We hope to at some point deprecate KVM legacy device assignment in
favor of VFIO-based assignment. Towards that end, allow legacy
device assignment to be deconfigured.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: Alexander Graf <agraf@suse.de>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Quite a bit of code in KVM has been conditionalized on availability of
IOAPIC emulation. However, most of it is generically applicable to
platforms that don't have an IOPIC, but a different type of irq chip.
Make code that only relies on IRQ routing, not an APIC itself, on
CONFIG_HAVE_KVM_IRQ_ROUTING, so that we can reuse it later.
Signed-off-by: Alexander Graf <agraf@suse.de>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
KVM lapic timer and tsc deadline timer based on hrtimer,
setting a leftmost node to rb tree and then do hrtimer reprogram.
If hrtimer not configured as high resolution, hrtimer_enqueue_reprogram
do nothing and then make kvm lapic timer and tsc deadline timer fail.
Signed-off-by: Liu, Jinsong <jinsong.liu@intel.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Suggested-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Tested-by: Christian Borntraeger <borntraeger@de.ibm.com> # on s390x
Signed-off-by: Avi Kivity <avi@redhat.com>
Currently, MSI messages can only be injected to in-kernel irqchips by
defining a corresponding IRQ route for each message. This is not only
unhandy if the MSI messages are generated "on the fly" by user space,
IRQ routes are a limited resource that user space has to manage
carefully.
By providing a direct injection path, we can both avoid using up limited
resources and simplify the necessary steps for user land.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Use perf_events to emulate an architectural PMU, version 2.
Based on PMU version 1 emulation by Avi Kivity.
[avi: adjust for cpuid.c]
[jan: fix anonymous field initialization for older gcc]
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
PMU virtualization needs to talk to Intel-specific bits of perf; these are
only available when CPU_SUP_INTEL=y.
Fixes
arch/x86/built-in.o: In function `atomic_switch_perf_msrs':
vmx.c:(.text+0x6b1d4): undefined reference to `perf_guest_get_msrs'
Reported-by: Ingo Molnar <mingo@elte.hu>
Reported-by: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
CONFIG_TASKSTATS just had a change to use netlink, including
a change to "depends on NET". Since "select" does not follow
dependencies, KVM also needs to depend on NET to prevent build
errors when CONFIG_NET is not enabled.
Sample of the reported "undefined reference" build errors:
taskstats.c:(.text+0x8f686): undefined reference to `nla_put'
taskstats.c:(.text+0x8f721): undefined reference to `nla_reserve'
taskstats.c:(.text+0x8f8fb): undefined reference to `init_net'
taskstats.c:(.text+0x8f905): undefined reference to `netlink_unicast'
taskstats.c:(.text+0x8f934): undefined reference to `kfree_skb'
taskstats.c:(.text+0x8f9e9): undefined reference to `skb_clone'
taskstats.c:(.text+0x90060): undefined reference to `__alloc_skb'
taskstats.c:(.text+0x901e9): undefined reference to `skb_put'
taskstats.c:(.init.text+0x4665): undefined reference to `genl_register_family'
taskstats.c:(.init.text+0x4699): undefined reference to `genl_register_ops'
taskstats.c:(.init.text+0x4710): undefined reference to `genl_unregister_ops'
taskstats.c:(.init.text+0x471c): undefined reference to `genl_unregister_family'
Signed-off-by: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Fix kconfig dependency warning:
warning: (KVM) selects TASK_DELAY_ACCT which has unmet direct dependencies (TASKSTATS)
Signed-off-by: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: Avi Kivity <avi@redhat.com>
virtio has been so far used only in the context of virtualization,
and the virtio Kconfig was sourced directly by the relevant arch
Kconfigs when VIRTUALIZATION was selected.
Now that we start using virtio for inter-processor communications,
we need to source the virtio Kconfig outside of the virtualization
scope too.
Moreover, some architectures might use virtio for both virtualization
and inter-processor communications, so directly sourcing virtio
might yield unexpected results due to conflicting selections.
The simple solution offered by this patch is to always source virtio's
Kconfig in drivers/Kconfig, and remove it from the appropriate arch
Kconfigs. Additionally, a virtio menu entry has been added so virtio
drivers don't show up in the general drivers menu.
This way anyone can use virtio, though it's arguably less accessible
(and neat!) for virtualization users now.
Note: some architectures (mips and sh) seem to have a VIRTUALIZATION
menu merely for sourcing virtio's Kconfig, so that menu is removed too.
Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
To implement steal time, we need the hypervisor to pass the guest
information about how much time was spent running other processes
outside the VM, while the vcpu had meaningful work to do - halt
time does not count.
This information is acquired through the run_delay field of
delayacct/schedstats infrastructure, that counts time spent in a
runqueue but not running.
Steal time is a per-cpu information, so the traditional MSR-based
infrastructure is used. A new msr, KVM_MSR_STEAL_TIME, holds the
memory area address containing information about steal time
This patch contains the hypervisor part of the steal time infrasructure,
and can be backported independently of the guest portion.
[avi, yongjie: export delayacct_on, to avoid build failures in some configs]
Signed-off-by: Glauber Costa <glommer@redhat.com>
Tested-by: Eric B Munson <emunson@mgebm.net>
CC: Rik van Riel <riel@redhat.com>
CC: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
CC: Peter Zijlstra <peterz@infradead.org>
CC: Anthony Liguori <aliguori@us.ibm.com>
Signed-off-by: Yongjie Ren <yongjie.ren@intel.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
If a guest accesses swapped out memory do not swap it in from vcpu thread
context. Schedule work to do swapping and put vcpu into halted state
instead.
Interrupts will still be delivered to the guest and if interrupt will
cause reschedule guest will continue to run another task.
[avi: remove call to get_user_pages_noio(), nacked by Linus; this
makes everything synchrnous again]
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Add a r/w module parameter named 'mmu_audit', it can control audit
enable/disable:
enable:
echo 1 > /sys/module/kvm/parameters/mmu_audit
disable:
echo 0 > /sys/module/kvm/parameters/mmu_audit
This patch not change the logic
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
What it is: vhost net is a character device that can be used to reduce
the number of system calls involved in virtio networking.
Existing virtio net code is used in the guest without modification.
There's similarity with vringfd, with some differences and reduced scope
- uses eventfd for signalling
- structures can be moved around in memory at any time (good for
migration, bug work-arounds in userspace)
- write logging is supported (good for migration)
- support memory table and not just an offset (needed for kvm)
common virtio related code has been put in a separate file vhost.c and
can be made into a separate module if/when more backends appear. I used
Rusty's lguest.c as the source for developing this part : this supplied
me with witty comments I wouldn't be able to write myself.
What it is not: vhost net is not a bus, and not a generic new system
call. No assumptions are made on how guest performs hypercalls.
Userspace hypervisors are supported as well as kvm.
How it works: Basically, we connect virtio frontend (configured by
userspace) to a backend. The backend could be a network device, or a tap
device. Backend is also configured by userspace, including vlan/mac
etc.
Status: This works for me, and I haven't see any crashes.
Compared to userspace, people reported improved latency (as I save up to
4 system calls per packet), as well as better bandwidth and CPU
utilization.
Features that I plan to look at in the future:
- mergeable buffers
- zero copy
- scalability tuning: figure out the best threading model to use
Note on RCU usage (this is also documented in vhost.h, near
private_pointer which is the value protected by this variant of RCU):
what is happening is that the rcu_dereference() is being used in a
workqueue item. The role of rcu_read_lock() is taken on by the start of
execution of the workqueue item, of rcu_read_unlock() by the end of
execution of the workqueue item, and of synchronize_rcu() by
flush_workqueue()/flush_work(). In the future we might need to apply
some gcc attribute or sparse annotation to the function passed to
INIT_WORK(). Paul's ack below is for this RCU usage.
(Includes fixes by Alan Cox <alan@linux.intel.com>,
David L Stevens <dlstevens@us.ibm.com>,
Chris Wright <chrisw@redhat.com>)
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The various syscall-related MSRs are fairly expensive to switch. Currently
we switch them on every vcpu preemption, which is far too often:
- if we're switching to a kernel thread (idle task, threaded interrupt,
kernel-mode virtio server (vhost-net), for example) and back, then
there's no need to switch those MSRs since kernel threasd won't
be exiting to userspace.
- if we're switching to another guest running an identical OS, most likely
those MSRs will have the same value, so there's little point in reloading
them.
- if we're running the same OS on the guest and host, the MSRs will have
identical values and reloading is unnecessary.
This patch uses the new user return notifiers to implement last-minute
switching, and checks the msr values to avoid unnecessary reloading.
Signed-off-by: Avi Kivity <avi@redhat.com>
Archs are free to use vcpu_id as they see fit. For x86 it is used as
vcpu's apic id. New ioctl is added to configure boot vcpu id that was
assumed to be 0 till now.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
KVM provides a complete virtual system environment for guests, including
support for injecting interrupts modeled after the real exception/interrupt
facilities present on the native platform (such as the IDT on x86).
Virtual interrupts can come from a variety of sources (emulated devices,
pass-through devices, etc) but all must be injected to the guest via
the KVM infrastructure. This patch adds a new mechanism to inject a specific
interrupt to a guest using a decoupled eventfd mechnanism: Any legal signal
on the irqfd (using eventfd semantics from either userspace or kernel) will
translate into an injected interrupt in the guest at the next available
interrupt window.
Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Robert P. J. Day <rpjday@crashcourse.ca>
Cc: Avi Kivity <avi@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Avi Kivity <avi@redhat.com>
Two KVM archs support irqchips and two don't. Add a Kconfig item to
make selecting between the two models easier.
Signed-off-by: Avi Kivity <avi@redhat.com>
Impact: build fix
fix:
kernel/trace/Kconfig:42:error: found recursive dependency: TRACING ->
TRACEPOINTS -> MARKERS -> KVM_TRACE -> RELAY -> KMEMTRACE -> TRACING
markers is a facility that should be selected - not depended on
by an interactive Kconfig entry.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This interface allows user a space application to read the trace of kvm
related events through relayfs.
Signed-off-by: Feng (Eric) Liu <eric.e.liu@intel.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
This patch moves virtio under the virtualization menu and changes virtio
devices to not claim to only be for lguest.
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This paves the way for multiple architecture support. Note that while
ioapic.c could potentially be shared with ia64, it is also moved.
Signed-off-by: Avi Kivity <avi@qumranet.com>