Adopt the use of xprt_pin_rqst to eliminate contention between
Call-side users of rb_lock and the use of rb_lock in
rpcrdma_reply_handler.
This replaces the mechanism introduced in 431af645cf ("xprtrdma:
Fix client lock-up after application signal fires").
Use recv_lock to quickly find the completing rqst, pin it, then
drop the lock. At that point invalidation and pull-up of the Reply
XDR can be done. Both are often expensive operations.
Finally, take recv_lock again to signal completion to the RPC
layer. It also protects adjustment of "cwnd".
This greatly reduces the amount of time a lock is held by the
reply handler. Comparing lock_stat results shows a marked decrease
in contention on rb_lock and recv_lock.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
[trond.myklebust@primarydata.com: Remove call to rpcrdma_buffer_put() from
the "out_norqst:" path in rpcrdma_reply_handler.]
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Initialize an xdr_stream at the top of rpcrdma_marshal_req(), and
use it to encode the fixed transport header fields. This xdr_stream
will be used to encode the chunk lists in a subsequent patch.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: The caller already has rpcrdma_xprt, so pass that directly
instead. And provide a documenting comment for this critical
function.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
After transport instance creation, these function pointers never
change. Mark them as constant to prevent their use as an attack
vector for code injections.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
After a signal, the RPC client aborts synchronous RPCs running on
behalf of the signaled application.
The server is still executing those RPCs, and will write the results
back into the client's memory when it's done. By the time the server
writes the results, that memory is likely being used for other
purposes. Therefore xprtrdma has to immediately invalidate all
memory regions used by those aborted RPCs to prevent the server's
writes from clobbering that re-used memory.
With FMR memory registration, invalidation takes a relatively long
time. In fact, the invalidation is often still running when the
server tries to write the results into the memory regions that are
being invalidated.
This sets up a race between two processes:
1. After the signal, xprt_rdma_free calls ro_unmap_safe.
2. While ro_unmap_safe is still running, the server replies and
rpcrdma_reply_handler runs, calling ro_unmap_sync.
Both processes invoke ib_unmap_fmr on the same FMR.
The mlx4 driver allows two ib_unmap_fmr calls on the same FMR at
the same time, but HCAs generally don't tolerate this. Sometimes
this can result in a system crash.
If the HCA happens to survive, rpcrdma_reply_handler continues. It
removes the rpc_rqst from rq_list and releases the transport_lock.
This enables xprt_rdma_free to run in another process, and the
rpc_rqst is released while rpcrdma_reply_handler is still waiting
for the ib_unmap_fmr call to finish.
But further down in rpcrdma_reply_handler, the transport_lock is
taken again, and "rqst" is dereferenced. If "rqst" has already been
released, this triggers a general protection fault. Since bottom-
halves are disabled, the system locks up.
Address both issues by reversing the order of the xprt_lookup_rqst
call and the ro_unmap_sync call. Introduce a separate lookup
mechanism for rpcrdma_req's to enable calling ro_unmap_sync before
xprt_lookup_rqst. Now the handler takes the transport_lock once
and holds it for the XID lookup and RPC completion.
BugLink: https://bugzilla.linux-nfs.org/show_bug.cgi?id=305
Fixes: 68791649a7 ('xprtrdma: Invalidate in the RPC reply ... ')
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
The device driver for the underlying physical device associated
with an RPC-over-RDMA transport can be removed while RPC-over-RDMA
transports are still in use (ie, while NFS filesystems are still
mounted and active). The IB core performs a connection event upcall
to request that consumers free all RDMA resources associated with
a transport.
There may be pending RPCs when this occurs. Care must be taken to
release associated resources without leaving references that can
trigger a subsequent crash if a signal or soft timeout occurs. We
rely on the caller of the transport's ->close method to ensure that
the previous RPC task has invoked xprt_release but the transport
remains write-locked.
A DEVICE_REMOVE upcall forces a disconnect then sleeps. When ->close
is invoked, it destroys the transport's H/W resources, then wakes
the upcall, which completes and allows the core driver unload to
continue.
BugLink: https://bugzilla.linux-nfs.org/show_bug.cgi?id=266
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
In order to unload a device driver and reload it, xprtrdma will need
to close a transport's interface adapter, and then call
rpcrdma_ia_open again, possibly finding a different interface
adapter.
Make rpcrdma_ia_open safe to call on the same transport multiple
times.
This is a refactoring change only.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Current NFS clients rely on connection loss to determine when to
retransmit. In particular, for protocols like NFSv4, clients no
longer rely on RPC timeouts to drive retransmission: NFSv4 servers
are required to terminate a connection when they need a client to
retransmit pending RPCs.
When a server is no longer reachable, either because it has crashed
or because the network path has broken, the server cannot actively
terminate a connection. Thus NFS clients depend on transport-level
keepalive to determine when a connection must be replaced and
pending RPCs retransmitted.
However, RDMA RC connections do not have a native keepalive
mechanism. If an NFS/RDMA server crashes after a client has sent
RPCs successfully (an RC ACK has been received for all OTW RDMA
requests), there is no way for the client to know the connection is
moribund.
In addition, new RDMA requests are subject to the RPC-over-RDMA
credit limit. If the client has consumed all granted credits with
NFS traffic, it is not allowed to send another RDMA request until
the server replies. Thus it has no way to send a true keepalive when
the workload has already consumed all credits with pending RPCs.
To address this, forcibly disconnect a transport when an RPC times
out. This prevents moribund connections from stopping the
detection of failover or other configuration changes on the server.
Note that even if the connection is still good, retransmitting
any RPC will trigger a disconnect thanks to this logic in
xprt_rdma_send_request:
/* Must suppress retransmit to maintain credits */
if (req->rl_connect_cookie == xprt->connect_cookie)
goto drop_connection;
req->rl_connect_cookie = xprt->connect_cookie;
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Sriharsha (sriharsha.basavapatna@broadcom.com) reports an occasional
double DMA unmap of an FRWR MR when a connection is lost. I see one
way this can happen.
When a request requires more than one segment or chunk,
rpcrdma_marshal_req loops, invoking ->frwr_op_map for each segment
(MR) in each chunk. Each call posts a FASTREG Work Request to
register one MR.
Now suppose that the transport connection is lost part-way through
marshaling this request. As part of recovering and resetting that
req, rpcrdma_marshal_req invokes ->frwr_op_unmap_safe, which hands
all the req's registered FRWRs to the MR recovery thread.
But note: FRWR registration is asynchronous. So it's possible that
some of these "already registered" FRWRs are fully registered, and
some are still waiting for their FASTREG WR to complete.
When the connection is lost, the "already registered" frmrs are
marked FRMR_IS_VALID, and the "still waiting" WRs flush. Then
frwr_wc_fastreg marks these frmrs FRMR_FLUSHED_FR.
But thanks to ->frwr_op_unmap_safe, the MR recovery thread is doing
an unreg / alloc_mr, a DMA unmap, and marking each of these frwrs
FRMR_IS_INVALID, at the same time frwr_wc_fastreg might be running.
- If the recovery thread runs last, then the frmr is marked
FRMR_IS_INVALID, and life continues.
- If frwr_wc_fastreg runs last, the frmr is marked FRMR_FLUSHED_FR,
but the recovery thread has already DMA unmapped that MR. When
->frwr_op_map later re-uses this frmr, it sees it is not marked
FRMR_IS_INVALID, and tries to recover it before using it, resulting
in a second DMA unmap of the same MR.
The fix is to guarantee in-flight FASTREG WRs have flushed before MR
recovery runs on those FRWRs. Thus we depend on ro_unmap_safe
(called from xprt_rdma_send_request on retransmit, or from
xprt_rdma_free) to clean up old registrations as needed.
Reported-by: Sriharsha Basavapatna <sriharsha.basavapatna@broadcom.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Sriharsha Basavapatna <sriharsha.basavapatna@broadcom.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Commit d5440e27d3 ("xprtrdma: Enable pad optimization") made the
Linux client omit XDR round-up padding in normal Read and Write
chunks so that the client doesn't have to register and invalidate
3-byte memory regions that contain no real data.
Unfortunately, my cheery 2014 assessment that this optimization "is
supported now by both Linux and Solaris servers" was premature.
We've found bugs in Solaris in this area since commit d5440e27d3
("xprtrdma: Enable pad optimization") was merged (SYMLINK is the
main offender).
So for maximum interoperability, I'm disabling this optimization
again. If a CM private message is exchanged when connecting, the
client recognizes that the server is Linux, and enables the
optimization for that connection.
Until now the Solaris server bugs did not impact common operations,
and were thus largely benign. Soon, less capable devices on Linux
NFS/RDMA clients will make use of Read chunks more often, and these
Solaris bugs will prevent interoperation in more cases.
Fixes: 677eb17e94 ("xprtrdma: Fix XDR tail buffer marshalling")
Cc: stable@vger.kernel.org # v4.9+
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Micro-optimization: Most of the time, calls to ro_unmap_safe are
expensive no-ops. Call only when there is work to do.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
The Version One default inline threshold is still 1KB. But allow
testing with thresholds up to 64KB.
This maximum is somewhat arbitrary. There's no fundamental
architectural limit I'm aware of, but it's good to keep the size of
Receive buffers reasonable. Now that Send can use a s/g list, a
Send buffer is only as large as each RPC requires. Receive buffers
are always the size of the inline threshold, however.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
An RPC Call message that is sent inline but that has a data payload
(ie, one or more items in rq_snd_buf's page list) must be "pulled
up:"
- call_allocate has to reserve enough RPC Call buffer space to
accommodate the data payload
- call_transmit has to memcopy the rq_snd_buf's page list and tail
into its head iovec before it is sent
As the inline threshold is increased beyond its current 1KB default,
however, this means data payloads of more than a few KB are copied
by the host CPU. For example, if the inline threshold is increased
just to 4KB, then NFS WRITE requests up to 4KB would involve a
memcpy of the NFS WRITE's payload data into the RPC Call buffer.
This is an undesirable amount of participation by the host CPU.
The inline threshold may be much larger than 4KB in the future,
after negotiation with a peer server.
Instead of copying the components of rq_snd_buf into its head iovec,
construct a gather list of these components, and send them all in
place. The same approach is already used in the Linux server's
RPC-over-RDMA reply path.
This mechanism also eliminates the need for rpcrdma_tail_pullup,
which is used to manage the XDR pad and trailing inline content when
a Read list is present.
This requires that the pages in rq_snd_buf's page list be DMA-mapped
during marshaling, and unmapped when a data-bearing RPC is
completed. This is slightly less efficient for very small I/O
payloads, but significantly more efficient as data payload size and
inline threshold increase past a kilobyte.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Have frwr's ro_unmap_sync recognize an invalidated rkey that appears
as part of a Receive completion. Local invalidation can be skipped
for that rkey.
Use an out-of-band signaling mechanism to indicate to the server
that the client is prepared to receive RDMA Send With Invalidate.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up. The "ia" argument is no longer used.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
The use of DMA_BIDIRECTIONAL is discouraged by DMA-API.txt.
Fortunately, xprtrdma now knows which direction I/O is going as
soon as it allocates each regbuf.
The RPC Call and Reply buffers are no longer the same regbuf. They
can each be labeled correctly now. The RPC Reply buffer is never
part of either a Send or Receive WR, but it can be part of Reply
chunk, which is mapped and registered via ->ro_map . So it is not
DMA mapped when it is allocated (DMA_NONE), to avoid a double-
mapping.
Since Receive buffers are no longer DMA_BIDIRECTIONAL and their
contents are never modified by the host CPU, DMA-API-HOWTO.txt
suggests that a DMA sync before posting each buffer should be
unnecessary. (See my_card_interrupt_handler).
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Commit 949317464b ("xprtrdma: Limit number of RDMA segments in
RPC-over-RDMA headers") capped the number of chunks that may appear
in RPC-over-RDMA headers. The maximum header size can be estimated
and fixed to avoid allocating buffer space that is never used.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
RPC-over-RDMA needs to separate its RPC call and reply buffers.
o When an RPC Call is sent, rq_snd_buf is DMA mapped for an RDMA
Send operation using DMA_TO_DEVICE
o If the client expects a large RPC reply, it DMA maps rq_rcv_buf
as part of a Reply chunk using DMA_FROM_DEVICE
The two mappings are for data movement in opposite directions.
DMA-API.txt suggests that if these mappings share a DMA cacheline,
bad things can happen. This could occur in the final bytes of
rq_snd_buf and the first bytes of rq_rcv_buf if the two buffers
happen to share a DMA cacheline.
On x86_64 the cacheline size is typically 8 bytes, and RPC call
messages are usually much smaller than the send buffer, so this
hasn't been a noticeable problem. But the DMA cacheline size can be
larger on other platforms.
Also, often rq_rcv_buf starts most of the way into a page, thus
an additional RDMA segment is needed to map and register the end of
that buffer. Try to avoid that scenario to reduce the cost of
registering and invalidating Reply chunks.
Instead of carrying a single regbuf that covers both rq_snd_buf and
rq_rcv_buf, each struct rpcrdma_req now carries one regbuf for
rq_snd_buf and one regbuf for rq_rcv_buf.
Some incidental changes worth noting:
- To clear out some spaghetti, refactor xprt_rdma_allocate.
- The value stored in rg_size is the same as the value stored in
the iov.length field, so eliminate rg_size
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Currently there's a hidden and indirect mechanism for finding the
rpcrdma_req that goes with an rpc_rqst. It depends on getting from
the rq_buffer pointer in struct rpc_rqst to the struct
rpcrdma_regbuf that controls that buffer, and then to the struct
rpcrdma_req it goes with.
This was done back in the day to avoid the need to add a per-rqst
pointer or to alter the buf_free API when support for RPC-over-RDMA
was introduced.
I'm about to change the way regbuf's work to support larger inline
thresholds. Now is a good time to replace this indirect mechanism
with something that is more straightforward. I guess this should be
considered a clean up.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
For xprtrdma, the RPC Call and Reply buffers are involved in real
I/O operations.
To start with, the DMA direction of the I/O for a Call is opposite
that of a Reply.
In the current arrangement, the Reply buffer address is on a
four-byte alignment just past the call buffer. Would be friendlier
on some platforms if that was at a DMA cache alignment instead.
Because the current arrangement allocates a single memory region
which contains both buffers, the RPC Reply buffer often contains a
page boundary in it when the Call buffer is large enough (which is
frequent).
It would be a little nicer for setting up DMA operations (and
possible registration of the Reply buffer) if the two buffers were
separated, well-aligned, and contained as few page boundaries as
possible.
Now, I could just pad out the single memory region used for the pair
of buffers. But frequently that would mean a lot of unused space to
ensure the Reply buffer did not have a page boundary.
Add a separate pointer to rpc_rqst that points right to the RPC
Reply buffer. This makes no difference to xprtsock, but it will help
xprtrdma in subsequent patches.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
xprtrdma needs to allocate the Call and Reply buffers separately.
TBH, the reliance on using a single buffer for the pair of XDR
buffers is transport implementation-specific.
Instead of passing just the rq_buffer into the buf_free method, pass
the task structure and let buf_free take care of freeing both
XDR buffers at once.
There's a micro-optimization here. In the common case, both
xprt_release and the transport's buf_free method were checking if
rq_buffer was NULL. Now the check is done only once per RPC.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
xprtrdma needs to allocate the Call and Reply buffers separately.
TBH, the reliance on using a single buffer for the pair of XDR
buffers is transport implementation-specific.
Transports that want to allocate separate Call and Reply buffers
will ignore the "size" argument anyway. Don't bother passing it.
The buf_alloc method can't return two pointers. Instead, make the
method's return value an error code, and set the rq_buffer pointer
in the method itself.
This gives call_allocate an opportunity to terminate an RPC instead
of looping forever when a permanent problem occurs. If a request is
just bogus, or the transport is in a state where it can't allocate
resources for any request, there needs to be a way to kill the RPC
right there and not loop.
This immediately fixes a rare problem in the backchannel send path,
which loops if the server happens to send a CB request whose
call+reply size is larger than a page (which it shouldn't do yet).
One more issue: looks like xprt_inject_disconnect was incorrectly
placed in the failure path in call_allocate. It needs to be in the
success path, as it is for other call-sites.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: r_xprt is already available everywhere these macros are
invoked, so just dereference that directly.
RPCRDMA_INLINE_PAD_VALUE is no longer used, so it can simply be
removed.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Instead of placing registered MWs sparsely into the rl_segments
array, place these MWs on a per-req list.
ro_unmap_{sync,safe} can then simply pull those MWs off the list
instead of walking through the array.
This change significantly reduces the size of struct rpcrdma_req
by removing nsegs and rl_mw from every array element.
As an additional clean-up, chunk co-ordinates are returned in the
"*mw" output argument so they are no longer needed in every
array element.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Frequent MR list exhaustion can impact I/O throughput, so enough MRs
are always created during transport set-up to prevent running out.
This means more MRs are created than most workloads need.
Commit 94f58c58c0 ("xprtrdma: Allow Read list and Reply chunk
simultaneously") introduced support for sending two chunk lists per
RPC, which consumes more MRs per RPC.
Instead of trying to provision more MRs, introduce a mechanism for
allocating MRs on demand. A few MRs are allocated during transport
set-up to kick things off.
This significantly reduces the average number of MRs per transport
while allowing the MR count to grow for workloads or devices that
need more MRs.
FRWR with mlx4 allocated almost 400 MRs per transport before this
patch. Now it starts with 32.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Commit c93c62231c ("xprtrdma: Disconnect on registration failure")
added a disconnect for some RPC marshaling failures. This is needed
only in a handful of cases, but it was triggering for simple stuff
like temporary resource shortages. Try to straighten this out.
Fix up the lower layers so they don't return -ENOMEM or other error
codes that the RPC client's FSM doesn't explicitly recognize.
Also fix up the places in the send_request path that do want a
disconnect. For example, when ib_post_send or ib_post_recv fail,
this is a sign that there is a send or receive queue resource
miscalculation. That should be rare, and is a sign of a software
bug. But xprtrdma can recover: disconnect to reset the transport and
start over.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
I found that commit ead3f26e35 ("xprtrdma: Add ro_unmap_safe
memreg method"), which introduces ro_unmap_safe, never wired up the
FMR recovery worker.
The FMR and FRWR recovery work queues both do the same thing.
Instead of setting up separate individual work queues for this,
schedule a delayed worker to deal with them, since recovering MRs is
not performance-critical.
Fixes: ead3f26e35 ("xprtrdma: Add ro_unmap_safe memreg method")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
There needs to be a safe method of releasing registered memory
resources when an RPC terminates. Safe can mean a number of things:
+ Doesn't have to sleep
+ Doesn't rely on having a QP in RTS
ro_unmap_safe will be that safe method. It can be used in cases
where synchronous memory invalidation can deadlock, or needs to have
an active QP.
The important case is fencing an RPC's memory regions after it is
signaled (^C) and before it exits. If this is not done, there is a
window where the server can write an RPC reply into memory that the
client has released and re-used for some other purpose.
Note that this is a full solution for FRWR, but FMR and physical
still have some gaps where a particularly bad server can wreak
some havoc on the client. These gaps are not made worse by this
patch and are expected to be exceptionally rare and timing-based.
They are noted in documenting comments.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Currently the sysctls that allow setting the inline threshold allow
any value to be set.
Small values only make the transport run slower. The default 1KB
setting is as low as is reasonable. And the logic that decides how
to divide a Send buffer between RPC-over-RDMA header and RPC message
assumes (but does not check) that the lower bound is not crazy (say,
57 bytes).
Send and receive buffers share a page with some control information.
Values larger than about 3KB can't be supported, currently.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
RPC-over-RDMA transports have a limit on how large a backward
direction (backchannel) RPC message can be. Ensure that the NFSv4.x
CREATE_SESSION operation advertises this limit to servers.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
- Remove usage of ib_query_device and instead store attributes in
ib_device struct
- Move iopoll out of block and into lib, rename to irqpoll, and use
in several places in the rdma stack as our new completion queue
polling library mechanism. Update the other block drivers that
already used iopoll to use the new mechanism too.
- Replace the per-entry GID table locks with a single GID table lock
- IPoIB multicast cleanup
- Cleanups to the IB MR facility
- Add support for 64bit extended IB counters
- Fix for netlink oops while parsing RDMA nl messages
- RoCEv2 support for the core IB code
- mlx4 RoCEv2 support
- mlx5 RoCEv2 support
- Cross Channel support for mlx5
- Timestamp support for mlx5
- Atomic support for mlx5
- Raw QP support for mlx5
- MAINTAINERS update for mlx4/mlx5
- Misc ocrdma, qib, nes, usNIC, cxgb3, cxgb4, mlx4, mlx5 updates
- Add support for remote invalidate to the iSER driver (pushed through the
RDMA tree due to dependencies, acknowledged by nab)
- Update to NFSoRDMA (pushed through the RDMA tree due to dependencies,
acknowledged by Bruce)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJWoSygAAoJELgmozMOVy/dDjsP/2vbTda2MvQfkfkGEZBQdJSg
095RN0gQgCJdg78lAl8yuaK8r4VN/7uefpDtFdudH1I/Pei7X0wxN9R1UzFNG4KR
AD53lz92IVPs15328SbPR2kvNWISR9aBFQo3rlElq3Grqlp0EMn2Ou1vtu87rekF
aMllxr8Nl0uZhP+eWusOsYpJUUtwirLgRnrAyfqo2UxZh/TMIroT0TCx1KXjVcAg
dhDARiZAdu3OgSc6OsWqmH+DELEq6dFVA5F+DDBGAb8bFZqlJc7cuMHWInwNsNXT
so4bnEQ835alTbsdYtqs5DUNS8heJTAJP4Uz0ehkTh/uNCcvnKeUTw1c2P/lXI1k
7s33gMM+0FXj0swMBw0kKwAF2d9Hhus9UAN7NwjBuOyHcjGRd5q7SAnfWkvKx000
s9jVW19slb2I38gB58nhjOh8s+vXUArgxnV1+kTia1+bJSR5swvVoWRicRXdF0vh
TvLX/BjbSIU73g1TnnLNYoBTV3ybFKQ6bVdQW7fzSTDs54dsI1vvdHXi3bYZCpnL
HVwQTZRfEzkvb0AdKbcvf8p/TlaAHem3ODqtO1eHvO4if1QJBSn+SptTEeJVYYdK
n4B3l/dMoBH4JXJUmEHB9jwAvYOpv/YLAFIvdL7NFwbqGNsC3nfXFcmkVORB1W3B
KEMcM2we4bz+uyKMjEAD
=5oO7
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma
Pull rdma updates from Doug Ledford:
"Initial roundup of 4.5 merge window patches
- Remove usage of ib_query_device and instead store attributes in
ib_device struct
- Move iopoll out of block and into lib, rename to irqpoll, and use
in several places in the rdma stack as our new completion queue
polling library mechanism. Update the other block drivers that
already used iopoll to use the new mechanism too.
- Replace the per-entry GID table locks with a single GID table lock
- IPoIB multicast cleanup
- Cleanups to the IB MR facility
- Add support for 64bit extended IB counters
- Fix for netlink oops while parsing RDMA nl messages
- RoCEv2 support for the core IB code
- mlx4 RoCEv2 support
- mlx5 RoCEv2 support
- Cross Channel support for mlx5
- Timestamp support for mlx5
- Atomic support for mlx5
- Raw QP support for mlx5
- MAINTAINERS update for mlx4/mlx5
- Misc ocrdma, qib, nes, usNIC, cxgb3, cxgb4, mlx4, mlx5 updates
- Add support for remote invalidate to the iSER driver (pushed
through the RDMA tree due to dependencies, acknowledged by nab)
- Update to NFSoRDMA (pushed through the RDMA tree due to
dependencies, acknowledged by Bruce)"
* tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma: (169 commits)
IB/mlx5: Unify CQ create flags check
IB/mlx5: Expose Raw Packet QP to user space consumers
{IB, net}/mlx5: Move the modify QP operation table to mlx5_ib
IB/mlx5: Support setting Ethernet priority for Raw Packet QPs
IB/mlx5: Add Raw Packet QP query functionality
IB/mlx5: Add create and destroy functionality for Raw Packet QP
IB/mlx5: Refactor mlx5_ib_qp to accommodate other QP types
IB/mlx5: Allocate a Transport Domain for each ucontext
net/mlx5_core: Warn on unsupported events of QP/RQ/SQ
net/mlx5_core: Add RQ and SQ event handling
net/mlx5_core: Export transport objects
IB/mlx5: Expose CQE version to user-space
IB/mlx5: Add CQE version 1 support to user QPs and SRQs
IB/mlx5: Fix data validation in mlx5_ib_alloc_ucontext
IB/sa: Fix netlink local service GFP crash
IB/srpt: Remove redundant wc array
IB/qib: Improve ipoib UD performance
IB/mlx4: Advertise RoCE v2 support
IB/mlx4: Create and use another QP1 for RoCEv2
IB/mlx4: Enable send of RoCE QP1 packets with IP/UDP headers
...
To support the server-side of an NFSv4.1 backchannel on RDMA
connections, add a transport class that enables backward
direction messages on an existing forward channel connection.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Acked-by: Bruce Fields <bfields@fieldses.org>
Signed-off-by: Doug Ledford <dledford@redhat.com>
Preserve any rpcrdma_req that is attached to rpc_rqst's allocated
for the backchannel. Otherwise, after all the pre-allocated
backchannel req's are consumed, incoming backward calls start
writing on freed memory.
Somehow this hunk got lost.
Fixes: f531a5dbc4 ('xprtrdma: Pre-allocate backward rpc_rqst')
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Forechannel transports get their own "bc_up" method to create an
endpoint for the backchannel service.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
[Anna Schumaker: Add forward declaration of struct net to xprt.h]
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
xprtrdma's backward direction send and receive buffers are the same
size as the forechannel's inline threshold, and must be pre-
registered.
The consumer has no control over which receive buffer the adapter
chooses to catch an incoming backwards-direction call. Any receive
buffer can be used for either a forward reply or a backward call.
Thus both types of RPC message must all be the same size.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
The reply tasklet is fast, but it's single threaded. After reply
traffic saturates a single CPU, there's no more reply processing
capacity.
Replace the tasklet with a workqueue to spread reply handling across
all CPUs. This also moves RPC/RDMA reply handling out of the soft
IRQ context and into a context that allows sleeps.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
After adding a swapfile on an NFS/RDMA mount and removing the
normal swap partition, I was able to push the NFS client well
into swap without any issue.
I forgot to swapoff the NFS file before rebooting. This pinned
the NFS mount and the IB core and provider, causing shutdown to
hang. I think this is expected and safe behavior. Probably
shutdown scripts should "swapoff -a" before unmounting any
filesystems.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Otherwise a FRMR completion can cause a touch-after-free crash.
In xprt_rdma_destroy(), call rpcrdma_buffer_destroy() only after calling
rpcrdma_ep_destroy().
In rpcrdma_ep_destroy(), disconnect the cm_id first which should flush the
qp, then drain the cqs, then destroy the qp, and finally destroy the cqs.
Signed-off-by: Steve Wise <swise@opengridcomputing.com>
Tested-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
RDMA_NOMSG type calls are less efficient than RDMA_MSG. Count NOMSG
calls so administrators can tell if they happen to be used more than
expected.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
checkpatch.pl complained about the seq_printf() format string split
across lines and the use of %Lu.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
In particular, recognize when an IPv6 connection is bound.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Highlights include:
Stable patches:
- Fix a crash in the NFSv4 file locking code.
- Fix an fsync() regression, where we were failing to retry I/O in some
circumstances.
- Fix an infinite loop in NFSv4.0 OPEN stateid recovery
- Fix a memory leak when an attempted pnfs fails.
- Fix a memory leak in the backchannel code
- Large hostnames were not supported correctly in NFSv4.1
- Fix a pNFS/flexfiles bug that was impeding error reporting on I/O.
- Fix a couple of credential issues in pNFS/flexfiles
Bugfixes + cleanups:
- Open flag sanity checks in the NFSv4 atomic open codepath
- More NFSv4 delegation related bugfixes
- Various NFSv4.1 backchannel bugfixes and cleanups
- Fix the NFS swap socket code
- Various cleanups of the NFSv4 SETCLIENTID and EXCHANGE_ID code
- Fix a UDP transport deadlock issue
Features:
- More RDMA client transport improvements
- NFSv4.2 LAYOUTSTATS functionality for pnfs flexfiles.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVlWQgAAoJEGcL54qWCgDyXtcP/2Y3HJ9xu5qU3Bo/jzCAw4E1
jPPMSFAz4kqy/LGoslyc1cNDEiKGzJYWU8TtCGI3KAyNxb6n3pT1mEE1tvIsSdis
D8bpV13M452PPpZYrBawIf4+OuohXmuYHpFiVNSpLbH3Uo7dthvFFnbqCGaGlnqY
rXYZHAnx637OGBcJsT4AXCUz12ILvxMYRnqwW6Xn+j9JmwR1coQX3v8W8e7SMf6i
J+zOny7Uetjrg1U9C9uQB6ZvIoxUMo9QOVmtGCwsBl8lM3fLmzaQfcUf9fm76pMT
yTrKJs4jBLvVf00bRHFDv9EHWCy97oqCkeQEw1EY2lnxp/lmM5SiI4zQqjbf0QTW
5VQScT1MK6xwHoUbuI/sYdXXR8KGDVT1xCFFHUNcg69CvgqdgWslPQY7xLJMvUJZ
vBWfWDd8ppdCw2ZVX4ae/bnhfc+/mVh4wRPF7tgVAjT0pobBV9xMOeMkF4mo76Wa
pvo/nTRMt68hpESVSvq9dYEMVhy5haqFhPrSbyAGOpT4SE2V3RCCZQfhu15TMKdW
BdvItG+mdAVPbIHqhx7vRdAudcOEZKyxbFA+l3E5FyCAXLV7XS3M8CEl3P1w7gmm
Ccr8DW9abKFJf1RAKdX3stexIoJLGTwciSMR5smsbup/xNcx/fRgx2f1w31JMPxb
kG3Izfk25w9uGSsbR39D
=AREr
-----END PGP SIGNATURE-----
Merge tag 'nfs-for-4.2-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
Pull NFS client updates from Trond Myklebust:
"Highlights include:
Stable patches:
- Fix a crash in the NFSv4 file locking code.
- Fix an fsync() regression, where we were failing to retry I/O in
some circumstances.
- Fix an infinite loop in NFSv4.0 OPEN stateid recovery
- Fix a memory leak when an attempted pnfs fails.
- Fix a memory leak in the backchannel code
- Large hostnames were not supported correctly in NFSv4.1
- Fix a pNFS/flexfiles bug that was impeding error reporting on I/O.
- Fix a couple of credential issues in pNFS/flexfiles
Bugfixes + cleanups:
- Open flag sanity checks in the NFSv4 atomic open codepath
- More NFSv4 delegation related bugfixes
- Various NFSv4.1 backchannel bugfixes and cleanups
- Fix the NFS swap socket code
- Various cleanups of the NFSv4 SETCLIENTID and EXCHANGE_ID code
- Fix a UDP transport deadlock issue
Features:
- More RDMA client transport improvements
- NFSv4.2 LAYOUTSTATS functionality for pnfs flexfiles"
* tag 'nfs-for-4.2-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs: (87 commits)
nfs: Remove invalid tk_pid from debug message
nfs: Remove invalid NFS_ATTR_FATTR_V4_REFERRAL checking in nfs4_get_rootfh
nfs: Drop bad comment in nfs41_walk_client_list()
nfs: Remove unneeded micro checking of CONFIG_PROC_FS
nfs: Don't setting FILE_CREATED flags always
nfs: Use remove_proc_subtree() instead remove_proc_entry()
nfs: Remove unused argument in nfs_server_set_fsinfo()
nfs: Fix a memory leak when meeting an unsupported state protect
nfs: take extra reference to fl->fl_file when running a LOCKU operation
NFSv4: When returning a delegation, don't reclaim an incompatible open mode.
NFSv4.2: LAYOUTSTATS is optional to implement
NFSv4.2: Fix up a decoding error in layoutstats
pNFS/flexfiles: Fix the reset of struct pgio_header when resending
pNFS/flexfiles: Turn off layoutcommit for servers that don't need it
pnfs/flexfiles: protect ktime manipulation with mirror lock
nfs: provide pnfs_report_layoutstat when NFS42 is disabled
nfs: verify open flags before allowing open
nfs: always update creds in mirror, even when we have an already connected ds
nfs: fix potential credential leak in ff_layout_update_mirror_cred
pnfs/flexfiles: report layoutstat regularly
...
These patches continue to build up for improving the rsize and wsize that the
NFS client uses when talking over RDMA. In addition, these patches also add
in scalability enhancements and other bugfixes.
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJVey8qAAoJENfLVL+wpUDroT4P/3lwspXwdxS6VZWsW1VpNtdV
V1KKd5D+TkpBpz/ih9GdOVaBZijaHpb6XtMReh8xuh0KI893iYmsmLoyhMTPJMsU
6sjUDEv8IFrXwlRKldX1KEfBvNgR0czCNiha6O+YsV5Az08+zr57ahyGKmLUzMxo
4XzPZbwnb5fxvgmBgENUU33g+xXGsXDbsdzLvKW3UGcPU2x6PGOTLr5vP7lQkwxE
20d9ak8xQeRUk0hsmRM4fAebzcluD1o3PLIFQBEhh0Gqm1VGtSCkr9o493gT5TgM
/+XrU7B8OnbdJ1B4f/y4Bz4RucfKzyRuXMpulrnK1hL7QIiZLqiph7UrTel/ajcD
0us9PImNwXPo8tMz7Wjw2XMQplndHB3FG3M3lXlJGHlXvCI7F0yjm21AP4SeetOm
kxL24Qiyi7l/S7JJxHqNlOc0b8kpVLohBZm6yee9w4r/JUPnynUqfnXCHLjIp/5W
F1hzbCUATyfKrSs7VKO0hCQHfntigPEhRmyfoyXRAXzl5LnR1XqD6Wah3a3pwXn+
mEquUd6fKRHIIvJ8cKU6KtykkhRHg1sR/z1mw2ZEW/2PCd0cb+8+WN7X/fQqEN+u
+VQSo7oPp38SHdsyozuUUyukN5qHptTMSrNZL+LI7J8/0+BuRuIvW0nojViapc51
LOUlcgqRdUlIvmn754Yo
=N1tO
-----END PGP SIGNATURE-----
Merge tag 'nfs-rdma-for-4.2' of git://git.linux-nfs.org/projects/anna/nfs-rdma
NFS: NFSoRDMA Client Changes
These patches continue to build up for improving the rsize and wsize that the
NFS client uses when talking over RDMA. In addition, these patches also add
in scalability enhancements and other bugfixes.
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
* tag 'nfs-rdma-for-4.2' of git://git.linux-nfs.org/projects/anna/nfs-rdma: (142 commits)
xprtrdma: Reduce per-transport MR allocation
xprtrdma: Stack relief in fmr_op_map()
xprtrdma: Split rb_lock
xprtrdma: Remove rpcrdma_ia::ri_memreg_strategy
xprtrdma: Remove ->ro_reset
xprtrdma: Remove unused LOCAL_INV recovery logic
xprtrdma: Acquire MRs in rpcrdma_register_external()
xprtrdma: Introduce an FRMR recovery workqueue
xprtrdma: Acquire FMRs in rpcrdma_fmr_register_external()
xprtrdma: Introduce helpers for allocating MWs
xprtrdma: Use ib_device pointer safely
xprtrdma: Remove rr_func
xprtrdma: Replace rpcrdma_rep::rr_buffer with rr_rxprt
xprtrdma: Warn when there are orphaned IB objects
...
After a transport disconnect, FRMRs can be left in an undetermined
state. In particular, the MR's rkey is no good.
Currently, FRMRs are fixed up by the transport connect worker, but
that can race with ->ro_unmap if an RPC happens to exit while the
transport connect worker is running.
A better way of dealing with broken FRMRs is to detect them before
they are re-used by ->ro_map. Such FRMRs are either already invalid
or are owned by the sending RPC, and thus no race with ->ro_unmap
is possible.
Introduce a mechanism for handing broken FRMRs to a workqueue to be
reset in a context that is appropriate for allocating resources
(ie. an ib_alloc_fast_reg_mr() API call).
This mechanism is not yet used, but will be in subsequent patches.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-By: Devesh Sharma <devesh.sharma@avagotech.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-by: Doug Ledford <dledford@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
A posted rpcrdma_rep never has rr_func set to anything but
rpcrdma_reply_handler.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-by: Doug Ledford <dledford@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: Instead of carrying a pointer to the buffer pool and
the rpc_xprt, carry a pointer to the controlling rpcrdma_xprt.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-by: Doug Ledford <dledford@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
It has been exceptionally useful to exercise the logic that handles
local immediate errors and RDMA connection loss. To enable
developers to test this regularly and repeatably, add logic to
simulate connection loss every so often.
Fault injection is disabled by default. It is enabled with
$ sudo echo xxx > /sys/kernel/debug/sunrpc/inject_fault/disconnect
where "xxx" is a large positive number of transport method calls
before a disconnect. A value of several thousand is usually a good
number that allows reasonable forward progress while still causing a
lot of connection drops.
These hooks are disabled when SUNRPC_DEBUG is turned off.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
RDMA xprts don't have a sock_xprt, but an rdma_xprt, so the
xs_swapper_enable/disable functions will likely oops when fed an RDMA
xprt. Turn these functions into rpc_xprt_ops so that that doesn't
occur. For now the RDMA versions are no-ops that just return -EINVAL
on an attempt to swapon.
Cc: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Jeff Layton <jeff.layton@primarydata.com>
Reviewed-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Bi-directional RPC support means code in svcrdma.ko invokes a bit of
code in xprtrdma.ko, and vice versa. To avoid loader/linker loops,
merge the server and client side modules together into a single
module.
When backchannel capabilities are added, the combined module will
register all needed transport capabilities so that Upper Layer
consumers automatically have everything needed to create a
bi-directional transport connection.
Module aliases are added for backwards compatibility with user
space, which still may expect svcrdma.ko or xprtrdma.ko to be
present.
This commit reverts commit 2e8c12e1b7 ("xprtrdma: add separate
Kconfig options for NFSoRDMA client and server support") and
provides a single CONFIG option for enabling the new module.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>