the comment for the qgroup_reserved that does not exist and add a
comment about use_global_rsv.
Fixes: c4c129db5d ("btrfs: drop unused parameter qgroup_reserved")
CC: stable@vger.kernel.org # 4.18+
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we deduplicate extents between two different files we can end up
corrupting data if the source range ends at the size of the source file,
the source file's size is not aligned to the filesystem's block size
and the destination range does not go past the size of the destination
file size.
Example:
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
$ xfs_io -f -c "pwrite -S 0x6b 0 2518890" /mnt/foo
# The first byte with a value of 0xae starts at an offset (2518890)
# which is not a multiple of the sector size.
$ xfs_io -c "pwrite -S 0xae 2518890 102398" /mnt/foo
# Confirm the file content is full of bytes with values 0x6b and 0xae.
$ od -t x1 /mnt/foo
0000000 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b
*
11467540 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b ae ae ae ae ae ae
11467560 ae ae ae ae ae ae ae ae ae ae ae ae ae ae ae ae
*
11777540 ae ae ae ae ae ae ae ae
11777550
# Create a second file with a length not aligned to the sector size,
# whose bytes all have the value 0x6b, so that its extent(s) can be
# deduplicated with the first file.
$ xfs_io -f -c "pwrite -S 0x6b 0 557771" /mnt/bar
# Now deduplicate the entire second file into a range of the first file
# that also has all bytes with the value 0x6b. The destination range's
# end offset must not be aligned to the sector size and must be less
# then the offset of the first byte with the value 0xae (byte at offset
# 2518890).
$ xfs_io -c "dedupe /mnt/bar 0 1957888 557771" /mnt/foo
# The bytes in the range starting at offset 2515659 (end of the
# deduplication range) and ending at offset 2519040 (start offset
# rounded up to the block size) must all have the value 0xae (and not
# replaced with 0x00 values). In other words, we should have exactly
# the same data we had before we asked for deduplication.
$ od -t x1 /mnt/foo
0000000 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b
*
11467540 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b ae ae ae ae ae ae
11467560 ae ae ae ae ae ae ae ae ae ae ae ae ae ae ae ae
*
11777540 ae ae ae ae ae ae ae ae
11777550
# Unmount the filesystem and mount it again. This guarantees any file
# data in the page cache is dropped.
$ umount /dev/sdb
$ mount /dev/sdb /mnt
$ od -t x1 /mnt/foo
0000000 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b
*
11461300 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 00 00 00 00 00
11461320 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*
11470000 ae ae ae ae ae ae ae ae ae ae ae ae ae ae ae ae
*
11777540 ae ae ae ae ae ae ae ae
11777550
# The bytes in range 2515659 to 2519040 have a value of 0x00 and not a
# value of 0xae, data corruption happened due to the deduplication
# operation.
So fix this by rounding down, to the sector size, the length used for the
deduplication when the following conditions are met:
1) Source file's range ends at its i_size;
2) Source file's i_size is not aligned to the sector size;
3) Destination range does not cross the i_size of the destination file.
Fixes: e1d227a42e ("btrfs: Handle unaligned length in extent_same")
CC: stable@vger.kernel.org # 4.2+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When we add a new name for an inode which was logged in the current
transaction, we update the inode in the log so that its new name and
ancestors are added to the log. However when we do this we do not persist
the log, so the changes remain in memory only, and as a consequence, any
ancestors that were created in the current transaction are updated such
that future calls to btrfs_inode_in_log() return true. This leads to a
subsequent fsync against such new ancestor directories returning
immediately, without persisting the log, therefore after a power failure
the new ancestor directories do not exist, despite fsync being called
against them explicitly.
Example:
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
$ mkdir /mnt/A
$ mkdir /mnt/B
$ mkdir /mnt/A/C
$ touch /mnt/B/foo
$ xfs_io -c "fsync" /mnt/B/foo
$ ln /mnt/B/foo /mnt/A/C/foo
$ xfs_io -c "fsync" /mnt/A
<power failure>
After the power failure, directory "A" does not exist, despite the explicit
fsync on it.
Instead of fixing this by changing the behaviour of the explicit fsync on
directory "A" to persist the log instead of doing nothing, make the logging
of the new file name (which happens when creating a hard link or renaming)
persist the log. This approach not only is simpler, not requiring addition
of new fields to the inode in memory structure, but also gives us the same
behaviour as ext4, xfs and f2fs (possibly other filesystems too).
A test case for fstests follows soon.
Fixes: 12fcfd22fe ("Btrfs: tree logging unlink/rename fixes")
Reported-by: Vijay Chidambaram <vvijay03@gmail.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This contains two new features:
1) Stack file operations: this allows removal of several hacks from the
VFS, proper interaction of read-only open files with copy-up,
possibility to implement fs modifying ioctls properly, and others.
2) Metadata only copy-up: when file is on lower layer and only metadata is
modified (except size) then only copy up the metadata and continue to
use the data from the lower file.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQSQHSd0lITzzeNWNm3h3BK/laaZPAUCW3srhAAKCRDh3BK/laaZ
PC6tAQCP+KklcN+TvNp502f+O/kATahSpgnun4NY1/p4I8JV+AEAzdlkTN3+MiAO
fn9brN6mBK7h59DO3hqedPLJy2vrgwg=
=QDXH
-----END PGP SIGNATURE-----
Merge tag 'ovl-update-4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs
Pull overlayfs updates from Miklos Szeredi:
"This contains two new features:
- Stack file operations: this allows removal of several hacks from
the VFS, proper interaction of read-only open files with copy-up,
possibility to implement fs modifying ioctls properly, and others.
- Metadata only copy-up: when file is on lower layer and only
metadata is modified (except size) then only copy up the metadata
and continue to use the data from the lower file"
* tag 'ovl-update-4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs: (66 commits)
ovl: Enable metadata only feature
ovl: Do not do metacopy only for ioctl modifying file attr
ovl: Do not do metadata only copy-up for truncate operation
ovl: add helper to force data copy-up
ovl: Check redirect on index as well
ovl: Set redirect on upper inode when it is linked
ovl: Set redirect on metacopy files upon rename
ovl: Do not set dentry type ORIGIN for broken hardlinks
ovl: Add an inode flag OVL_CONST_INO
ovl: Treat metacopy dentries as type OVL_PATH_MERGE
ovl: Check redirects for metacopy files
ovl: Move some dir related ovl_lookup_single() code in else block
ovl: Do not expose metacopy only dentry from d_real()
ovl: Open file with data except for the case of fsync
ovl: Add helper ovl_inode_realdata()
ovl: Store lower data inode in ovl_inode
ovl: Fix ovl_getattr() to get number of blocks from lower
ovl: Add helper ovl_dentry_lowerdata() to get lower data dentry
ovl: Copy up meta inode data from lowest data inode
ovl: Modify ovl_lookup() and friends to lookup metacopy dentry
...
a_ops->readpages() is only ever used for read-ahead. Ensure that we
pass this information down to the block layer.
Link: http://lkml.kernel.org/r/20180621010725.17813-4-axboe@kernel.dk
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Chris Mason <clm@fb.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit e9894fd3e3 ("Btrfs: fix snapshot vs nocow writting") forced
nocow writes to fallback to COW, during writeback, when a snapshot is
created. This resulted in writes made before creating the snapshot to
unexpectedly fail with ENOSPC during writeback when success (0) was
returned to user space through the write system call.
The steps leading to this problem are:
1. When it's not possible to allocate data space for a write, the
buffered write path checks if a NOCOW write is possible. If it is,
it will not reserve space and success (0) is returned to user space.
2. Then when a snapshot is created, the root's will_be_snapshotted
atomic is incremented and writeback is triggered for all inode's that
belong to the root being snapshotted. Incrementing that atomic forces
all previous writes to fallback to COW during writeback (running
delalloc).
3. This results in the writeback for the inodes to fail and therefore
setting the ENOSPC error in their mappings, so that a subsequent
fsync on them will report the error to user space. So it's not a
completely silent data loss (since fsync will report ENOSPC) but it's
a very unexpected and undesirable behaviour, because if a clean
shutdown/unmount of the filesystem happens without previous calls to
fsync, it is expected to have the data present in the files after
mounting the filesystem again.
So fix this by adding a new atomic named snapshot_force_cow to the
root structure which prevents this behaviour and works the following way:
1. It is incremented when we start to create a snapshot after triggering
writeback and before waiting for writeback to finish.
2. This new atomic is now what is used by writeback (running delalloc)
to decide whether we need to fallback to COW or not. Because we
incremented this new atomic after triggering writeback in the
snapshot creation ioctl, we ensure that all buffered writes that
happened before snapshot creation will succeed and not fallback to
COW (which would make them fail with ENOSPC).
3. The existing atomic, will_be_snapshotted, is kept because it is used
to force new buffered writes, that start after we started
snapshotting, to reserve data space even when NOCOW is possible.
This makes these writes fail early with ENOSPC when there's no
available space to allocate, preventing the unexpected behaviour of
writeback later failing with ENOSPC due to a fallback to COW mode.
Fixes: e9894fd3e3 ("Btrfs: fix snapshot vs nocow writting")
Signed-off-by: Robbie Ko <robbieko@synology.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAltxe7QACgkQxWXV+ddt
WDswMA//QlRO+Ln5CH+RlT4fyf1RQUQZblWss2zxrmlo1GRI3Ljf2DNsBE3rD7P4
NSiXfHmgkdjcQP6poPLJwHxwkNd4NFXglYg64wWO10RjHGhKglmH6ztU88wsPfr2
2RZv271/NvYIEkEi6kdyy8ilKeWMshOfyj3+PaeapQn67uJfimyiUvDgUgbvwH3c
yj0nVRLP1C7snNj4Atti/rjXMhG+m1UWfjRkZsmqlBp52k2UAcrtiwQK+DS5b9mL
aWLSaGmIcJtSMkNJPQBST9GTWbJfKTpceoCzkT0o3irvQpN2e2flAJ4ireL8q4mN
MvqJ7giPBFHNDcHEzN6VERvsaA1Rx9Vq20ieQl8JAMd4p/bi5ehN3ww+9vau5zCw
Pc8WeKEILKrLYEAgHOnUO1wxHw994Iv5CA26roTQ0HNXQJjyEZ4m40Ch6LzmfKPm
WKcHX14Uw22GKaFEXHTOpRZ0U0d1cMTcn5zaAajGsB9LwcaiLM+OiFSPtDkwUOB9
QGJHklZVXAD1IH9HFPuq85uUtXTLXbxsw1g8phEJGbmaVxxCOAUAXwEk3qxuZNbz
CHL3G5+l3JEXxfoJSbDW60kr8xic7teqQDszqqP2qlqtP15ty2xc9d5Q8MZajSTZ
H1z9+0gfjYYHrGuAp69MtCbdQhhDSqLyivjJJm0HBaKfVNGW2Xg=
=jBaz
-----END PGP SIGNATURE-----
Merge tag 'for-4.19-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba:
"Mostly fixes and cleanups, nothing big, though the notable thing is
the inserted/deleted lines delta -1124.
User visible changes:
- allow defrag on opened read-only files that have rw permissions;
similar to what dedupe will allow on such files
Core changes:
- tree checker improvements, reported by fuzzing:
* more checks for: block group items, essential trees
* chunk type validation
* mount time cross-checks that physical and logical chunks match
* switch more error codes to EUCLEAN aka EFSCORRUPTED
Fixes:
- fsync corner case fixes
- fix send failure when root has deleted files still open
- send, fix incorrect file layout after hole punching beyond eof
- fix races between mount and deice scan ioctl, found by fuzzing
- fix deadlock when delayed iput is called from writeback on the same
inode; rare but has been observed in practice, also removes code
- fix pinned byte accounting, using the right percpu helpers; this
should avoid some write IO inefficiency during low space conditions
- don't remove block group that still has pinned bytes
- reset on-disk device stats value after replace, otherwise this
would report stale values for the new device
Cleanups:
- time64_t/timespec64 cleanups
- remove remaining dead code in scrub handling NOCOW extents after
disabling it in previous cycle
- simplify fsync regarding ordered extents logic and remove all the
related code
- remove redundant arguments in order to reduce stack space
consumption
- remove support for V0 type of extents, not in use since 2.6.30
- remove several unused structure members
- fewer indirect function calls by inlining some callbacks
- qgroup rescan timing fixes
- vfs: iget cleanups"
* tag 'for-4.19-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (182 commits)
btrfs: revert fs_devices state on error of btrfs_init_new_device
btrfs: Exit gracefully when chunk map cannot be inserted to the tree
btrfs: Introduce mount time chunk <-> dev extent mapping check
btrfs: Verify that every chunk has corresponding block group at mount time
btrfs: Check that each block group has corresponding chunk at mount time
Btrfs: send, fix incorrect file layout after hole punching beyond eof
btrfs: Use wrapper macro for rcu string to remove duplicate code
btrfs: simplify btrfs_iget
btrfs: lift make_bad_inode into btrfs_iget
btrfs: simplify IS_ERR/PTR_ERR checks
btrfs: btrfs_iget never returns an is_bad_inode inode
btrfs: replace: Reset on-disk dev stats value after replace
btrfs: extent-tree: Remove unused __btrfs_free_block_rsv
btrfs: backref: Use ERR_CAST to return error code
btrfs: Remove redundant btrfs_release_path from btrfs_unlink_subvol
btrfs: Remove root parameter from btrfs_unlink_subvol
btrfs: Remove fs_info from btrfs_add_root_ref
btrfs: Remove fs_info from btrfs_del_root_ref
btrfs: Remove fs_info from btrfs_del_root
btrfs: Remove fs_info from btrfs_delete_delayed_dir_index
...
Pull vfs icache updates from Al Viro:
- NFS mkdir/open_by_handle race fix
- analogous solution for FUSE, replacing the one currently in mainline
- new primitive to be used when discarding halfway set up inodes on
failed object creation; gives sane warranties re icache lookups not
returning such doomed by still not freed inodes. A bunch of
filesystems switched to that animal.
- Miklos' fix for last cycle regression in iget5_locked(); -stable will
need a slightly different variant, unfortunately.
- misc bits and pieces around things icache-related (in adfs and jfs).
* 'work.mkdir' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
jfs: don't bother with make_bad_inode() in ialloc()
adfs: don't put inodes into icache
new helper: inode_fake_hash()
vfs: don't evict uninitialized inode
jfs: switch to discard_new_inode()
ext2: make sure that partially set up inodes won't be returned by ext2_iget()
udf: switch to discard_new_inode()
ufs: switch to discard_new_inode()
btrfs: switch to discard_new_inode()
new primitive: discard_new_inode()
kill d_instantiate_no_diralias()
nfs_instantiate(): prevent multiple aliases for directory inode
When btrfs hits error after modifying fs_devices in
btrfs_init_new_device() (such as btrfs_add_dev_item() returns error), it
leaves everything as is, but frees allocated btrfs_device. As a result,
fs_devices->devices and fs_devices->alloc_list contain already freed
btrfs_device, leading to later use-after-free bug.
Error path also messes the things like ->num_devices. While they go back
to the original value by unscanning btrfs devices, it is safe to revert
them here.
Fixes: 79787eaab4 ("btrfs: replace many BUG_ONs with proper error handling")
Signed-off-by: Naohiro Aota <naota@elisp.net>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's entirely possible that a crafted btrfs image contains overlapping
chunks.
Although we can't detect such problem by tree-checker, it's not a
catastrophic problem, current extent map can already detect such problem
and return -EEXIST.
We just only need to exit gracefully and fail the mount.
Reported-by: Xu Wen <wen.xu@gatech.edu>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=200409
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This patch will introduce chunk <-> dev extent mapping check, to protect
us against invalid dev extents or chunks.
Since chunk mapping is the fundamental infrastructure of btrfs, extra
check at mount time could prevent a lot of unexpected behavior (BUG_ON).
Reported-by: Xu Wen <wen.xu@gatech.edu>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=200403
Link: https://bugzilla.kernel.org/show_bug.cgi?id=200407
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If a crafted image has missing block group items, it could cause
unexpected behavior and breaks the assumption of 1:1 chunk<->block group
mapping.
Although we have the block group -> chunk mapping check, we still need
chunk -> block group mapping check.
This patch will do extra check to ensure each chunk has its
corresponding block group.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=199847
Reported-by: Xu Wen <wen.xu@gatech.edu>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Gu Jinxiang <gujx@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A crafted btrfs image with incorrect chunk<->block group mapping will
trigger a lot of unexpected things as the mapping is essential.
Although the problem can be caught by block group item checker
added in "btrfs: tree-checker: Verify block_group_item", it's still not
sufficient. A sufficiently valid block group item can pass the check
added by the mentioned patch but could fail to match the existing chunk.
This patch will add extra block group -> chunk mapping check, to ensure
we have a completely matching (start, len, flags) chunk for each block
group at mount time.
Here we reuse the original helper find_first_block_group(), which is
already doing the basic bg -> chunk checks, adding further checks of the
start/len and type flags.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=199837
Reported-by: Xu Wen <wen.xu@gatech.edu>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing an incremental send, if we have a file in the parent snapshot
that has prealloc extents beyond EOF and in the send snapshot it got a
hole punch that partially covers the prealloc extents, the send stream,
when replayed by a receiver, can result in a file that has a size bigger
than it should and filled with zeroes past the correct EOF.
For example:
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
$ xfs_io -f -c "falloc -k 0 4M" /mnt/foobar
$ xfs_io -c "pwrite -S 0xea 0 1M" /mnt/foobar
$ btrfs subvolume snapshot -r /mnt /mnt/snap1
$ btrfs send -f /tmp/1.send /mnt/snap1
$ xfs_io -c "fpunch 1M 2M" /mnt/foobar
$ btrfs subvolume snapshot -r /mnt /mnt/snap2
$ btrfs send -f /tmp/2.send -p /mnt/snap1 /mnt/snap2
$ stat --format %s /mnt/snap2/foobar
1048576
$ md5sum /mnt/snap2/foobar
d31659e82e87798acd4669a1e0a19d4f /mnt/snap2/foobar
$ umount /mnt
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt
$ btrfs receive -f /mnt/1.snap /mnt
$ btrfs receive -f /mnt/2.snap /mnt
$ stat --format %s /mnt/snap2/foobar
3145728
# --> should be 1Mb and not 3Mb (which was the end offset of hole
# punch operation)
$ md5sum /mnt/snap2/foobar
117baf295297c2a995f92da725b0b651 /mnt/snap2/foobar
# --> should be d31659e82e87798acd4669a1e0a19d4f as in the original fs
This issue actually happens only since commit ffa7c4296e ("Btrfs: send,
do not issue unnecessary truncate operations"), but before that commit we
were issuing a write operation full of zeroes (to "punch" a hole) which
was extending the file size beyond the correct value and then immediately
issue a truncate operation to the correct size and undoing the previous
write operation. Since the send protocol does not support fallocate, for
extent preallocation and hole punching, fix this by not even attempting
to send a "hole" (regular write full of zeroes) if it starts at an offset
greater then or equals to the file's size. This approach, besides being
much more simple then making send issue the truncate operation, adds the
benefit of avoiding the useless pair of write of zeroes and truncate
operations, saving time and IO at the receiver and reducing the size of
the send stream.
A test case for fstests follows soon.
Fixes: ffa7c4296e ("Btrfs: send, do not issue unnecessary truncate operations")
CC: stable@vger.kernel.org # 4.17+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Don't open-code iget_failed(), don't bother with btrfs_free_path(NULL),
move handling of positive return values of btrfs_lookup_inode() from
btrfs_read_locked_inode() to btrfs_iget() and kill now obviously
pointless ASSERT() in there.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We don't need to check is_bad_inode() after the call of
btrfs_read_locked_inode() - it's exactly the same as checking return
value for being non-zero.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Reviewed-by: David Sterba <dsterba@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
IS_ERR(p) && PTR_ERR(p) == n is a weird way to spell p == ERR_PTR(n).
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Reviewed-by: David Sterba <dsterba@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
Just get rid of pointless checks.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
on-disk devs stats value is updated in btrfs_run_dev_stats(),
which is called during commit transaction, if device->dev_stats_ccnt
is not zero.
Since current replace operation does not touch dev_stats_ccnt,
on-disk dev stats value is not updated. Therefore "btrfs device stats"
may return old device's value after umount/mount
(Example: See "btrfs ins dump-t -t DEV $DEV" after btrfs/100 finish).
Fix this by just incrementing dev_stats_ccnt in
btrfs_dev_replace_finishing() when replace is succeeded and this will
update the values.
Signed-off-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is no user of this function anymore.
This was forgotten to be removed in commit a575ceeb13
("Btrfs: get rid of unused orphan infrastructure").
Signed-off-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use ERR_CAST() instead of void * to make meaning clear.
Signed-off-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Although it is safe to call this on already released paths with no locks
held or extent buffers, removing the redundant btrfs_release_path is
reasonable.
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All callers pass the root tree of dir, we can push that down to the
function itself.
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It can be referenced from the passed transaction handle.
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It can be referenced from the passed transaction handle.
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It can be referenced from the passed transaction handle.
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It can be referenced from the passed transaction handle.
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It can be referenced from the passed transaction handle.
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Leftover after fix e339a6b097 ("Btrfs: __btrfs_mod_ref should always
use no_quota"), that removed it from the function calls but not the
structure.
Signed-off-by: David Sterba <dsterba@suse.com>
The more common use case of send involves creating a RO snapshot and then
use it for a send operation. In this case it's not possible to have inodes
in the snapshot that have a link count of zero (inode with an orphan item)
since during snapshot creation we do the orphan cleanup. However, other
less common use cases for send can end up seeing inodes with a link count
of zero and in this case the send operation fails with a ENOENT error
because any attempt to generate a path for the inode, with the purpose
of creating it or updating it at the receiver, fails since there are no
inode reference items. One use case it to use a regular subvolume for
a send operation after turning it to RO mode or turning a RW snapshot
into RO mode and then using it for a send operation. In both cases, if a
file gets all its hard links deleted while there is an open file
descriptor before turning the subvolume/snapshot into RO mode, the send
operation will encounter an inode with a link count of zero and then
fail with errno ENOENT.
Example using a full send with a subvolume:
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
$ btrfs subvolume create /mnt/sv1
$ touch /mnt/sv1/foo
$ touch /mnt/sv1/bar
# keep an open file descriptor on file bar
$ exec 73</mnt/sv1/bar
$ unlink /mnt/sv1/bar
# Turn the subvolume to RO mode and use it for a full send, while
# holding the open file descriptor.
$ btrfs property set /mnt/sv1 ro true
$ btrfs send -f /tmp/full.send /mnt/sv1
At subvol /mnt/sv1
ERROR: send ioctl failed with -2: No such file or directory
Example using an incremental send with snapshots:
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
$ btrfs subvolume create /mnt/sv1
$ touch /mnt/sv1/foo
$ touch /mnt/sv1/bar
$ btrfs subvolume snapshot -r /mnt/sv1 /mnt/snap1
$ echo "hello world" >> /mnt/sv1/bar
$ btrfs subvolume snapshot -r /mnt/sv1 /mnt/snap2
# Turn the second snapshot to RW mode and delete file foo while
# holding an open file descriptor on it.
$ btrfs property set /mnt/snap2 ro false
$ exec 73</mnt/snap2/foo
$ unlink /mnt/snap2/foo
# Set the second snapshot back to RO mode and do an incremental send.
$ btrfs property set /mnt/snap2 ro true
$ btrfs send -f /tmp/inc.send -p /mnt/snap1 /mnt/snap2
At subvol /mnt/snap2
ERROR: send ioctl failed with -2: No such file or directory
So fix this by ignoring inodes with a link count of zero if we are either
doing a full send or if they do not exist in the parent snapshot (they
are new in the send snapshot), and unlink all paths found in the parent
snapshot when doing an incremental send (and ignoring all other inode
items, such as xattrs and extents).
A test case for fstests follows soon.
CC: stable@vger.kernel.org # 4.4+
Reported-by: Martin Wilck <martin.wilck@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we end up with logging an inode reference item which has the same name
but different index from the one we have persisted, we end up failing when
replaying the log with an errno value of -EEXIST. The error comes from
btrfs_add_link(), which is called from add_inode_ref(), when we are
replaying an inode reference item.
Example scenario where this happens:
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
$ touch /mnt/foo
$ ln /mnt/foo /mnt/bar
$ sync
# Rename the first hard link (foo) to a new name and rename the second
# hard link (bar) to the old name of the first hard link (foo).
$ mv /mnt/foo /mnt/qwerty
$ mv /mnt/bar /mnt/foo
# Create a new file, in the same parent directory, with the old name of
# the second hard link (bar) and fsync this new file.
# We do this instead of calling fsync on foo/qwerty because if we did
# that the fsync resulted in a full transaction commit, not triggering
# the problem.
$ touch /mnt/bar
$ xfs_io -c "fsync" /mnt/bar
<power fail>
$ mount /dev/sdb /mnt
mount: mount /dev/sdb on /mnt failed: File exists
So fix this by checking if a conflicting inode reference exists (same
name, same parent but different index), removing it (and the associated
dir index entries from the parent inode) if it exists, before attempting
to add the new reference.
A test case for fstests follows soon.
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we're trying to make a data reservation and we have to allocate a
data chunk we could leak ret == 1, as do_chunk_alloc() will return 1 if
it allocated a chunk. Since the end of the function is the success path
just return 0.
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The exported helper just calls the static one. There's no obvious reason
to have them separate eg. for performance reasons where the static one
could be better optimized in the same unit. There's a slight decrease in
code size and stack consumption.
Signed-off-by: David Sterba <dsterba@suse.com>
Lock owner and nesting level have been unused since day 1, probably
copy&pasted from the extent_buffer locking scheme without much thinking.
The locking of device replace is simpler and does not need any lock
nesting.
Signed-off-by: David Sterba <dsterba@suse.com>
Added in 58176a9604 ("Btrfs: Add per-root block accounting and sysfs
entries") in 2007, the roots had names exported in sysfs. The code
was commented out in 4df27c4d5c ("Btrfs: change how subvolumes
are organized") and cleaned by 182608c829 ("btrfs: remove old
unused commented out code").
Signed-off-by: David Sterba <dsterba@suse.com>
Requiring a read-write descriptor conflicts both ways with exec,
returning ETXTBSY whenever you try to defrag a program that's currently
being run, or causing intermittent exec failures on a live system being
defragged.
As defrag doesn't change the file's contents in any way, there's no
reason to consider it a rw operation. Thus, let's check only whether
the file could have been opened rw. Such access control is still needed
as currently defrag can use extra disk space, and might trigger bugs.
We return EINVAL when the request is invalid; here it's ok but merely
the user has insufficient privileges. Thus, the EPERM return value
reflects the error better -- as discussed in the identical case for
dedupe.
According to codesearch.debian.net, no userspace program distinguishes
these values beyond strerror().
Signed-off-by: Adam Borowski <kilobyte@angband.pl>
Reviewed-by: David Sterba <dsterba@suse.com>
[ fold the EPERM patch from Adam ]
Signed-off-by: David Sterba <dsterba@suse.com>
We recently ran into the following deadlock involving
btrfs_write_inode():
[ +0.005066] __schedule+0x38e/0x8c0
[ +0.007144] schedule+0x36/0x80
[ +0.006447] bit_wait+0x11/0x60
[ +0.006446] __wait_on_bit+0xbe/0x110
[ +0.007487] ? bit_wait_io+0x60/0x60
[ +0.007319] __inode_wait_for_writeback+0x96/0xc0
[ +0.009568] ? autoremove_wake_function+0x40/0x40
[ +0.009565] inode_wait_for_writeback+0x21/0x30
[ +0.009224] evict+0xb0/0x190
[ +0.006099] iput+0x1a8/0x210
[ +0.006103] btrfs_run_delayed_iputs+0x73/0xc0
[ +0.009047] btrfs_commit_transaction+0x799/0x8c0
[ +0.009567] btrfs_write_inode+0x81/0xb0
[ +0.008008] __writeback_single_inode+0x267/0x320
[ +0.009569] writeback_sb_inodes+0x25b/0x4e0
[ +0.008702] wb_writeback+0x102/0x2d0
[ +0.007487] wb_workfn+0xa4/0x310
[ +0.006794] ? wb_workfn+0xa4/0x310
[ +0.007143] process_one_work+0x150/0x410
[ +0.008179] worker_thread+0x6d/0x520
[ +0.007490] kthread+0x12c/0x160
[ +0.006620] ? put_pwq_unlocked+0x80/0x80
[ +0.008185] ? kthread_park+0xa0/0xa0
[ +0.007484] ? do_syscall_64+0x53/0x150
[ +0.007837] ret_from_fork+0x29/0x40
Writeback calls:
btrfs_write_inode
btrfs_commit_transaction
btrfs_run_delayed_iputs
If iput() is called on that same inode, evict() will wait for writeback
forever.
btrfs_write_inode() was originally added way back in 4730a4bc5b
("btrfs_dirty_inode") to support O_SYNC writes. However, ->write_inode()
hasn't been used for O_SYNC since 148f948ba8 ("vfs: Introduce new
helpers for syncing after writing to O_SYNC file or IS_SYNC inode"), so
btrfs_write_inode() is actually unnecessary (and leads to a bunch of
unnecessary commits). Get rid of it, which also gets rid of the
deadlock.
CC: stable@vger.kernel.org # 3.2+
Signed-off-by: Josef Bacik <jbacik@fb.com>
[Omar: new commit message]
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It can be referenced from the passed transaction handle.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It can be referenced from the passed transaction handle.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function is always passed a well-formed tgtdevice so the fs_info
can be referenced from there.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It can be referenced from the passed 'device' argument which is always
a well-formed device.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It can be referenced from the passed transaction handle.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It can be referenced from the passed srcdev argument.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It can be referenced form the passed transaction handle.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In find_free_extent() under checks: label, we have the following code:
search_start = ALIGN(offset, fs_info->stripesize);
/* move on to the next group */
if (search_start + num_bytes >
block_group->key.objectid + block_group->key.offset) {
btrfs_add_free_space(block_group, offset, num_bytes);
goto loop;
}
if (offset < search_start)
btrfs_add_free_space(block_group, offset,
search_start - offset);
BUG_ON(offset > search_start);
However ALIGN() is rounding up, thus @search_start >= @offset and that
BUG_ON() will never be triggered.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At send.c:full_send_tree() we were setting the 'key' variable in the loop
while never using it later. We were also using two btrfs_key variables
to store the initial key for search and the key found in every iteration
of the loop. So remove this useless key assignment and use the same
btrfs_key variable to store the initial search key and the key found in
each iteration. This was introduced in the initial send commit but was
never used (commit 31db9f7c23 ("Btrfs: introduce BTRFS_IOC_SEND for
btrfs send/receive").
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The data and metadata callback implementation both use the same
function. We can remove the call indirection and intermediate helper
completely.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The data and metadata callback implementation both use the same
function. We can remove the call indirection completely.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All implementations of the callback are trivial and do the same and
there's only one user. Merge everything together.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The end_io callbacks passed to btrfs_wq_submit_bio
(btrfs_submit_bio_done and btree_submit_bio_done) are effectively the
same code, there's no point to do the indirection. Export
btrfs_submit_bio_done and call it directly.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
After splitting the start and end hooks in a758781d4b ("btrfs:
separate types for submit_bio_start and submit_bio_done"), some of
the function arguments were dropped but not removed from the structure.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduced by c6100a4b4e ("Btrfs: replace tree->mapping with
tree->private_data") to be used in run_one_async_done where it got
unused after 736cd52e0c ("Btrfs: remove nr_async_submits and
async_submit_draining").
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Reported in https://bugzilla.kernel.org/show_bug.cgi?id=199839, with an
image that has an invalid chunk type but does not return an error.
Add chunk type check in btrfs_check_chunk_valid, to detect the wrong
type combinations.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=199839
Reported-by: Xu Wen <wen.xu@gatech.edu>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Gu Jinxiang <gujx@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
EXTENT_BUFFER_DUMMY is an awful name for this flag. Buffers which have
this flag set are not in any way dummy. Rather, they are private in the
sense that are not mapped and linked to the global buffer tree. This
flag has subtle implications to the way free_extent_buffer works for
example, as well as controls whether page->mapping->private_lock is held
during extent_buffer release. Pages for an unmapped buffer cannot be
under io, nor can they be written by a 3rd party so taking the lock is
unnecessary.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ EXTENT_BUFFER_UNMAPPED, update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
Remove stale comment since there is no longer an eb->eb_lock and
document the locking expectation with a lockdep_assert_held statement.
No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function used to release one page (and always the first one), but
not anymore since a50924e3a4 ("btrfs: drop constant param
from btrfs_release_extent_buffer_page"). Update the name and comment.
Signed-off-by: David Sterba <dsterba@suse.com>
The purpose of the function is to free all the pages comprising an
extent buffer. This can be achieved with a simple for loop rather than
the slightly more involved 'do {} while' construct. So rewrite the
loop using a 'for' construct. Additionally we can never have an
extent_buffer that has 0 pages so remove the check for index == 0. No
functional changes.
The reversed order used to have a meaning in the past where the first
page served as a blocking point for several callers. See eg
4f2de97ace ("Btrfs: set page->private to the eb").
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit eb14ab8ed2 ("Btrfs: fix page->private races") fixed a genuine
race between extent buffer initialisation and btree_releasepage.
Unfortunately as the code has evolved the comments weren't changed which
made them slightly wrong and they weren't very clear in the fist place.
Fix this by (hopefully) rewording them in a more approachable manner.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Current version of the page unlocking code was added in
727011e07c ("Btrfs: allow metadata blocks larger than the page size")
but even in this commit that particular flag was never used per-se. In
fact, btrfs only uses PageChecked for data pages to identify pages
which have been dirtied but don't have ORDERED bit set. For more
information see 247e743cbe ("Btrfs: Use async helpers to deal with
pages that have been improperly dirtied").
However, this doesn't apply to extent buffer pages. The important bit
here is that the pages are unlocked AFTER the extent buffer has been
properly recorded in the radix tree to avoid races with
btree_releasepage. Let's exploit this fact and simplify the page
unlocking sequence by unlocking the pages in-order and removing the
redundant PageChecked flag setting/clearing.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Remove the remaining code that misused the page cache pages during
device replace and could cause data corruption for compressed nodatasum
extents. Such files do not normally exist but there's a bug that allows
this combination and the corruption was exposed by device replace fixup
code.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are many places that open code the duplicity factor of the block
group profiles, create a common helper. This can be easily extended for
more copies.
Signed-off-by: David Sterba <dsterba@suse.com>
We have assigned the %fs_info->fs_devices in %fs_devices as its not
modified just use it for the mutex_lock().
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The fs_info can be fetched from the transaction handle directly.
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It can be fetched from the transaction handle. In addition, remove the
WARN_ON(trans == NULL) because it's not possible to hit this condition.
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Rename btrfs_parse_early_options() to btrfs_parse_device_options(). As
btrfs_parse_early_options() parses the -o device options and scan the
device provided. So this rename specifies its action. Also the function
name is in line with btrfs_parse_subvol_options().
No functional changes.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since commit 0b246afa62 ("btrfs: root->fs_info cleanup, add fs_info
convenience variables"), the srcroot is no longer used to get
fs_info::nodesize. In fact, it can be dropped after commit 707e8a0715
("btrfs: use nodesize everywhere, kill leafsize").
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduce a small helper, btrfs_mark_bg_unused(), to acquire locks and
add a block group to unused_bgs list.
No functional modification, and only 3 callers are involved.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
do_chunk_alloc implements logic to detect whether there is currently
pending chunk allocation (by means of space_info->chunk_alloc being
set) and if so it loops around to the 'again' label. Additionally,
based on the state of the space_info (e.g. whether it's full or not)
and the return value of should_alloc_chunk() it decides whether this
is a "hard" error (ENOSPC) or we can just return 0.
This patch refactors all of this:
1. Put order to the scattered ifs handling the various cases in an
easy-to-read if {} else if{} branches. This makes clear the various
cases we are interested in handling.
2. Call should_alloc_chunk only once and use the result in the
if/else if constructs. All of this is done under space_info->lock, so
even before multiple calls of should_alloc_chunk were unnecessary.
3. Rewrite the "do {} while()" loop currently implemented via label
into an explicit loop construct.
4. Move the mutex locking for the case where the caller is the one doing
the allocation. For the case where the caller needs to wait a concurrent
allocation, introduce a pair of mutex_lock/mutex_unlock to act as a
barrier and reword the comment.
5. Switch local vars to bool type where pertinent.
All in all this shouldn't introduce any functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In commit b150a4f10d ("Btrfs: use a percpu to keep track of possibly
pinned bytes") we use total_bytes_pinned to track how many bytes we are
going to free in this transaction. When we are close to ENOSPC, we check it
and know if we can make the allocation by commit the current transaction.
For every data/metadata extent we are going to free, we add
total_bytes_pinned in btrfs_free_extent() and btrfs_free_tree_block(), and
release it in unpin_extent_range() when we finish the transaction. So this
is a variable we frequently update but rarely read - just the suitable
use of percpu_counter. But in previous commit we update total_bytes_pinned
by default 32 batch size, making every update essentially a spin lock
protected update. Since every spin lock/unlock operation involves syncing
a globally used variable and some kind of barrier in a SMP system, this is
more expensive than using total_bytes_pinned as a simple atomic64_t.
So fix this by using a customized batch size. Since we only read
total_bytes_pinned when we are close to ENOSPC and fail to allocate new
chunk, we can use a really large batch size and have nearly no penalty
in most cases.
[Test]
We tested the patch on a 4-cores x86 machine:
1. fallocate a 16GiB size test file
2. take snapshot (so all following writes will be COW)
3. run a 180 sec, 4 jobs, 4K random write fio on test file
We also added a temporary lockdep class on percpu_counter's spin lock
used by total_bytes_pinned to track it by lock_stat.
[Results]
unpatched:
lock_stat version 0.4
-----------------------------------------------------------------------
class name con-bounces contentions
waittime-min waittime-max waittime-total waittime-avg acq-bounces
acquisitions holdtime-min holdtime-max holdtime-total holdtime-avg
total_bytes_pinned_percpu: 82 82
0.21 0.61 29.46 0.36 298340
635973 0.09 11.01 173476.25 0.27
patched:
lock_stat version 0.4
-----------------------------------------------------------------------
class name con-bounces contentions
waittime-min waittime-max waittime-total waittime-avg acq-bounces
acquisitions holdtime-min holdtime-max holdtime-total holdtime-avg
total_bytes_pinned_percpu: 1 1
0.62 0.62 0.62 0.62 13601
31542 0.14 9.61 11016.90 0.35
[Analysis]
Since the spin lock only protects a single in-memory variable, the
contentions (number of lock acquisitions that had to wait) in both
unpatched and patched version are low. But when we see acquisitions and
acq-bounces, we get much lower counts in patched version. Here the most
important metric is acq-bounces. It means how many times the lock gets
transferred between different cpus, so the patch can really reduce
cacheline bouncing of spin lock (also the global counter of percpu_counter)
in a SMP system.
Fixes: b150a4f10d ("Btrfs: use a percpu to keep track of possibly pinned bytes")
Signed-off-by: Ethan Lien <ethanlien@synology.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We use customized, nodesize batch value to update dirty_metadata_bytes.
We should also use batch version of compare function or we will easily
goto fast path and get false result from percpu_counter_compare().
Fixes: e2d845211e ("Btrfs: use percpu counter for dirty metadata count")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Ethan Lien <ethanlien@synology.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Return device pointer (with the IS_ERR semantics) from
btrfs_scan_one_device so we don't have to return in through pointer.
And since btrfs_fs_devices can be obtained from btrfs_device, return that.
Signed-off-by: Gu Jinxiang <gujx@cn.fujitsu.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ fixed conflics after recent changes to btrfs_scan_one_device ]
Signed-off-by: David Sterba <dsterba@suse.com>
fs_devices is always passed to btrfs_scan_one_device which overrides it.
In the call stack below fs_devices is passed to btrfs_scan_one_device
from btrfs_mount_root. In btrfs_mount_root the output fs_devices of
this call stack is not used.
btrfs_mount_root
btrfs_parse_early_options
btrfs_scan_one_device
So, it is not necessary to pass fs_devices from btrfs_mount_root, using
a local variable in btrfs_parse_early_options is enough.
Signed-off-by: Gu Jinxiang <gujx@cn.fujitsu.com>
Reviewed-by: Anand Jain <Anand.Jain@oracle.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Technically this extends the critical section covered by uuid_mutex to:
- parse early mount options -- here we can call device scan on paths
that can be passed as 'device=/dev/...'
- scan the device passed to mount
- open the devices related to the fs_devices -- this increases
fs_devices::opened
The race can happen when mount calls one of the scans and there's
another one called eg. by mkfs or 'btrfs dev scan':
Mount Scan
----- ----
scan_one_device (dev1, fsid1)
scan_one_device (dev2, fsid1)
add the device
free stale devices
fsid1 fs_devices::opened == 0
find fsid1:dev1
free fsid1:dev1
if it's the last one,
free fs_devices of fsid1
too
open_devices (dev1, fsid1)
dev1 not found
When fixed, the uuid mutex will make sure that mount will increase
fs_devices::opened and this will not be touched by the racing scan
ioctl.
Reported-and-tested-by: syzbot+909a5177749d7990ffa4@syzkaller.appspotmail.com
Reported-and-tested-by: syzbot+ceb2606025ec1cc3479c@syzkaller.appspotmail.com
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In preparation to take a big lock, move resource initialization before
the critical section. It's not obvious from the diff, the desired order
is:
- initialize mount security options
- allocate temporary fs_info
- allocate superblock buffers
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Prepartory work to fix race between mount and device scan.
btrfs_parse_early_options calls the device scan from mount and we'll
need to let mount completely manage the critical section.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Prepartory work to fix race between mount and device scan.
The callers will have to manage the critical section, eg. mount wants to
scan and then call btrfs_open_devices without the ioctl scan walking in
and modifying the fs devices in the meantime.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Prepartory work to fix race between mount and device scan.
The callers will have to manage the critical section, eg. mount wants to
scan and then call btrfs_open_devices without the ioctl scan walking in
and modifying the fs devices in the meantime.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_free_stale_devices() finds a stale (not opened) device matching
path in the fs_uuid list. We are already under uuid_mutex so when we
check for each fs_devices, hold the device_list_mutex too.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Over the years we named %fs_devices and %devices to represent the
struct btrfs_fs_devices and the struct btrfs_device. So follow the same
scheme here too. No functional changes.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Make sure the device_list_lock is held the whole time:
* when the device is being looked up
* new device is initialized and put to the list
* the list counters are updated (fs_devices::opened, fs_devices::total_devices)
Signed-off-by: Anand Jain <anand.jain@oracle.com>
[ update changelog ]
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_free_stale_devices() looks for device path reused for another
filesystem, and deletes the older fs_devices::device entry.
In preparation to handle locking in device_list_add, move
btrfs_free_stale_devices outside as these two functions serve a
different purpose.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since commit 88c14590cd ("btrfs: use RCU in btrfs_show_devname for
device list traversal") btrfs_show_devname no longer takes
device_list_mutex. As such the deadlock that 0ccd05285e ("btrfs: fix a
possible umount deadlock") aimed to fix no longer exists, we can free
the devices immediatelly and remove the code that does the pending work.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
[ update changelog ]
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function is not used since the alloc_start parameter has been
obsoleted in commit 0d0c71b317 ("btrfs: obsolete and remove
mount option alloc_start").
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since parameter flags is no more used since commit d740760656 ("btrfs:
split parse_early_options() in two"), remove it.
Signed-off-by: Gu Jinxiang <gujx@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In case of deleting the seed device the %cur_devices (seed) and the
%fs_devices (parent) are different. Now, as the parent
fs_devices::total_devices also maintains the total number of devices
including the seed device, so decrement its in-memory value for the
successful seed delete. We are already updating its corresponding
on-disk btrfs_super_block::number_devices value.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 5d23515be6 ("btrfs: Move qgroup rescan on quota enable to
btrfs_quota_enable") not only resulted in an easier to follow code but
it also introduced a subtle bug. It changed the timing when the initial
transaction rescan was happening:
- before the commit: it would happen after transaction commit had occured
- after the commit: it might happen before the transaction was committed
This results in failure to correctly rescan the quota since there could
be data which is still not committed on disk.
This patch aims to fix this by moving the transaction creation/commit
inside btrfs_quota_enable, which allows to schedule the quota commit
after the transaction has been committed.
Fixes: 5d23515be6 ("btrfs: Move qgroup rescan on quota enable to btrfs_quota_enable")
Reported-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com>
Link: https://marc.info/?l=linux-btrfs&m=152999289017582
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add fall-back code to catch failure of full_stripe_write. Proper error
handling from inside run_plug would need more code restructuring as it's
called at arbitrary points by io scheduler.
Signed-off-by: David Sterba <dsterba@suse.com>
Add helper that schedules a given function to run on the rmw workqueue.
This will replace several standalone helpers.
Signed-off-by: David Sterba <dsterba@suse.com>
The loops iterating eb pages use unsigned long, that's an overkill as
we know that there are at most 16 pages (64k / 4k), and 4 by default
(with nodesize 16k).
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Almost all callers pass the start and len as 2 arguments but this is not
necessary, all the information is provided by the eb. By reordering the
calls to num_extent_pages, we don't need the local variables with
start/len.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Functions that get btrfs inode can simply reach the fs_info by
dereferencing the root and this looks a bit more straightforward
compared to the btrfs_sb(...) indirection.
If the transaction handle is available and not NULL it's used instead.
Signed-off-by: David Sterba <dsterba@suse.com>
There are several places when the btrfs inode is converted to the
generic inode, back to btrfs and then passed to btrfs_ino. We can remove
the extra back and forth conversions.
Signed-off-by: David Sterba <dsterba@suse.com>
io_ctl_set_generation() assumes that the generation number shares
the same page with inline CRCs. Let's make sure this is always true.
Signed-off-by: Zhihui Zhang <zzhsuny@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is only usage of the declared devices variable, instead use its
value directly.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are many instances of the %fs_info->fs_devices pointer
dereferences, use a temporary variable instead.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Invalid reloc tree can cause kernel NULL pointer dereference when btrfs
does some cleanup of the reloc roots.
It turns out that fs_info::reloc_ctl can be NULL in
btrfs_recover_relocation() as we allocate relocation control after all
reloc roots have been verified.
So when we hit: note, we haven't called set_reloc_control() thus
fs_info::reloc_ctl is still NULL.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=199833
Reported-by: Xu Wen <wen.xu@gatech.edu>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Tested-by: Gu Jinxiang <gujx@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A crafted image has empty root tree block, which will later cause NULL
pointer dereference.
The following trees should never be empty:
1) Tree root
Must contain at least root items for extent tree, device tree and fs
tree
2) Chunk tree
Or we can't even bootstrap as it contains the mapping.
3) Fs tree
At least inode item for top level inode (.).
4) Device tree
Dev extents for chunks
5) Extent tree
Must have corresponding extent for each chunk.
If any of them is empty, we are sure the fs is corrupted and no need to
mount it.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=199847
Reported-by: Xu Wen <wen.xu@gatech.edu>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Tested-by: Gu Jinxiang <gujx@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A crafted image with invalid block group items could make free space cache
code to cause panic.
We could detect such invalid block group item by checking:
1) Item size
Known fixed value.
2) Block group size (key.offset)
We have an upper limit on block group item (10G)
3) Chunk objectid
Known fixed value.
4) Type
Only 4 valid type values, DATA, METADATA, SYSTEM and DATA|METADATA.
No more than 1 bit set for profile type.
5) Used space
No more than the block group size.
This should allow btrfs to detect and refuse to mount the crafted image.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=199849
Reported-by: Xu Wen <wen.xu@gatech.edu>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Gu Jinxiang <gujx@cn.fujitsu.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Gu Jinxiang <gujx@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The v0 extent type checks are the right case for the unlikely
annotations as we don't expect to ever see them, so let's give the
compiler some hint.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Following the removal of the v0 handling code let's be courteous and
print an error message when such extents are handled. In the cases
where we have a transaction just abort it, otherwise just call
btrfs_handle_fs_error. Both cases result in the FS being re-mounted RO.
In case the error handling would be too intrusive, leave the BUG_ON in
place, like extent_data_ref_count, other proper handling would catch
that earlier.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The v0 compat code was introduced in commit 5d4f98a28c
("Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE)") 9
years ago, which was merged in 2.6.31. This means that the code is
there to support filesystems which are _VERY_ old and if you are using
btrfs on such an old kernel, you have much bigger problems. This coupled
with the fact that no one is likely testing/maintining this code likely
means it has bugs lurking. All things considered I think 43 kernel
releases later it's high time this remnant of the past got removed.
This patch removes all code wrapped in #ifdefs but leaves the BUG_ONs in case
we have a v0 with no support intact as a sort of safety-net.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's only coding style fix not functinal change. When if/else has only
one statement then the braces are not needed.
Signed-off-by: Chengguang Xu <cgxu519@gmx.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's not good to override the error code when failing from
btrfs_getxattr() in btrfs_get_acl() because it hides the real reason of
the failure.
Signed-off-by: Chengguang Xu <cgxu519@gmx.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is no chance to get into -ERANGE error condition because we first
call btrfs_getxattr to get the length of the attribute, then we do a
subsequent call with the size from the first call. Between the 2 calls
the size shouldn't change. So remove the unnecessary -ERANGE error
check.
Signed-off-by: Chengguang Xu <cgxu519@gmx.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In btrfs_get_acl() the first call of btr_getxattr() is for getting the
length of attribute, the value buffer is never used in this case. So
it's better to replace empty string with NULL.
Signed-off-by: Chengguang Xu <cgxu519@gmx.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The caller of btrfs_get_acl() checks error condition so there is no
impact from this change. In practice there is no chance to get into
default case of switch statement because VFS has already checked the
type.
Signed-off-by: Chengguang Xu <cgxu519@gmx.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If type of extent_inline_ref found is not expected, filesystem may have
been corrupted, should return EUCLEAN instead of EINVAL.
Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
struct kiocb carries the ki_pos, so there is no need to pass it as
a separate function parameter.
generic_file_direct_write() increments ki_pos, so we now assign pos
after the function.
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com>
[ rename to btrfs_buffered_write ]
Signed-off-by: David Sterba <dsterba@suse.com>
For easier debugging, print eb->start if level is invalid. Also make
clear if bytenr found is not expected.
Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently the function uses 2 goto labels to properly handle allocation
failures. This could be simplified by simply re-arranging the code so
that allocations are the in the beginning of the function. This allows
to use simple return statements. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Su Yue <suy.fnst@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
Under certain KVM load and LTP tests, it is possible to hit the
following calltrace if quota is enabled:
BTRFS critical (device vda2): unable to find logical 8820195328 length 4096
BTRFS critical (device vda2): unable to find logical 8820195328 length 4096
WARNING: CPU: 0 PID: 49 at ../block/blk-core.c:172 blk_status_to_errno+0x1a/0x30
CPU: 0 PID: 49 Comm: kworker/u2:1 Not tainted 4.12.14-15-default #1 SLE15 (unreleased)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.0.0-prebuilt.qemu-project.org 04/01/2014
Workqueue: btrfs-endio-write btrfs_endio_write_helper [btrfs]
task: ffff9f827b340bc0 task.stack: ffffb4f8c0304000
RIP: 0010:blk_status_to_errno+0x1a/0x30
Call Trace:
submit_extent_page+0x191/0x270 [btrfs]
? btrfs_create_repair_bio+0x130/0x130 [btrfs]
__do_readpage+0x2d2/0x810 [btrfs]
? btrfs_create_repair_bio+0x130/0x130 [btrfs]
? run_one_async_done+0xc0/0xc0 [btrfs]
__extent_read_full_page+0xe7/0x100 [btrfs]
? run_one_async_done+0xc0/0xc0 [btrfs]
read_extent_buffer_pages+0x1ab/0x2d0 [btrfs]
? run_one_async_done+0xc0/0xc0 [btrfs]
btree_read_extent_buffer_pages+0x94/0xf0 [btrfs]
read_tree_block+0x31/0x60 [btrfs]
read_block_for_search.isra.35+0xf0/0x2e0 [btrfs]
btrfs_search_slot+0x46b/0xa00 [btrfs]
? kmem_cache_alloc+0x1a8/0x510
? btrfs_get_token_32+0x5b/0x120 [btrfs]
find_parent_nodes+0x11d/0xeb0 [btrfs]
? leaf_space_used+0xb8/0xd0 [btrfs]
? btrfs_leaf_free_space+0x49/0x90 [btrfs]
? btrfs_find_all_roots_safe+0x93/0x100 [btrfs]
btrfs_find_all_roots_safe+0x93/0x100 [btrfs]
btrfs_find_all_roots+0x45/0x60 [btrfs]
btrfs_qgroup_trace_extent_post+0x20/0x40 [btrfs]
btrfs_add_delayed_data_ref+0x1a3/0x1d0 [btrfs]
btrfs_alloc_reserved_file_extent+0x38/0x40 [btrfs]
insert_reserved_file_extent.constprop.71+0x289/0x2e0 [btrfs]
btrfs_finish_ordered_io+0x2f4/0x7f0 [btrfs]
? pick_next_task_fair+0x2cd/0x530
? __switch_to+0x92/0x4b0
btrfs_worker_helper+0x81/0x300 [btrfs]
process_one_work+0x1da/0x3f0
worker_thread+0x2b/0x3f0
? process_one_work+0x3f0/0x3f0
kthread+0x11a/0x130
? kthread_create_on_node+0x40/0x40
ret_from_fork+0x35/0x40
BTRFS critical (device vda2): unable to find logical 8820195328 length 16384
BTRFS: error (device vda2) in btrfs_finish_ordered_io:3023: errno=-5 IO failure
BTRFS info (device vda2): forced readonly
BTRFS error (device vda2): pending csums is 2887680
[CAUSE]
It's caused by race with block group auto removal:
- There is a meta block group X, which has only one tree block
The tree block belongs to fs tree 257.
- In current transaction, some operation modified fs tree 257
The tree block gets COWed, so the block group X is empty, and marked
as unused, queued to be deleted.
- Some workload (like fsync) wakes up cleaner_kthread()
Which will call btrfs_delete_unused_bgs() to remove unused block
groups.
So block group X along its chunk map get removed.
- Some delalloc work finished for fs tree 257
Quota needs to get the original reference of the extent, which will
read tree blocks of commit root of 257.
Then since the chunk map gets removed, the above warning gets
triggered.
[FIX]
Just let btrfs_delete_unused_bgs() skip block group which still has
pinned bytes.
However there is a minor side effect: currently we only queue empty
blocks at update_block_group(), and such empty block group with pinned
bytes won't go through update_block_group() again, such block group
won't be removed, until it gets new extent allocated and removed.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
With gcc 4.1.2:
fs/btrfs/inode-map.c: In function ‘btrfs_unpin_free_ino’:
fs/btrfs/inode-map.c:241: warning: ‘count’ may be used uninitialized in this function
While this warning is a false-positive, it can easily be killed by
refactoring the code.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
While the regular inode timestamps all use timespec64 now, the i_otime
field is btrfs specific and still needs to be converted to correctly
represent times beyond 2038.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>