Self stored memmap leads to a sparse memory situation which is
unsuitable for workloads that requires large contiguous memory chunks,
so make this an opt-in which needs to be explicitly enabled.
To control this, let memory_hotplug have its own memory space, as
suggested by David, so we can add memory_hotplug.memmap_on_memory
parameter.
Link: https://lkml.kernel.org/r/20210421102701.25051-7-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Physical memory hotadd has to allocate a memmap (struct page array) for
the newly added memory section. Currently, alloc_pages_node() is used
for those allocations.
This has some disadvantages:
a) an existing memory is consumed for that purpose
(eg: ~2MB per 128MB memory section on x86_64)
This can even lead to extreme cases where system goes OOM because
the physically hotplugged memory depletes the available memory before
it is onlined.
b) if the whole node is movable then we have off-node struct pages
which has performance drawbacks.
c) It might be there are no PMD_ALIGNED chunks so memmap array gets
populated with base pages.
This can be improved when CONFIG_SPARSEMEM_VMEMMAP is enabled.
Vmemap page tables can map arbitrary memory. That means that we can
reserve a part of the physically hotadded memory to back vmemmap page
tables. This implementation uses the beginning of the hotplugged memory
for that purpose.
There are some non-obviously things to consider though.
Vmemmap pages are allocated/freed during the memory hotplug events
(add_memory_resource(), try_remove_memory()) when the memory is
added/removed. This means that the reserved physical range is not
online although it is used. The most obvious side effect is that
pfn_to_online_page() returns NULL for those pfns. The current design
expects that this should be OK as the hotplugged memory is considered a
garbage until it is onlined. For example hibernation wouldn't save the
content of those vmmemmaps into the image so it wouldn't be restored on
resume but this should be OK as there no real content to recover anyway
while metadata is reachable from other data structures (e.g. vmemmap
page tables).
The reserved space is therefore (de)initialized during the {on,off}line
events (mhp_{de}init_memmap_on_memory). That is done by extracting page
allocator independent initialization from the regular onlining path.
The primary reason to handle the reserved space outside of
{on,off}line_pages is to make each initialization specific to the
purpose rather than special case them in a single function.
As per above, the functions that are introduced are:
- mhp_init_memmap_on_memory:
Initializes vmemmap pages by calling move_pfn_range_to_zone(), calls
kasan_add_zero_shadow(), and onlines as many sections as vmemmap pages
fully span.
- mhp_deinit_memmap_on_memory:
Offlines as many sections as vmemmap pages fully span, removes the
range from zhe zone by remove_pfn_range_from_zone(), and calls
kasan_remove_zero_shadow() for the range.
The new function memory_block_online() calls mhp_init_memmap_on_memory()
before doing the actual online_pages(). Should online_pages() fail, we
clean up by calling mhp_deinit_memmap_on_memory(). Adjusting of
present_pages is done at the end once we know that online_pages()
succedeed.
On offline, memory_block_offline() needs to unaccount vmemmap pages from
present_pages() before calling offline_pages(). This is necessary because
offline_pages() tears down some structures based on the fact whether the
node or the zone become empty. If offline_pages() fails, we account back
vmemmap pages. If it succeeds, we call mhp_deinit_memmap_on_memory().
Hot-remove:
We need to be careful when removing memory, as adding and
removing memory needs to be done with the same granularity.
To check that this assumption is not violated, we check the
memory range we want to remove and if a) any memory block has
vmemmap pages and b) the range spans more than a single memory
block, we scream out loud and refuse to proceed.
If all is good and the range was using memmap on memory (aka vmemmap pages),
we construct an altmap structure so free_hugepage_table does the right
thing and calls vmem_altmap_free instead of free_pagetable.
Link: https://lkml.kernel.org/r/20210421102701.25051-5-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Let's have a single place (inspired by adjust_managed_page_count())
where we adjust present pages.
In contrast to adjust_managed_page_count(), only memory onlining or
offlining is allowed to modify the number of present pages.
Link: https://lkml.kernel.org/r/20210421102701.25051-4-osalvador@suse.de
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We want {online,offline}_pages to operate on whole memblocks, but
memmap_on_memory will poke pageblock_nr_pages aligned holes in the
beginning, which is a special case we want to allow. Relax the check to
account for that case.
Link: https://lkml.kernel.org/r/20210421102701.25051-3-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
LRU pagevec holds refcount of pages until the pagevec are drained. It
could prevent migration since the refcount of the page is greater than
the expection in migration logic. To mitigate the issue, callers of
migrate_pages drains LRU pagevec via migrate_prep or lru_add_drain_all
before migrate_pages call.
However, it's not enough because pages coming into pagevec after the
draining call still could stay at the pagevec so it could keep
preventing page migration. Since some callers of migrate_pages have
retrial logic with LRU draining, the page would migrate at next trail
but it is still fragile in that it doesn't close the fundamental race
between upcoming LRU pages into pagvec and migration so the migration
failure could cause contiguous memory allocation failure in the end.
To close the race, this patch disables lru caches(i.e, pagevec) during
ongoing migration until migrate is done.
Since it's really hard to reproduce, I measured how many times
migrate_pages retried with force mode(it is about a fallback to a sync
migration) with below debug code.
int migrate_pages(struct list_head *from, new_page_t get_new_page,
..
..
if (rc && reason == MR_CONTIG_RANGE && pass > 2) {
printk(KERN_ERR, "pfn 0x%lx reason %d", page_to_pfn(page), rc);
dump_page(page, "fail to migrate");
}
The test was repeating android apps launching with cma allocation in
background every five seconds. Total cma allocation count was about 500
during the testing. With this patch, the dump_page count was reduced
from 400 to 30.
The new interface is also useful for memory hotplug which currently
drains lru pcp caches after each migration failure. This is rather
suboptimal as it has to disrupt others running during the operation.
With the new interface the operation happens only once. This is also in
line with pcp allocator cache which are disabled for the offlining as
well.
Link: https://lkml.kernel.org/r/20210319175127.886124-1-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Chris Goldsworthy <cgoldswo@codeaurora.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: John Dias <joaodias@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Oliver Sang <oliver.sang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In a system supporting MTE, the linear map must allow reading/writing
allocation tags by setting the memory type as Normal Tagged. Currently,
this is only handled for memory present at boot. Hotplugged memory uses
Normal non-Tagged memory.
Introduce pgprot_mhp() for hotplugged memory and use it in
add_memory_resource(). The arm64 code maps pgprot_mhp() to
pgprot_tagged().
Note that ZONE_DEVICE memory should not be mapped as Tagged and
therefore setting the memory type in arch_add_memory() is not feasible.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Fixes: 0178dc7613 ("arm64: mte: Use Normal Tagged attributes for the linear map")
Reported-by: Patrick Daly <pdaly@codeaurora.org>
Tested-by: Patrick Daly <pdaly@codeaurora.org>
Link: https://lore.kernel.org/r/1614745263-27827-1-git-send-email-pdaly@codeaurora.org
Cc: <stable@vger.kernel.org> # 5.10.x
Cc: Will Deacon <will@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/20210309122601.5543-1-catalin.marinas@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Patch series "mm/memory_hotplug: Pre-validate the address range with platform", v5.
This series adds a mechanism allowing platforms to weigh in and
prevalidate incoming address range before proceeding further with the
memory hotplug. This helps prevent potential platform errors for the
given address range, down the hotplug call chain, which inevitably fails
the hotplug itself.
This mechanism was suggested by David Hildenbrand during another
discussion with respect to a memory hotplug fix on arm64 platform.
https://lore.kernel.org/linux-arm-kernel/1600332402-30123-1-git-send-email-anshuman.khandual@arm.com/
This mechanism focuses on the addressibility aspect and not [sub] section
alignment aspect. Hence check_hotplug_memory_range() and check_pfn_span()
have been left unchanged.
This patch (of 4):
This introduces mhp_range_allowed() which can be called in various memory
hotplug paths to prevalidate the address range which is being added, with
the platform. Then mhp_range_allowed() calls mhp_get_pluggable_range()
which provides applicable address range depending on whether linear
mapping is required or not. For ranges that require linear mapping, it
calls a new arch callback arch_get_mappable_range() which the platform can
override. So the new callback, in turn provides the platform an
opportunity to configure acceptable memory hotplug address ranges in case
there are constraints.
This mechanism will help prevent platform specific errors deep down during
hotplug calls. This drops now redundant
check_hotplug_memory_addressable() check in __add_pages() but instead adds
a VM_BUG_ON() check which would ensure that the range has been validated
with mhp_range_allowed() earlier in the call chain. Besides
mhp_get_pluggable_range() also can be used by potential memory hotplug
callers to avail the allowed physical range which would go through on a
given platform.
This does not really add any new range check in generic memory hotplug but
instead compensates for lost checks in arch_add_memory() where applicable
and check_hotplug_memory_addressable(), with unified mhp_range_allowed().
[akpm@linux-foundation.org: make pagemap_range() return -EINVAL when mhp_range_allowed() fails]
Link: https://lkml.kernel.org/r/1612149902-7867-1-git-send-email-anshuman.khandual@arm.com
Link: https://lkml.kernel.org/r/1612149902-7867-2-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com> # s390
Cc: Will Deacon <will@kernel.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pankaj Gupta <pankaj.gupta@cloud.ionos.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: teawater <teawaterz@linux.alibaba.com>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 108bcc96ef ("mm: add & use zone_end_pfn() and zone_spans_pfn()")
introduced the helper zone_end_pfn() to calculate the zone end pfn. But
update_pgdat_span() forgot to use it.
Use this helper and rename local variable zone_end_pfn to end_pfn to avoid
a naming conflict with the existing zone_end_pfn().
Link: https://lkml.kernel.org/r/20210127093211.37714-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Let's make "MEMHP_MERGE_RESOURCE" consistent with "MHP_NONE", "mhp_t" and
"mhp_flags". As discussed recently [1], "mhp" is our internal acronym for
memory hotplug now.
[1] https://lore.kernel.org/linux-mm/c37de2d0-28a1-4f7d-f944-cfd7d81c334d@redhat.com/
Link: https://lkml.kernel.org/r/20210126115829.10909-1-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Wei Liu <wei.liu@kernel.org>
Reviewed-by: Pankaj Gupta <pankaj.gupta@cloud.ionos.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This renames all 'memhp' instances to 'mhp' except for memhp_default_state
for being a kernel command line option. This is just a clean up and
should not cause a functional change. Let's make it consistent rater than
mixing the two prefixes. In preparation for more users of the 'mhp'
terminology.
Link: https://lkml.kernel.org/r/1611554093-27316-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While pfn_to_online_page() is able to determine pfn_valid() at subsection
granularity it is not able to reliably determine if a given pfn is also
online if the section is mixes ZONE_{NORMAL,MOVABLE} with ZONE_DEVICE.
This means that pfn_to_online_page() may return invalid @page objects.
For example with a memory map like:
100000000-1fbffffff : System RAM
142000000-143002e16 : Kernel code
143200000-143713fff : Kernel rodata
143800000-143b15b7f : Kernel data
144227000-144ffffff : Kernel bss
1fc000000-2fbffffff : Persistent Memory (legacy)
1fc000000-2fbffffff : namespace0.0
This command:
echo 0x1fc000000 > /sys/devices/system/memory/soft_offline_page
...succeeds when it should fail. When it succeeds it touches an
uninitialized page and may crash or cause other damage (see
dissolve_free_huge_page()).
While the memory map above is contrived via the memmap=ss!nn kernel
command line option, the collision happens in practice on shipping
platforms. The memory controller resources that decode spans of physical
address space are a limited resource. One technique platform-firmware
uses to conserve those resources is to share a decoder across 2 devices to
keep the address range contiguous. Unfortunately the unit of operation of
a decoder is 64MiB while the Linux section size is 128MiB. This results
in situations where, without subsection hotplug memory mappings with
different lifetimes collide into one object that can only express one
lifetime.
Update move_pfn_range_to_zone() to flag (SECTION_TAINT_ZONE_DEVICE) a
section that mixes ZONE_DEVICE pfns with other online pfns. With
SECTION_TAINT_ZONE_DEVICE to delineate, pfn_to_online_page() can fall back
to a slow-path check for ZONE_DEVICE pfns in an online section. In the
fast path online_section() for a full ZONE_DEVICE section returns false.
Because the collision case is rare, and for simplicity, the
SECTION_TAINT_ZONE_DEVICE flag is never cleared once set.
[dan.j.williams@intel.com: fix CONFIG_ZONE_DEVICE=n build]
Link: https://lkml.kernel.org/r/CAPcyv4iX+7LAgAeSqx7Zw-Zd=ZV9gBv8Bo7oTbwCOOqJoZ3+Yg@mail.gmail.com
Link: https://lkml.kernel.org/r/161058500675.1840162.7887862152161279354.stgit@dwillia2-desk3.amr.corp.intel.com
Fixes: ba72b4c8cf ("mm/sparsemem: support sub-section hotplug")
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reported-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reported-by: David Hildenbrand <david@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pfn_to_online_page is primarily used to filter out offline or fully
uninitialized pages. pfn_valid resp. online_section_nr have a coarse
per memory section granularity. If a section shared with a partially
offline memory (e.g. part of ZONE_DEVICE) then pfn_to_online_page
would lead to a false positive on some pfns. Fix this by adding
pfn_section_valid check which is subsection aware.
[mhocko@kernel.org: changelog rewrite]
Link: https://lkml.kernel.org/r/161058500148.1840162.4365921007820501696.stgit@dwillia2-desk3.amr.corp.intel.com
Fixes: b13bc35193 ("mm/hotplug: invalid PFNs from pfn_to_online_page()")
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reported-by: David Hildenbrand <david@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: Fix pfn_to_online_page() with respect to ZONE_DEVICE", v4.
A pfn-walker that uses pfn_to_online_page() may inadvertently translate a
pfn as online and in the page allocator, when it is offline managed by a
ZONE_DEVICE mapping (details in Patch 3: ("mm: Teach pfn_to_online_page()
about ZONE_DEVICE section collisions")).
The 2 proposals under consideration are teach pfn_to_online_page() to be
precise in the presence of mixed-zone sections, or teach the memory-add
code to drop the System RAM associated with ZONE_DEVICE collisions. In
order to not regress memory capacity by a few 10s to 100s of MiB the
approach taken in this set is to add precision to pfn_to_online_page().
In the course of validating pfn_to_online_page() a couple other fixes
fell out:
1/ soft_offline_page() fails to drop the reference taken in the
madvise(..., MADV_SOFT_OFFLINE) case.
2/ memory_failure() uses get_dev_pagemap() to lookup ZONE_DEVICE pages,
however that mapping may contain data pages and metadata raw pfns.
Introduce pgmap_pfn_valid() to delineate the 2 types and fail the
handling of raw metadata pfns.
This patch (of 4);
pfn_to_online_page() is already too large to be a macro or an inline
function. In anticipation of further logic changes / growth, move it out
of line.
No functional change, just code movement.
Link: https://lkml.kernel.org/r/161058499000.1840162.702316708443239771.stgit@dwillia2-desk3.amr.corp.intel.com
Link: https://lkml.kernel.org/r/161058499608.1840162.10165648147615238793.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reported-by: Michal Hocko <mhocko@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use the new hugetlb page specific flag HPageMigratable to replace the
page_huge_active interfaces. By it's name, page_huge_active implied that
a huge page was on the active list. However, that is not really what code
checking the flag wanted to know. It really wanted to determine if the
huge page could be migrated. This happens when the page is actually added
to the page cache and/or task page table. This is the reasoning behind
the name change.
The VM_BUG_ON_PAGE() calls in the *_huge_active() interfaces are not
really necessary as we KNOW the page is a hugetlb page. Therefore, they
are removed.
The routine page_huge_active checked for PageHeadHuge before testing the
active bit. This is unnecessary in the case where we hold a reference or
lock and know it is a hugetlb head page. page_huge_active is also called
without holding a reference or lock (scan_movable_pages), and can race
with code freeing the page. The extra check in page_huge_active shortened
the race window, but did not prevent the race. Offline code calling
scan_movable_pages already deals with these races, so removing the check
is acceptable. Add comment to racy code.
[songmuchun@bytedance.com: remove set_page_huge_active() declaration from include/linux/hugetlb.h]
Link: https://lkml.kernel.org/r/CAMZfGtUda+KoAZscU0718TN61cSFwp4zy=y2oZ=+6Z2TAZZwng@mail.gmail.com
Link: https://lkml.kernel.org/r/20210122195231.324857-3-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current memmap_init_zone() only handles memory region inside one zone,
actually memmap_init() does the memmap init of one zone. So rename both
of them accordingly.
Link: https://lkml.kernel.org/r/20210122135956.5946-3-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
VMware observed a performance regression during memmap init on their
platform, and bisected to commit 73a6e474cb ("mm: memmap_init:
iterate over memblock regions rather that check each PFN") causing it.
Before the commit:
[0.033176] Normal zone: 1445888 pages used for memmap
[0.033176] Normal zone: 89391104 pages, LIFO batch:63
[0.035851] ACPI: PM-Timer IO Port: 0x448
With commit
[0.026874] Normal zone: 1445888 pages used for memmap
[0.026875] Normal zone: 89391104 pages, LIFO batch:63
[2.028450] ACPI: PM-Timer IO Port: 0x448
The root cause is the current memmap defer init doesn't work as expected.
Before, memmap_init_zone() was used to do memmap init of one whole zone,
to initialize all low zones of one numa node, but defer memmap init of
the last zone in that numa node. However, since commit 73a6e474cb,
function memmap_init() is adapted to iterater over memblock regions
inside one zone, then call memmap_init_zone() to do memmap init for each
region.
E.g, on VMware's system, the memory layout is as below, there are two
memory regions in node 2. The current code will mistakenly initialize the
whole 1st region [mem 0xab00000000-0xfcffffffff], then do memmap defer to
iniatialize only one memmory section on the 2nd region [mem
0x10000000000-0x1033fffffff]. In fact, we only expect to see that there's
only one memory section's memmap initialized. That's why more time is
costed at the time.
[ 0.008842] ACPI: SRAT: Node 0 PXM 0 [mem 0x00000000-0x0009ffff]
[ 0.008842] ACPI: SRAT: Node 0 PXM 0 [mem 0x00100000-0xbfffffff]
[ 0.008843] ACPI: SRAT: Node 0 PXM 0 [mem 0x100000000-0x55ffffffff]
[ 0.008844] ACPI: SRAT: Node 1 PXM 1 [mem 0x5600000000-0xaaffffffff]
[ 0.008844] ACPI: SRAT: Node 2 PXM 2 [mem 0xab00000000-0xfcffffffff]
[ 0.008845] ACPI: SRAT: Node 2 PXM 2 [mem 0x10000000000-0x1033fffffff]
Now, let's add a parameter 'zone_end_pfn' to memmap_init_zone() to pass
down the real zone end pfn so that defer_init() can use it to judge
whether defer need be taken in zone wide.
Link: https://lkml.kernel.org/r/20201223080811.16211-1-bhe@redhat.com
Link: https://lkml.kernel.org/r/20201223080811.16211-2-bhe@redhat.com
Fixes: commit 73a6e474cb ("mm: memmap_init: iterate over memblock regions rather that check each PFN")
Signed-off-by: Baoquan He <bhe@redhat.com>
Reported-by: Rahul Gopakumar <gopakumarr@vmware.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
vdpa sim refactoring
virtio mem Big Block Mode support
misc cleanus, fixes
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
-----BEGIN PGP SIGNATURE-----
iQFDBAABCAAtFiEEXQn9CHHI+FuUyooNKB8NuNKNVGkFAl/gznEPHG1zdEByZWRo
YXQuY29tAAoJECgfDbjSjVRpu/cIAJSVWVCs/5KVfeOg6NQ5WRK48g58eZoaIS6z
jr5iyCRfoQs3tQgcX0W02X3QwVwesnpepF9FChFwexlh+Te3tWXKaDj3eWBmlJVh
Hg8bMOOiOqY7qh47LsGbmb2pnJ3Tg8uwuTz+w/6VDc43CQa7ganwSl0owqye3ecm
IdGbIIXZQs55FCzM8hwOWWpjsp1C2lRtjefsOc5AbtFjzGk+7767YT+C73UgwcSi
peHbD8YFJTInQj6JCbF7uYYAWHrOFAOssWE3OwKtZJdTdJvE7bMgSZaYvUgHMvFR
gRycqxpLAg6vcuns4qjiYafrywvYwEvTkPIXmMG6IAgNYIPAxK0=
=SmPb
-----END PGP SIGNATURE-----
Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
Pull virtio updates from Michael Tsirkin:
- vdpa sim refactoring
- virtio mem: Big Block Mode support
- misc cleanus, fixes
* tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost: (61 commits)
vdpa: Use simpler version of ida allocation
vdpa: Add missing comment for virtqueue count
uapi: virtio_ids: add missing device type IDs from OASIS spec
uapi: virtio_ids.h: consistent indentions
vhost scsi: fix error return code in vhost_scsi_set_endpoint()
virtio_ring: Fix two use after free bugs
virtio_net: Fix error code in probe()
virtio_ring: Cut and paste bugs in vring_create_virtqueue_packed()
tools/virtio: add barrier for aarch64
tools/virtio: add krealloc_array
tools/virtio: include asm/bug.h
vdpa/mlx5: Use write memory barrier after updating CQ index
vdpa: split vdpasim to core and net modules
vdpa_sim: split vdpasim_virtqueue's iov field in out_iov and in_iov
vdpa_sim: make vdpasim->buffer size configurable
vdpa_sim: use kvmalloc to allocate vdpasim->buffer
vdpa_sim: set vringh notify callback
vdpa_sim: add set_config callback in vdpasim_dev_attr
vdpa_sim: add get_config callback in vdpasim_dev_attr
vdpa_sim: make 'config' generic and usable for any device type
...
virtio-mem soon wants to use offline_and_remove_memory() memory that
exceeds a single Linux memory block (memory_block_size_bytes()). Let's
remove that restriction.
Let's remember the old state and try to restore that if anything goes
wrong. While re-onlining can, in general, fail, it's highly unlikely to
happen (usually only when a notifier fails to allocate memory, and these
are rather rare).
This will be used by virtio-mem to offline+remove memory ranges that are
bigger than a single memory block - for example, with a device block
size of 1 GiB (e.g., gigantic pages in the hypervisor) and a Linux memory
block size of 128MB.
While we could compress the state into 2 bit, using 8 bit is much
easier.
This handling is similar, but different to acpi_scan_try_to_offline():
a) We don't try to offline twice. I am not sure if this CONFIG_MEMCG
optimization is still relevant - it should only apply to ZONE_NORMAL
(where we have no guarantees). If relevant, we can always add it.
b) acpi_scan_try_to_offline() simply onlines all memory in case
something goes wrong. It doesn't restore previous online type. Let's do
that, so we won't overwrite what e.g., user space configured.
Reviewed-by: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Link: https://lore.kernel.org/r/20201112133815.13332-28-david@redhat.com
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
On PowerPC, when dymically removing memory from a system we can see in the
console a lot of messages like this:
[ 186.575389] Offlined Pages 4096
This message is displayed on each LMB (256MB) removed, which means that we
removing 1TB of memory, this message is displayed 4096 times.
Moving it to DEBUG to not flood the console.
Link: https://lkml.kernel.org/r/20201211150157.91399-1-ldufour@linux.ibm.com
Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Cc: Scott Cheloha <cheloha@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memory offlining relies on page isolation to guarantee a forward progress
because pages cannot be reused while they are isolated. But the page
isolation itself doesn't prevent from races while freed pages are stored
on pcp lists and thus can be reused. This can be worked around by
repeated draining of pcplists, as done by commit 9683182612
("mm/memory_hotplug: drain per-cpu pages again during memory offline").
David and Michal would prefer that this race was closed in a way that
callers of page isolation who need stronger guarantees don't need to
repeatedly drain. David suggested disabling pcplists usage completely
during page isolation, instead of repeatedly draining them.
To achieve this without adding special cases in alloc/free fastpath, we
can use the same approach as boot pagesets - when pcp->high is 0, any
pcplist addition will be immediately flushed.
The race can thus be closed by setting pcp->high to 0 and draining
pcplists once, before calling start_isolate_page_range(). The draining
will serialize after processes that already disabled interrupts and read
the old value of pcp->high in free_unref_page_commit(), and processes that
have not yet disabled interrupts, will observe pcp->high == 0 when they
are rescheduled, and skip pcplists. This guarantees no stray pages on
pcplists in zones where isolation happens.
This patch thus adds zone_pcp_disable() and zone_pcp_enable() functions
that page isolation users can call before start_isolate_page_range() and
after unisolating (or offlining) the isolated pages.
Also, drain_all_pages() is optimized to only execute on cpus where
pcplists are not empty. The check can however race with a free to pcplist
that has not yet increased the pcp->count from 0 to 1. Thus make the
drain optionally skip the racy check and drain on all cpus, and use this
option in zone_pcp_disable().
As we have to avoid external updates to high and batch while pcplists are
disabled, we take pcp_batch_high_lock in zone_pcp_disable() and release it
in zone_pcp_enable(). This also synchronizes multiple users of
zone_pcp_disable()/enable().
Currently the only user of this functionality is offline_pages().
[vbabka@suse.cz: add comment, per David]
Link: https://lkml.kernel.org/r/527480ef-ed72-e1c1-52a0-1c5b0113df45@suse.cz
Link: https://lkml.kernel.org/r/20201111092812.11329-8-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Suggested-by: David Hildenbrand <david@redhat.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, pcplists are drained during set_migratetype_isolate() which
means once per pageblock processed start_isolate_page_range(). This is
somewhat wasteful. Moreover, the callers might need different guarantees,
and the draining is currently prone to races and does not guarantee that
no page from isolated pageblock will end up on the pcplist after the
drain.
Better guarantees are added by later patches and require explicit actions
by page isolation users that need them. Thus it makes sense to move the
current imperfect draining to the callers also as a preparation step.
Link: https://lkml.kernel.org/r/20201111092812.11329-7-vbabka@suse.cz
Suggested-by: David Hildenbrand <david@redhat.com>
Suggested-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "arch, mm: improve robustness of direct map manipulation", v7.
During recent discussion about KVM protected memory, David raised a
concern about usage of __kernel_map_pages() outside of DEBUG_PAGEALLOC
scope [1].
Indeed, for architectures that define CONFIG_ARCH_HAS_SET_DIRECT_MAP it is
possible that __kernel_map_pages() would fail, but since this function is
void, the failure will go unnoticed.
Moreover, there's lack of consistency of __kernel_map_pages() semantics
across architectures as some guard this function with #ifdef
DEBUG_PAGEALLOC, some refuse to update the direct map if page allocation
debugging is disabled at run time and some allow modifying the direct map
regardless of DEBUG_PAGEALLOC settings.
This set straightens this out by restoring dependency of
__kernel_map_pages() on DEBUG_PAGEALLOC and updating the call sites
accordingly.
Since currently the only user of __kernel_map_pages() outside
DEBUG_PAGEALLOC is hibernation, it is updated to make direct map accesses
there more explicit.
[1] https://lore.kernel.org/lkml/2759b4bf-e1e3-d006-7d86-78a40348269d@redhat.com
This patch (of 4):
When CONFIG_DEBUG_PAGEALLOC is enabled, it unmaps pages from the kernel
direct mapping after free_pages(). The pages than need to be mapped back
before they could be used. Theese mapping operations use
__kernel_map_pages() guarded with with debug_pagealloc_enabled().
The only place that calls __kernel_map_pages() without checking whether
DEBUG_PAGEALLOC is enabled is the hibernation code that presumes
availability of this function when ARCH_HAS_SET_DIRECT_MAP is set. Still,
on arm64, __kernel_map_pages() will bail out when DEBUG_PAGEALLOC is not
enabled but set_direct_map_invalid_noflush() may render some pages not
present in the direct map and hibernation code won't be able to save such
pages.
To make page allocation debugging and hibernation interaction more robust,
the dependency on DEBUG_PAGEALLOC or ARCH_HAS_SET_DIRECT_MAP has to be
made more explicit.
Start with combining the guard condition and the call to
__kernel_map_pages() into debug_pagealloc_map_pages() and
debug_pagealloc_unmap_pages() functions to emphasize that
__kernel_map_pages() should not be called without DEBUG_PAGEALLOC and use
these new functions to map/unmap pages when page allocation debugging is
enabled.
Link: https://lkml.kernel.org/r/20201109192128.960-1-rppt@kernel.org
Link: https://lkml.kernel.org/r/20201109192128.960-2-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Edgecombe, Rick P" <rick.p.edgecombe@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 369ea8242c ("mm/rmap: update to new mmu_notifier semantic
v2"), the code to check the secondary MMU's page table access bit is
broken for !(TTU_IGNORE_ACCESS) because the page is unmapped from the
secondary MMU's page table before the check. More specifically for those
secondary MMUs which unmap the memory in
mmu_notifier_invalidate_range_start() like kvm.
However memory reclaim is the only user of !(TTU_IGNORE_ACCESS) or the
absence of TTU_IGNORE_ACCESS and it explicitly performs the page table
access check before trying to unmap the page. So, at worst the reclaim
will miss accesses in a very short window if we remove page table access
check in unmapping code.
There is an unintented consequence of !(TTU_IGNORE_ACCESS) for the memcg
reclaim. From memcg reclaim the page_referenced() only account the
accesses from the processes which are in the same memcg of the target page
but the unmapping code is considering accesses from all the processes, so,
decreasing the effectiveness of memcg reclaim.
The simplest solution is to always assume TTU_IGNORE_ACCESS in unmapping
code.
Link: https://lkml.kernel.org/r/20201104231928.1494083-1-shakeelb@google.com
Fixes: 369ea8242c ("mm/rmap: update to new mmu_notifier semantic v2")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The core-mm has a default __weak implementation of phys_to_target_node()
to mirror the weak definition of memory_add_physaddr_to_nid(). That
symbol is exported for modules. However, while the export in
mm/memory_hotplug.c exported the symbol in the configuration cases of:
CONFIG_NUMA_KEEP_MEMINFO=y
CONFIG_MEMORY_HOTPLUG=y
...and:
CONFIG_NUMA_KEEP_MEMINFO=n
CONFIG_MEMORY_HOTPLUG=y
...it failed to export the symbol in the case of:
CONFIG_NUMA_KEEP_MEMINFO=y
CONFIG_MEMORY_HOTPLUG=n
Not only is that broken, but Christoph points out that the kernel should
not be exporting any __weak symbol, which means that
memory_add_physaddr_to_nid() example that phys_to_target_node() copied
is broken too.
Rework the definition of phys_to_target_node() and
memory_add_physaddr_to_nid() to not require weak symbols. Move to the
common arch override design-pattern of an asm header defining a symbol
to replace the default implementation.
The only common header that all memory_add_physaddr_to_nid() producing
architectures implement is asm/sparsemem.h. In fact, powerpc already
defines its memory_add_physaddr_to_nid() helper in sparsemem.h.
Double-down on that observation and define phys_to_target_node() where
necessary in asm/sparsemem.h. An alternate consideration that was
discarded was to put this override in asm/numa.h, but that entangles
with the definition of MAX_NUMNODES relative to the inclusion of
linux/nodemask.h, and requires powerpc to grow a new header.
The dependency on NUMA_KEEP_MEMINFO for DEV_DAX_HMEM_DEVICES is invalid
now that the symbol is properly exported / stubbed in all combinations
of CONFIG_NUMA_KEEP_MEMINFO and CONFIG_MEMORY_HOTPLUG.
[dan.j.williams@intel.com: v4]
Link: https://lkml.kernel.org/r/160461461867.1505359.5301571728749534585.stgit@dwillia2-desk3.amr.corp.intel.com
[dan.j.williams@intel.com: powerpc: fix create_section_mapping compile warning]
Link: https://lkml.kernel.org/r/160558386174.2948926.2740149041249041764.stgit@dwillia2-desk3.amr.corp.intel.com
Fixes: a035b6bf86 ("mm/memory_hotplug: introduce default phys_to_target_node() implementation")
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Randy Dunlap <rdunlap@infradead.org>
Tested-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Link: https://lkml.kernel.org/r/160447639846.1133764.7044090803980177548.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To calculate the correct node to migrate the page for hotplug, we need to
check node id of the page. Wrapper for alloc_migration_target() exists
for this purpose.
However, Vlastimil informs that all migration source pages come from a
single node. In this case, we don't need to check the node id for each
page and we don't need to re-set the target nodemask for each page by
using the wrapper. Set up the migration_target_control once and use it
for all pages.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Roman Gushchin <guro@fb.com>
Link: http://lkml.kernel.org/r/1594622517-20681-10-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As we no longer shuffle via generic_online_page() and when undoing
isolation, we can simplify the comment.
We now effectively shuffle only once (properly) when onlining new memory.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Wei Yang <richard.weiyang@linux.alibaba.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Scott Cheloha <cheloha@linux.ibm.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Wei Liu <wei.liu@kernel.org>
Link: https://lkml.kernel.org/r/20201005121534.15649-6-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
At boot time, or when doing memory hot-add operations, if the links in
sysfs can't be created, the system is still able to run, so just report
the error in the kernel log rather than BUG_ON and potentially make system
unusable because the callpath can be called with locks held.
Since the number of memory blocks managed could be high, the messages are
rate limited.
As a consequence, link_mem_sections() has no status to report anymore.
Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Cc: "Rafael J . Wysocki" <rafael@kernel.org>
Cc: Scott Cheloha <cheloha@linux.ibm.com>
Cc: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200915094143.79181-4-ldufour@linux.ibm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
"mem" in the name already indicates the root, similar to
release_mem_region() and devm_request_mem_region(). Make it implicit.
The only single caller always passes iomem_resource, other parents are not
applicable.
Suggested-by: Wei Yang <richard.weiyang@linux.alibaba.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Kees Cook <keescook@chromium.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Link: https://lkml.kernel.org/r/20200916073041.10355-1-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some add_memory*() users add memory in small, contiguous memory blocks.
Examples include virtio-mem, hyper-v balloon, and the XEN balloon.
This can quickly result in a lot of memory resources, whereby the actual
resource boundaries are not of interest (e.g., it might be relevant for
DIMMs, exposed via /proc/iomem to user space). We really want to merge
added resources in this scenario where possible.
Let's provide a flag (MEMHP_MERGE_RESOURCE) to specify that a resource
either created within add_memory*() or passed via add_memory_resource()
shall be marked mergeable and merged with applicable siblings.
To implement that, we need a kernel/resource interface to mark selected
System RAM resources mergeable (IORESOURCE_SYSRAM_MERGEABLE) and trigger
merging.
Note: We really want to merge after the whole operation succeeded, not
directly when adding a resource to the resource tree (it would break
add_memory_resource() and require splitting resources again when the
operation failed - e.g., due to -ENOMEM).
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Kees Cook <keescook@chromium.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Roger Pau Monné <roger.pau@citrix.com>
Cc: Julien Grall <julien@xen.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Cc: Anton Blanchard <anton@ozlabs.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Leonardo Bras <leobras.c@gmail.com>
Cc: Libor Pechacek <lpechacek@suse.cz>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Cc: "Oliver O'Halloran" <oohall@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Link: https://lkml.kernel.org/r/20200911103459.10306-6-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We soon want to pass flags, e.g., to mark added System RAM resources.
mergeable. Prepare for that.
This patch is based on a similar patch by Oscar Salvador:
https://lkml.kernel.org/r/20190625075227.15193-3-osalvador@suse.de
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Juergen Gross <jgross@suse.com> # Xen related part
Reviewed-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Acked-by: Wei Liu <wei.liu@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Baoquan He <bhe@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Len Brown <lenb@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: "Oliver O'Halloran" <oohall@gmail.com>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Cc: Libor Pechacek <lpechacek@suse.cz>
Cc: Anton Blanchard <anton@ozlabs.org>
Cc: Leonardo Bras <leobras.c@gmail.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Julien Grall <julien@xen.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Roger Pau Monné <roger.pau@citrix.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Link: https://lkml.kernel.org/r/20200911103459.10306-5-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
IORESOURCE_MEM_DRIVER_MANAGED currently uses an unused PnP bit, which is
always set to 0 by hardware. This is far from beautiful (and confusing),
and the bit only applies to SYSRAM. So let's move it out of the
bus-specific (PnP) defined bits.
We'll add another SYSRAM specific bit soon. If we ever need more bits for
other purposes, we can steal some from "desc", or reshuffle/regroup what
we have.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Kees Cook <keescook@chromium.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Anton Blanchard <anton@ozlabs.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Julien Grall <julien@xen.org>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Leonardo Bras <leobras.c@gmail.com>
Cc: Libor Pechacek <lpechacek@suse.cz>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Cc: "Oliver O'Halloran" <oohall@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Roger Pau Monné <roger.pau@citrix.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Wei Liu <wei.liu@kernel.org>
Link: https://lkml.kernel.org/r/20200911103459.10306-3-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "selective merging of system ram resources", v4.
Some add_memory*() users add memory in small, contiguous memory blocks.
Examples include virtio-mem, hyper-v balloon, and the XEN balloon.
This can quickly result in a lot of memory resources, whereby the actual
resource boundaries are not of interest (e.g., it might be relevant for
DIMMs, exposed via /proc/iomem to user space). We really want to merge
added resources in this scenario where possible.
Resources are effectively stored in a list-based tree. Having a lot of
resources not only wastes memory, it also makes traversing that tree more
expensive, and makes /proc/iomem explode in size (e.g., requiring
kexec-tools to manually merge resources when creating a kdump header. The
current kexec-tools resource count limit does not allow for more than
~100GB of memory with a memory block size of 128MB on x86-64).
Let's allow to selectively merge system ram resources by specifying a new
flag for add_memory*(). Patch #5 contains a /proc/iomem example. Only
tested with virtio-mem.
This patch (of 8):
Let's make sure splitting a resource on memory hotunplug will never fail.
This will become more relevant once we merge selected System RAM resources
- then, we'll trigger that case more often on memory hotunplug.
In general, this function is already unlikely to fail. When we remove
memory, we free up quite a lot of metadata (memmap, page tables, memory
block device, etc.). The only reason it could really fail would be when
injecting allocation errors.
All other error cases inside release_mem_region_adjustable() seem to be
sanity checks if the function would be abused in different context - let's
add WARN_ON_ONCE() in these cases so we can catch them.
[natechancellor@gmail.com: fix use of ternary condition in release_mem_region_adjustable]
Link: https://lkml.kernel.org/r/20200922060748.2452056-1-natechancellor@gmail.com
Link: https://github.com/ClangBuiltLinux/linux/issues/1159
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Kees Cook <keescook@chromium.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Cc: Anton Blanchard <anton@ozlabs.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Julien Grall <julien@xen.org>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Leonardo Bras <leobras.c@gmail.com>
Cc: Libor Pechacek <lpechacek@suse.cz>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Cc: "Oliver O'Halloran" <oohall@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Roger Pau Monn <roger.pau@citrix.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Wei Liu <wei.liu@kernel.org>
Link: https://lkml.kernel.org/r/20200911103459.10306-2-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, it can happen that pages are allocated (and freed) via the
buddy before we finished basic memory onlining.
For example, pages are exposed to the buddy and can be allocated before we
actually mark the sections online. Allocated pages could suddenly fail
pfn_to_online_page() checks. We had similar issues with pcp handling,
when pages are allocated+freed before we reach zone_pcp_update() in
online_pages() [1].
Instead, mark all pageblocks MIGRATE_ISOLATE, such that allocations are
impossible. Once done with the heavy lifting, use
undo_isolate_page_range() to move the pages to the MIGRATE_MOVABLE
freelist, marking them ready for allocation. Similar to offline_pages(),
we have to manually adjust zone->nr_isolate_pageblock.
[1] https://lkml.kernel.org/r/1597150703-19003-1-git-send-email-charante@codeaurora.org
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Charan Teja Reddy <charante@codeaurora.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michel Lespinasse <walken@google.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200819175957.28465-11-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On the memory onlining path, we want to start with MIGRATE_ISOLATE, to
un-isolate the pages after memory onlining is complete. Let's allow
passing in the migratetype.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Michel Lespinasse <walken@google.com>
Cc: Charan Teja Reddy <charante@codeaurora.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Link: https://lkml.kernel.org/r/20200819175957.28465-10-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We don't allow to offline memory with holes, all boot memory is online,
and all hotplugged memory cannot have holes.
We can now simplify onlining of pages. As we only allow to online/offline
full sections and sections always span full MAX_ORDER_NR_PAGES, we can
just process MAX_ORDER - 1 pages without further special handling.
The number of onlined pages simply corresponds to the number of pages we
were requested to online.
While at it, refine the comment regarding the callback not exposing all
pages to the buddy.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Charan Teja Reddy <charante@codeaurora.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michel Lespinasse <walken@google.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200819175957.28465-8-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We make sure that we cannot have any memory holes right at the beginning
of offline_pages() and we only support to online/offline full sections.
Both, sections and pageblocks are a power of two in size, and sections
always span full pageblocks.
We can directly calculate the number of isolated pageblocks from nr_pages.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Charan Teja Reddy <charante@codeaurora.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michel Lespinasse <walken@google.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200819175957.28465-6-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We make sure that we cannot have any memory holes right at the beginning
of offline_pages(). We no longer need walk_system_ram_range() and can
call test_pages_isolated() and __offline_isolated_pages() directly.
offlined_pages always corresponds to nr_pages, so we can simplify that.
[akpm@linux-foundation.org: patch conflict resolution]
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Charan Teja Reddy <charante@codeaurora.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michel Lespinasse <walken@google.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200819175957.28465-4-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Already two people (including me) tried to offline subsections, because
the function looks like it can deal with it. But we really can only
online/offline full sections that are properly aligned (e.g., we can only
mark full sections online/offline via SECTION_IS_ONLINE).
Add a simple safety net to document the restriction now. Current users
(core and powernv/memtrace) respect these restrictions.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Charan Teja Reddy <charante@codeaurora.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michel Lespinasse <walken@google.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200819175957.28465-3-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/memory_hotplug: online_pages()/offline_pages() cleanups", v2.
These are a bunch of cleanups for online_pages()/offline_pages() and
related code, mostly getting rid of memory hole handling that is no longer
necessary. There is only a single walk_system_ram_range() call left in
offline_pages(), to make sure we don't have any memory holes. I had some
of these patches lying around for a longer time but didn't have time to
polish them.
In addition, the last patch marks all pageblocks of memory to get onlined
MIGRATE_ISOLATE, so pages that have just been exposed to the buddy cannot
get allocated before onlining is complete. Once heavy lifting is done,
the pageblocks are set to MIGRATE_MOVABLE, such that allocations are
possible.
I played with DIMMs and virtio-mem on x86-64 and didn't spot any
surprises. I verified that the numer of isolated pageblocks is correctly
handled when onlining/offlining.
This patch (of 10):
There is only a single user, offline_pages(). Let's inline, to make
it look more similar to online_pages().
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Charan Teja Reddy <charante@codeaurora.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Link: https://lkml.kernel.org/r/20200819175957.28465-1-david@redhat.com
Link: https://lkml.kernel.org/r/20200819175957.28465-2-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In preparation to set a fallback value for dev_dax->target_node, introduce
generic fallback helpers for phys_to_target_node()
A generic implementation based on node-data or memblock was proposed, but
as noted by Mike:
"Here again, I would prefer to add a weak default for
phys_to_target_node() because the "generic" implementation is not really
generic.
The fallback to reserved ranges is x86 specfic because on x86 most of
the reserved areas is not in memblock.memory. AFAIK, no other
architecture does this."
The info message in the generic memory_add_physaddr_to_nid()
implementation is fixed up to properly reflect that
memory_add_physaddr_to_nid() communicates "online" node info and
phys_to_target_node() indicates "target / to-be-onlined" node info.
[akpm@linux-foundation.org: fix CONFIG_MEMORY_HOTPLUG=n build]
Link: https://lkml.kernel.org/r/202008252130.7YrHIyMI%25lkp@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Jia He <justin.he@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brice Goglin <Brice.Goglin@inria.fr>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: David Airlie <airlied@linux.ie>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Will Deacon <will@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Hulk Robot <hulkci@huawei.com>
Cc: Jason Yan <yanaijie@huawei.com>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: kernel test robot <lkp@intel.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Vivek Goyal <vgoyal@redhat.com>
Link: https://lkml.kernel.org/r/159643097768.4062302.3135192588966888630.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In register_mem_sect_under_node() the system_state's value is checked to
detect whether the call is made during boot time or during an hot-plug
operation. Unfortunately, that check against SYSTEM_BOOTING is wrong
because regular memory is registered at SYSTEM_SCHEDULING state. In
addition, memory hot-plug operation can be triggered at this system
state by the ACPI [1]. So checking against the system state is not
enough.
The consequence is that on system with interleaved node's ranges like this:
Early memory node ranges
node 1: [mem 0x0000000000000000-0x000000011fffffff]
node 2: [mem 0x0000000120000000-0x000000014fffffff]
node 1: [mem 0x0000000150000000-0x00000001ffffffff]
node 0: [mem 0x0000000200000000-0x000000048fffffff]
node 2: [mem 0x0000000490000000-0x00000007ffffffff]
This can be seen on PowerPC LPAR after multiple memory hot-plug and
hot-unplug operations are done. At the next reboot the node's memory
ranges can be interleaved and since the call to link_mem_sections() is
made in topology_init() while the system is in the SYSTEM_SCHEDULING
state, the node's id is not checked, and the sections registered to
multiple nodes:
$ ls -l /sys/devices/system/memory/memory21/node*
total 0
lrwxrwxrwx 1 root root 0 Aug 24 05:27 node1 -> ../../node/node1
lrwxrwxrwx 1 root root 0 Aug 24 05:27 node2 -> ../../node/node2
In that case, the system is able to boot but if later one of theses
memory blocks is hot-unplugged and then hot-plugged, the sysfs
inconsistency is detected and this is triggering a BUG_ON():
kernel BUG at /Users/laurent/src/linux-ppc/mm/memory_hotplug.c:1084!
Oops: Exception in kernel mode, sig: 5 [#1]
LE PAGE_SIZE=64K MMU=Hash SMP NR_CPUS=2048 NUMA pSeries
Modules linked in: rpadlpar_io rpaphp pseries_rng rng_core vmx_crypto gf128mul binfmt_misc ip_tables x_tables xfs libcrc32c crc32c_vpmsum autofs4
CPU: 8 PID: 10256 Comm: drmgr Not tainted 5.9.0-rc1+ #25
Call Trace:
add_memory_resource+0x23c/0x340 (unreliable)
__add_memory+0x5c/0xf0
dlpar_add_lmb+0x1b4/0x500
dlpar_memory+0x1f8/0xb80
handle_dlpar_errorlog+0xc0/0x190
dlpar_store+0x198/0x4a0
kobj_attr_store+0x30/0x50
sysfs_kf_write+0x64/0x90
kernfs_fop_write+0x1b0/0x290
vfs_write+0xe8/0x290
ksys_write+0xdc/0x130
system_call_exception+0x160/0x270
system_call_common+0xf0/0x27c
This patch addresses the root cause by not relying on the system_state
value to detect whether the call is due to a hot-plug operation. An
extra parameter is added to link_mem_sections() detailing whether the
operation is due to a hot-plug operation.
[1] According to Oscar Salvador, using this qemu command line, ACPI
memory hotplug operations are raised at SYSTEM_SCHEDULING state:
$QEMU -enable-kvm -machine pc -smp 4,sockets=4,cores=1,threads=1 -cpu host -monitor pty \
-m size=$MEM,slots=255,maxmem=4294967296k \
-numa node,nodeid=0,cpus=0-3,mem=512 -numa node,nodeid=1,mem=512 \
-object memory-backend-ram,id=memdimm0,size=134217728 -device pc-dimm,node=0,memdev=memdimm0,id=dimm0,slot=0 \
-object memory-backend-ram,id=memdimm1,size=134217728 -device pc-dimm,node=0,memdev=memdimm1,id=dimm1,slot=1 \
-object memory-backend-ram,id=memdimm2,size=134217728 -device pc-dimm,node=0,memdev=memdimm2,id=dimm2,slot=2 \
-object memory-backend-ram,id=memdimm3,size=134217728 -device pc-dimm,node=0,memdev=memdimm3,id=dimm3,slot=3 \
-object memory-backend-ram,id=memdimm4,size=134217728 -device pc-dimm,node=1,memdev=memdimm4,id=dimm4,slot=4 \
-object memory-backend-ram,id=memdimm5,size=134217728 -device pc-dimm,node=1,memdev=memdimm5,id=dimm5,slot=5 \
-object memory-backend-ram,id=memdimm6,size=134217728 -device pc-dimm,node=1,memdev=memdimm6,id=dimm6,slot=6 \
Fixes: 4fbce63391 ("mm/memory_hotplug.c: make register_mem_sect_under_node() a callback of walk_memory_range()")
Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Cc: Scott Cheloha <cheloha@linux.ibm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20200915094143.79181-3-ldufour@linux.ibm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: fix memory to node bad links in sysfs", v3.
Sometimes, firmware may expose interleaved memory layout like this:
Early memory node ranges
node 1: [mem 0x0000000000000000-0x000000011fffffff]
node 2: [mem 0x0000000120000000-0x000000014fffffff]
node 1: [mem 0x0000000150000000-0x00000001ffffffff]
node 0: [mem 0x0000000200000000-0x000000048fffffff]
node 2: [mem 0x0000000490000000-0x00000007ffffffff]
In that case, we can see memory blocks assigned to multiple nodes in
sysfs:
$ ls -l /sys/devices/system/memory/memory21
total 0
lrwxrwxrwx 1 root root 0 Aug 24 05:27 node1 -> ../../node/node1
lrwxrwxrwx 1 root root 0 Aug 24 05:27 node2 -> ../../node/node2
-rw-r--r-- 1 root root 65536 Aug 24 05:27 online
-r--r--r-- 1 root root 65536 Aug 24 05:27 phys_device
-r--r--r-- 1 root root 65536 Aug 24 05:27 phys_index
drwxr-xr-x 2 root root 0 Aug 24 05:27 power
-r--r--r-- 1 root root 65536 Aug 24 05:27 removable
-rw-r--r-- 1 root root 65536 Aug 24 05:27 state
lrwxrwxrwx 1 root root 0 Aug 24 05:25 subsystem -> ../../../../bus/memory
-rw-r--r-- 1 root root 65536 Aug 24 05:25 uevent
-r--r--r-- 1 root root 65536 Aug 24 05:27 valid_zones
The same applies in the node's directory with a memory21 link in both
the node1 and node2's directory.
This is wrong but doesn't prevent the system to run. However when
later, one of these memory blocks is hot-unplugged and then hot-plugged,
the system is detecting an inconsistency in the sysfs layout and a
BUG_ON() is raised:
kernel BUG at /Users/laurent/src/linux-ppc/mm/memory_hotplug.c:1084!
LE PAGE_SIZE=64K MMU=Hash SMP NR_CPUS=2048 NUMA pSeries
Modules linked in: rpadlpar_io rpaphp pseries_rng rng_core vmx_crypto gf128mul binfmt_misc ip_tables x_tables xfs libcrc32c crc32c_vpmsum autofs4
CPU: 8 PID: 10256 Comm: drmgr Not tainted 5.9.0-rc1+ #25
Call Trace:
add_memory_resource+0x23c/0x340 (unreliable)
__add_memory+0x5c/0xf0
dlpar_add_lmb+0x1b4/0x500
dlpar_memory+0x1f8/0xb80
handle_dlpar_errorlog+0xc0/0x190
dlpar_store+0x198/0x4a0
kobj_attr_store+0x30/0x50
sysfs_kf_write+0x64/0x90
kernfs_fop_write+0x1b0/0x290
vfs_write+0xe8/0x290
ksys_write+0xdc/0x130
system_call_exception+0x160/0x270
system_call_common+0xf0/0x27c
This has been seen on PowerPC LPAR.
The root cause of this issue is that when node's memory is registered,
the range used can overlap another node's range, thus the memory block
is registered to multiple nodes in sysfs.
There are two issues here:
(a) The sysfs memory and node's layouts are broken due to these
multiple links
(b) The link errors in link_mem_sections() should not lead to a system
panic.
To address (a) register_mem_sect_under_node should not rely on the
system state to detect whether the link operation is triggered by a hot
plug operation or not. This is addressed by the patches 1 and 2 of this
series.
Issue (b) will be addressed separately.
This patch (of 2):
The memmap_context enum is used to detect whether a memory operation is
due to a hot-add operation or happening at boot time.
Make it general to the hotplug operation and rename it as
meminit_context.
There is no functional change introduced by this patch
Suggested-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J . Wysocki" <rafael@kernel.org>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Cc: Scott Cheloha <cheloha@linux.ibm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20200915094143.79181-1-ldufour@linux.ibm.com
Link: https://lkml.kernel.org/r/20200915132624.9723-1-ldufour@linux.ibm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a race during page offline that can lead to infinite loop:
a page never ends up on a buddy list and __offline_pages() keeps
retrying infinitely or until a termination signal is received.
Thread#1 - a new process:
load_elf_binary
begin_new_exec
exec_mmap
mmput
exit_mmap
tlb_finish_mmu
tlb_flush_mmu
release_pages
free_unref_page_list
free_unref_page_prepare
set_pcppage_migratetype(page, migratetype);
// Set page->index migration type below MIGRATE_PCPTYPES
Thread#2 - hot-removes memory
__offline_pages
start_isolate_page_range
set_migratetype_isolate
set_pageblock_migratetype(page, MIGRATE_ISOLATE);
Set migration type to MIGRATE_ISOLATE-> set
drain_all_pages(zone);
// drain per-cpu page lists to buddy allocator.
Thread#1 - continue
free_unref_page_commit
migratetype = get_pcppage_migratetype(page);
// get old migration type
list_add(&page->lru, &pcp->lists[migratetype]);
// add new page to already drained pcp list
Thread#2
Never drains pcp again, and therefore gets stuck in the loop.
The fix is to try to drain per-cpu lists again after
check_pages_isolated_cb() fails.
Fixes: c52e75935f ("mm: remove extra drain pages on pcp list")
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20200903140032.380431-1-pasha.tatashin@soleen.com
Link: https://lkml.kernel.org/r/20200904151448.100489-2-pasha.tatashin@soleen.com
Link: http://lkml.kernel.org/r/20200904070235.GA15277@dhcp22.suse.cz
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The thp prefix is more frequently used than hpage and we should be
consistent between the various functions.
[akpm@linux-foundation.org: fix mm/migrate.c]
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Link: http://lkml.kernel.org/r/20200629151959.15779-6-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are some similar functions for migration target allocation. Since
there is no fundamental difference, it's better to keep just one rather
than keeping all variants. This patch implements base migration target
allocation function. In the following patches, variants will be converted
to use this function.
Changes should be mechanical, but, unfortunately, there are some
differences. First, some callers' nodemask is assgined to NULL since NULL
nodemask will be considered as all available nodes, that is,
&node_states[N_MEMORY]. Second, for hugetlb page allocation, gfp_mask is
redefined as regular hugetlb allocation gfp_mask plus __GFP_THISNODE if
user provided gfp_mask has it. This is because future caller of this
function requires to set this node constaint. Lastly, if provided nodeid
is NUMA_NO_NODE, nodeid is set up to the node where migration source
lives. It helps to remove simple wrappers for setting up the nodeid.
Note that PageHighmem() call in previous function is changed to open-code
"is_highmem_idx()" since it provides more readability.
[akpm@linux-foundation.org: tweak patch title, per Vlastimil]
[akpm@linux-foundation.org: fix typo in comment]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Roman Gushchin <guro@fb.com>
Link: http://lkml.kernel.org/r/1594622517-20681-6-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When onlining a first memory block in a zone, pcp lists are not updated
thus pcp struct will have the default setting of ->high = 0,->batch = 1.
This means till the second memory block in a zone(if it have) is onlined
the pcp lists of this zone will not contain any pages because pcp's
->count is always greater than ->high thus free_pcppages_bulk() is called
to free batch size(=1) pages every time system wants to add a page to the
pcp list through free_unref_page().
To put this in a word, system is not using benefits offered by the pcp
lists when there is a single onlineable memory block in a zone. Correct
this by always updating the pcp lists when memory block is onlined.
Fixes: 1f522509c7 ("mem-hotplug: avoid multiple zones sharing same boot strapping boot_pageset")
Signed-off-by: Charan Teja Reddy <charante@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Link: http://lkml.kernel.org/r/1596372896-15336-1-git-send-email-charante@codeaurora.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is to introduce a general dummy helper. memory_add_physaddr_to_nid()
is a fallback option to get the nid in case NUMA_NO_NID is detected.
After this patch, arm64/sh/s390 can simply use the general dummy version.
PowerPC/x86/ia64 will still use their specific version.
This is the preparation to set a fallback value for dev_dax->target_node.
Signed-off-by: Jia He <justin.he@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Rich Felker <dalias@libc.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Chuhong Yuan <hslester96@gmail.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@Huawei.com>
Cc: Kaly Xin <Kaly.Xin@arm.com>
Link: http://lkml.kernel.org/r/20200710031619.18762-2-justin.he@arm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>