Commit Graph

275 Commits

Author SHA1 Message Date
Josef Bacik fb25e9141a Btrfs: use bytes_may_use for all ENOSPC reservations
We have been using bytes_reserved for metadata reservations, which is wrong
since we use that to keep track of outstanding reservations from the allocator.
This resulted in us doing a lot of silly things to make sure we don't allocate a
bunch of metadata chunks since we never had a real view of how much space was
actually in use by metadata.

This passes Arne's enospc test and xfstests as well as my own enospc tests.
Hopefully this will get us moving in the right direction.  Thanks,

Signed-off-by: Josef Bacik <josef@redhat.com>
2011-10-19 15:12:30 -04:00
Liu Bo 65450aa645 Btrfs: reset to appropriate block rsv after orphan operations
While truncating free space cache, we forget to change trans->block_rsv
back to the original one, but leave it with the orphan_block_rsv, and
then with option inode_cache enable, it leads to countless warnings of
btrfs_alloc_free_block and btrfs_orphan_commit_root:

WARNING: at fs/btrfs/extent-tree.c:5711 btrfs_alloc_free_block+0x180/0x350 [btrfs]()
...
WARNING: at fs/btrfs/inode.c:2193 btrfs_orphan_commit_root+0xb0/0xc0 [btrfs]()

Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-09-11 10:52:24 -04:00
Miao Xie bb3ac5a4df Btrfs: fix wrong free space information
Btrfs subtracted the size of the allocated space twice when it allocated
the space from the bitmap in the cluster, it broke the free space information
and led to oops finally.

And this patch also fixes the bug that ctl->free_space was subtracted
without lock.

Reported-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-08-16 21:09:31 -04:00
Josef Bacik a94733d0bc Btrfs: use find_or_create_page instead of grab_cache_page
grab_cache_page will use mapping_gfp_mask(), which for all inodes is set to
GFP_HIGHUSER_MOVABLE.  So instead use find_or_create_page in all cases where we
need GFP_NOFS so we don't deadlock.  Thanks,

Signed-off-by: Josef Bacik <josef@redhat.com>
2011-07-27 12:46:43 -04:00
Josef Bacik 2f356126c5 Btrfs: use the normal checksumming infrastructure for free space cache
We used to store the checksums of the space cache directly in the space cache,
however that doesn't work out too well if we have more space than we can fit the
checksums into the first page.  So instead use the normal checksumming
infrastructure.  There were problems with doing this originally but those
problems don't exist now so this works out fine.  Thanks,

Signed-off-by: Josef Bacik <josef@redhat.com>
2011-07-11 09:58:49 -04:00
Josef Bacik 9b90f51353 Btrfs: make sure to update total_bitmaps when freeing cache V3
A user reported this bug again where we have more bitmaps than we are supposed
to.  This is because we failed to load the free space cache, but don't update
the ctl->total_bitmaps counter when we remove entries from the tree.  This patch
fixes this problem and we should be good to go again.  Thanks,

Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-06-25 09:31:06 -04:00
Chris Mason 38e8788066 Btrfs: make sure to recheck for bitmaps in clusters
Josef recently changed the free extent cache to look in
the block group cluster for any bitmaps before trying to
add a new bitmap for the same offset.  This avoids BUG_ON()s due
covering duplicate ranges.

But it didn't go quite far enough.  A given free range might span
between one or more bitmaps or free space entries.  The code has
looping to cover this, but it doesn't check for clustered bitmaps
every time.

This shuffles our gotos to check for a bitmap in the cluster
for every new bitmap entry we try to add.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-06-10 16:36:57 -04:00
Josef Bacik f6a398298d Btrfs: fix duplicate checking logic
When merging my code into the integration test the second check for duplicate
entries got screwed up.  This patch fixes it by dropping ret2 and just using ret
for the return value, and checking if we got an error before adding the bitmap
to the local list.  Thanks,

Signed-off-by: Josef Bacik <josef@redhat.com>
2011-06-08 16:37:29 -04:00
Josef Bacik 2cdc342c20 Btrfs: fix bitmap regression
In cleaning up the clustering code I accidently introduced a regression by
adding bitmap entries to the cluster rb tree.  The problem is if we've maxed out
the number of bitmaps we can have for the block group we can only add free space
to the bitmaps, but since the bitmap is on the cluster we can't find it and we
try to create another one.  This would result in a panic because the total
bitmaps was bigger than the max bitmaps that were allowed.  This patch fixes
this by checking to see if we have a cluster, and then looking at the cluster rb
tree to see if it has a bitmap entry and if it does and that space belongs to
that bitmap, go ahead and add it to that bitmap.

I could hit this panic every time with an fs_mark test within a couple of
minutes.  With this patch I no longer hit the panic and fs_mark goes to
completion.  Thanks,

Signed-off-by: Josef Bacik <josef@redhat.com>
2011-06-08 16:37:28 -04:00
Josef Bacik 3de85bb95c Btrfs: noinline the cluster searching functions
When profiling the find cluster code it's hard to tell where we are spending our
time because the bitmap and non-bitmap functions get inlined by the compiler, so
make that not happen.  Thanks,

Signed-off-by: Josef Bacik <josef@redhat.com>
2011-06-08 15:08:30 -04:00
Josef Bacik 86d4a77ba3 Btrfs: cache bitmaps when searching for a cluster
If we are looking for a cluster in a particularly sparse or fragmented block
group, we will do a lot of looping through the free space tree looking for
various things, and if we need to look at bitmaps we will endup doing the whole
dance twice.  So instead add the bitmap entries to a temporary list so if we
have to do the bitmap search we can just look through the list of entries we've
found quickly instead of having to loop through the entire tree again.  Thanks,

Signed-off-by: Josef Bacik <josef@redhat.com>
2011-06-08 15:08:28 -04:00
David Sterba 7841cb2898 btrfs: add helper for fs_info->closing
wrap checking of filesystem 'closing' flag and fix a few missing memory
barriers.

Signed-off-by: David Sterba <dsterba@suse.cz>
2011-06-04 08:11:22 -04:00
Chris Mason 4b9465cb9e Btrfs: add mount -o inode_cache
This makes the inode map cache default to off until we
fix the overflow problem when the free space crcs don't fit
inside a single page.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-06-04 08:03:47 -04:00
Chris Mason 211f96c24f Btrfs: make sure we don't overflow the free space cache crc page
The free space cache uses only one page for crcs right now,
which means we can't have a cache file bigger than the
crcs we can fit in the first page.  This adds a check to
enforce that restriction.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-06-04 08:03:43 -04:00
Chris Mason ff5714cca9 Merge branch 'for-chris' of
git://git.kernel.org/pub/scm/linux/kernel/git/josef/btrfs-work into for-linus

Conflicts:
	fs/btrfs/disk-io.c
	fs/btrfs/extent-tree.c
	fs/btrfs/free-space-cache.c
	fs/btrfs/inode.c
	fs/btrfs/transaction.c

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-05-28 07:00:39 -04:00
Josef Bacik 207dde8289 Btrfs: check for duplicate entries in the free space cache
If there are duplicate entries in the free space cache, discard the entire cache
and load it the old fashioned way.  Thanks,

Signed-off-by: Josef Bacik <josef@redhat.com>
2011-05-23 13:03:16 -04:00
Chris Mason 945d8962ce Merge branch 'cleanups' of git://repo.or.cz/linux-2.6/btrfs-unstable into inode_numbers
Conflicts:
	fs/btrfs/extent-tree.c
	fs/btrfs/free-space-cache.c
	fs/btrfs/inode.c
	fs/btrfs/tree-log.c

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-05-22 12:33:42 -04:00
Chris Mason 0965537308 Merge branch 'ino-alloc' of git://repo.or.cz/linux-btrfs-devel into inode_numbers
Conflicts:
	fs/btrfs/free-space-cache.c

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-05-21 09:27:38 -04:00
David Sterba f2a97a9dbd btrfs: remove all unused functions
Remove static and global declarations and/or definitions. Reduces size
of btrfs.ko by ~3.4kB.

  text    data     bss     dec     hex filename
402081    7464     200  409745   64091 btrfs.ko.base
398620    7144     200  405964   631cc btrfs.ko.remove-all

Signed-off-by: David Sterba <dsterba@suse.cz>
2011-05-06 12:34:03 +02:00
David Sterba b3b4aa74b5 btrfs: drop unused parameter from btrfs_release_path
parameter tree root it's not used since commit
5f39d397df ("Btrfs: Create extent_buffer
interface for large blocksizes")

Signed-off-by: David Sterba <dsterba@suse.cz>
2011-05-02 13:57:22 +02:00
David Sterba 62a45b6092 btrfs: make functions static when possible
Signed-off-by: David Sterba <dsterba@suse.cz>
2011-05-02 13:57:20 +02:00
David Sterba edc95aec57 btrfs: remove nested duplicate variable declarations
Signed-off-by: David Sterba <dsterba@suse.cz>
2011-05-02 13:57:19 +02:00
Josef Bacik a4f0162fd4 Btrfs: free bitmaps properly when evicting the cache
If our space cache is wrong, we do the right thing and free up everything that
we loaded, however we don't reset the total_bitmaps counter or the thresholds or
anything.  So in btrfs_remove_free_space_cache make sure to call free_bitmap()
if it's a bitmap, this will keep us from panicing when we check to make sure we
don't have too many bitmaps.  Thanks,

Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-25 19:43:52 -04:00
Li Zefan f789b684bd Btrfs: Free free_space item properly in btrfs_trim_block_group()
Since commit dc89e98244, we've changed
to use a specific slab for alocation of free_space items.

Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-25 19:43:52 -04:00
Li Zefan 82d5902d9c Btrfs: Support reading/writing on disk free ino cache
This is similar to block group caching.

We dedicate a special inode in fs tree to save free ino cache.

At the very first time we create/delete a file after mount, the free ino
cache will be loaded from disk into memory. When the fs tree is commited,
the cache will be written back to disk.

To keep compatibility, we check the root generation against the generation
of the special inode when loading the cache, so the loading will fail
if the btrfs filesystem was mounted in an older kernel before.

Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
2011-04-25 16:46:11 +08:00
Li Zefan 0414efae79 Btrfs: Make the code for reading/writing free space cache generic
Extract out block group specific code from lookup_free_space_inode(),
create_free_space_inode(), load_free_space_cache() and
btrfs_write_out_cache(), so the code can be used to read/write
free ino cache.

Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
2011-04-25 16:46:07 +08:00
Li Zefan 581bb05094 Btrfs: Cache free inode numbers in memory
Currently btrfs stores the highest objectid of the fs tree, and it always
returns (highest+1) inode number when we create a file, so inode numbers
won't be reclaimed when we delete files, so we'll run out of inode numbers
as we keep create/delete files in 32bits machines.

This fixes it, and it works similarly to how we cache free space in block
cgroups.

We start a kernel thread to read the file tree. By scanning inode items,
we know which chunks of inode numbers are free, and we cache them in
an rb-tree.

Because we are searching the commit root, we have to carefully handle the
cross-transaction case.

The rb-tree is a hybrid extent+bitmap tree, so if we have too many small
chunks of inode numbers, we'll use bitmaps. Initially we allow 16K ram
of extents, and a bitmap will be used if we exceed this threshold. The
extents threshold is adjusted in runtime.

Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
2011-04-25 16:46:04 +08:00
Li Zefan 34d52cb6c5 Btrfs: Make free space cache code generic
So we can re-use the code to cache free inode numbers.

The change is quite straightforward. Two new structures are introduced.

- struct btrfs_free_space_ctl

  We move those variables that are used for caching free space from
  struct btrfs_block_group_cache to this new struct.

- struct btrfs_free_space_op

  We do block group specific work (e.g. calculation of extents threshold)
  through functions registered in this struct.

And then we can remove references to struct btrfs_block_group_cache.

Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
2011-04-25 16:46:03 +08:00
Li Zefan f38b6e754d Btrfs: Use bitmap_set/clear()
No functional change.

Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
2011-04-25 16:46:01 +08:00
Li Zefan 92c4231181 Btrfs: Remove unused btrfs_block_group_free_space()
We've already recorded the value in block_group->frees_space.

Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
2011-04-25 16:45:59 +08:00
Chris Mason f65647c29b Btrfs: fix free space cache leak
The free space caching code was recently reworked to
cache all the pages it needed instead of using find_get_page everywhere.

One loop was missed though, so it ended up leaking pages.  This fixes
it to use our page array instead of find_get_page.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-18 08:55:34 -04:00
Josef Bacik be1a12a0df Btrfs: deal with the case that we run out of space in the cache
Currently we don't handle running out of space in the cache, so to fix this we
keep track of how far in the cache we are.  Then we only dirty the pages if we
successfully modify all of them, otherwise if we have an error or run out of
space we can just drop them and not worry about the vm writing them out.
Thanks,

Tested-by Johannes Hirte <johannes.hirte@fem.tu-ilmenau.de>
Signed-off-by: Josef Bacik <josef@redhat.com>
2011-04-08 13:00:27 -04:00
Josef Bacik 43be21462d Btrfs: fix free space cache when there are pinned extents and clusters V2
I noticed a huge problem with the free space cache that was presenting
as an early ENOSPC.  Turns out when writing the free space cache out I
forgot to take into account pinned extents and more importantly
clusters.  This would result in us leaking free space everytime we
unmounted the filesystem and remounted it.

I fix this by making sure to check and see if the current block group
has a cluster and writing out any entries that are in the cluster to the
cache, as well as writing any pinned extents we currently have to the
cache since those will be available for us to use the next time the fs
mounts.

This patch also adds a check to the end of load_free_space_cache to make
sure we got the right amount of free space cache, and if not make sure
to clear the cache and re-cache the old fashioned way.

Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-05 01:20:24 -04:00
Miao Xie adae52b94e btrfs: clear __GFP_FS flag in the space cache inode
the object id of the space cache inode's key is allocated from the relative
root, just like the regular file. So we can't identify space cache inode by
checking the object id of the inode's key, and we have to clear __GFP_FS flag
at the time we look up the space cache inode.

Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-05 01:19:43 -04:00
Li Dongyang f7039b1d5c Btrfs: add btrfs_trim_fs() to handle FITRIM
We take an free extent out from allocator, trim it, then put it back,
but before we trim the block group, we should make sure the block group is
cached, so plus a little change to make cache_block_group() run without a
transaction.

Signed-off-by: Li Dongyang <lidongyang@novell.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-03-28 05:37:47 -04:00
Josef Bacik 4e69b598f6 Btrfs: cleanup how we setup free space clusters
This patch makes the free space cluster refilling code a little easier to
understand, and fixes some things with the bitmap part of it.  Currently we
either want to refill a cluster with

1) All normal extent entries (those without bitmaps)
2) A bitmap entry with enough space

The current code has this ugly jump around logic that will first try and fill up
the cluster with extent entries and then if it can't do that it will try and
find a bitmap to use.  So instead split this out into two functions, one that
tries to find only normal entries, and one that tries to find bitmaps.

This also fixes a suboptimal thing we would do with bitmaps.  If we used a
bitmap we would just tell the cluster that we were pointing at a bitmap and it
would do the tree search in the block group for that entry every time we tried
to make an allocation.  Instead of doing that now we just add it to the clusters
group.

I tested this with my ENOSPC tests and xfstests and it survived.

Signed-off-by: Josef Bacik <josef@redhat.com>
2011-03-25 19:08:08 -04:00
Josef Bacik 32cb0840ce Btrfs: don't be as aggressive about using bitmaps
We have been creating bitmaps for small extents unconditionally forever.  This
was great when testing to make sure the bitmap stuff was working, but is
overkill normally.  So instead of always adding small chunks of free space to
bitmaps, only start doing it if we go past half of our extent threshold.  This
will keeps us from creating a bitmap for just one small free extent at the front
of the block group, and will make the allocator a little faster as a result.
Thanks,

Signed-off-by: Josef Bacik <josef@redhat.com>
2011-03-21 10:26:03 -04:00
Josef Bacik d0a365e84a Btrfs: deal with min_bytes appropriately when looking for a cluster
We do all this fun stuff with min_bytes, but either don't use it in the case of
just normal extents, or use it completely wrong in the case of bitmaps.  So fix
this for both cases

1) In the extent case, stop looking for space with window_free >= min_bytes
instead of bytes + empty_size.

2) In the bitmap case, we were looking for streches of free space that was at
least min_bytes in size, which was not right at all.  So instead search for
stretches of free space that are at least bytes in size (this will make a
difference when we have > page size blocks) and then only search for min_bytes
amount of free space.

Thanks,

Reviewed-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Josef Bacik <josef@redhat.com>
2011-03-21 10:25:56 -04:00
Josef Bacik 7d0d2e8e6b Btrfs: check free space in block group before searching for a cluster
The free space cluster stuff is heavy duty, so there is no sense in going
through the entire song and dance if there isn't enough space in the block group
to begin with.  Thanks,

Signed-off-by: Josef Bacik <josef@redhat.com>
2011-03-21 10:25:48 -04:00
Josef Bacik dc89e98244 Btrfs: use a slab for the free space entries
Since we alloc/free free space entries a whole lot, lets use a slab to keep
track of them.  This makes some of my tests slightly faster.  Thanks,

Signed-off-by: Josef Bacik <josef@redhat.com>
2011-03-17 14:21:20 -04:00
Josef Bacik 13dbc08987 Btrfs: make sure search_bitmap finds something in remove_from_bitmap
When we're cleaning up the tree log we need to be able to remove free space from
the block group.  The problem is if that free space spans bitmaps we would not
find the space since we're looking for too many bytes.  So make sure the amount
of bytes we search for is limited to either the number of bytes we want, or the
number of bytes left in the bitmap.  This was tested by a user who was hitting
the BUG() after search_bitmap.  With this patch he can now mount his fs.
Thanks,

Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-02-06 07:13:12 -05:00
Li Zefan f333adb5d6 btrfs: Check mergeable free space when removing a cluster
After returing extents from a cluster to the block group, some
extents in the block group may be mergeable.

Reviewed-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
2011-01-27 01:04:57 +08:00
Li Zefan 120d66eec0 btrfs: Add a helper try_merge_free_space()
When adding a new extent, we'll firstly see if we can merge
this extent to the left or/and right extent. Extract this as
a helper try_merge_free_space().

As a side effect, we fix a small bug that if the new extent
has non-bitmap left entry but is unmergeble, we'll directly
link the extent without trying to drop it into bitmap.

This also prepares for the next patch.

Reviewed-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
2011-01-27 01:04:50 +08:00
Li Zefan 5e71b5d5ec btrfs: Update stats when allocating from a cluster
When allocating extent entry from a cluster, we should update
the free_space and free_extents fields of the block group.

Reviewed-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
2011-01-27 01:04:46 +08:00
Li Zefan 70b7da304f btrfs: Free fully occupied bitmap in cluster
If there's no more free space in a bitmap, we should free it.

Reviewed-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
2011-01-27 01:04:41 +08:00
Li Zefan edf6e2d1dd btrfs: Add helper function free_bitmap()
Remove some duplicated code.

This prepares for the next patch.

Reviewed-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
2011-01-27 01:04:37 +08:00
Li Zefan 8eb2d829ff btrfs: Fix threshold calculation for block groups smaller than 1GB
If a block group is smaller than 1GB, the extent entry threadhold
calculation will always set the threshold to 0.

So as free space gets fragmented, btrfs will switch to use bitmap
to manage free space, but then will never switch back to extents
due to this bug.

Reviewed-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
2011-01-27 01:04:31 +08:00
Josef Bacik 2b20982e31 Btrfs: deal with space cache errors better
Currently if the space cache inode generation number doesn't match the
generation number in the space cache header we will just fail to load the space
cache, but we won't mark the space cache as an error, so we'll keep getting that
error each time somebody tries to cache that block group until we actually clear
the thing.  Fix this by marking the space cache as having an error so we only
get the message once.  This patch also makes it so that we don't try and setup
space cache for a block group that isn't cached, since we won't be able to write
it out anyway.  None of these problems are actual problems, they are just
annoying and sub-optimal.  Thanks,

Signed-off-by: Josef Bacik <josef@redhat.com>
2010-12-09 13:57:12 -05:00
Josef Bacik 88c2ba3b06 Btrfs: Add a clear_cache mount option
If something goes wrong with the free space cache we need a way to make sure
it's not loaded on mount and that it's cleared for everybody.  When you pass the
clear_cache option it will make it so all block groups are setup to be cleared,
which keeps them from being loaded and then they will be truncated when the
transaction is committed.  Thanks,

Signed-off-by: Josef Bacik <josef@redhat.com>
2010-10-29 09:26:36 -04:00
Josef Bacik 9d66e233c7 Btrfs: load free space cache if it exists
This patch actually loads the free space cache if it exists.  The only thing
that really changes here is that we need to cache the block group if we're going
to remove an extent from it.  Previously we did not do this since the caching
kthread would pick it up.  With the on disk cache we don't have this luxury so
we need to make sure we read the on disk cache in first, and then remove the
extent, that way when the extent is unpinned the free space is added to the
block group.  This has been tested with all sorts of things.

Signed-off-by: Josef Bacik <josef@redhat.com>
2010-10-29 09:26:35 -04:00
Josef Bacik 0cb59c9953 Btrfs: write out free space cache
This is a simple bit, just dump the free space cache out to our preallocated
inode when we're writing out dirty block groups.  There are a bunch of changes
in inode.c in order to account for special cases.  Mostly when we're doing the
writeout we're holding trans_mutex, so we need to use the nolock transacation
functions.  Also we can't do asynchronous completions since the async thread
could be blocked on already completed IO waiting for the transaction lock.  This
has been tested with xfstests and btrfs filesystem balance, as well as my ENOSPC
tests.  Thanks,

Signed-off-by: Josef Bacik <josef@redhat.com>
2010-10-29 09:26:29 -04:00
Josef Bacik 0af3d00bad Btrfs: create special free space cache inode
In order to save free space cache, we need an inode to hold the data, and we
need a special item to point at the right inode for the right block group.  So
first, create a special item that will point to the right inode, and the number
of extent entries we will have and the number of bitmaps we will have.  We
truncate and pre-allocate space everytime to make sure it's uptodate.

This feature will be turned on as soon as you mount with -o space_cache, however
it is safe to boot into old kernels, they will just generate the cache the old
fashion way.  When you boot back into a newer kernel we will notice that we
modified and not the cache and automatically discard the cache.

Signed-off-by: Josef Bacik <josef@redhat.com>
2010-10-28 15:59:09 -04:00
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00
Eric Paris 6bef4d3171 Btrfs: use RB_ROOT to intialize rb_trees instead of setting rb_node to NULL
btrfs inialize rb trees in quite a number of places by settin rb_node =
NULL;  The problem with this is that 17d9ddc72f in the
linux-next tree adds a new field to that struct which needs to be NULL for
the new rbtree library code to work properly.  This patch uses RB_ROOT as
the intializer so all of the relevant fields will be NULL'd.  Without the
patch I get a panic.

Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2010-03-08 16:26:50 -05:00
Josef Bacik 01dea1efc2 Btrfs: fix how we set max_size for free space clusters
This patch fixes a problem where max_size can be set to 0 even though we
filled the cluster properly.  We set max_size to 0 if we restart the cluster
window, but if the new start entry is big enough to be our new cluster then we
could return with a max_size set to 0, which will mean the next time we try to
allocate from this cluster it will fail.  So set max_extent to the entry's
size.  Tested this on my box and now we actually allocate from the cluster
after we fill it.  Thanks,

Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-11-11 14:20:17 -05:00
Josef Bacik 25891f796d Btrfs: fix extent entry threshold calculation
There is a slight problem with the extent entry threshold calculation for the
free space cache.  We only adjust the threshold down as we add bitmaps, but
never actually adjust the threshold up as we add bitmaps.  This means we could
fragment the free space so badly that we end up using all bitmaps to describe
the free space, use all the free space which would result in the bitmaps being
freed, but then go to add free space again as we delete things and immediately
add bitmaps since the extent threshold would still be 0.  Now as we free
bitmaps the extent threshold will be ratcheted up to allow more extent entries
to be added.

Signed-off-by: Josef Bacik <jbacik@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-21 19:23:50 -04:00
Josef Bacik f019f4264a Btrfs: fix bitmap size tracking
When we first go to add free space, we allocate a new info and set the offset
and bytes to the space we are adding.  This is fine, except we actually set the
size of a bitmap as we set the bits in it, so if we add space to a bitmap, we'd
end up counting the same space twice.  This isn't a huge deal, it just makes
the allocator behave weirdly since it will think that a bitmap entry has more
space than it ends up actually having.  I used a BUG_ON() to catch when this
problem happened, and with this patch I no longer get the BUG_ON().

Signed-off-by: Josef Bacik <jbacik@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-21 19:23:49 -04:00
Josef Bacik 6606bb97e1 Btrfs: fix btrfs_remove_from_free_space corner case
Yan Zheng hit a problem where we tried to remove some free space but failed
because we couldn't find the free space entry.  This is because the free space
was held within a bitmap that had a starting offset well before the actual
offset of the free space, and there were free space extents that were in the
same range as that offset, so tree_search_offset returned with NULL because we
couldn't find a free space extent that had that offset.  This is fixed by
making sure that if we fail to find the entry, we re-search again with
bitmap_only set to 1 and do an offset_to_bitmap so we can get the appropriate
bitmap.  A similar problem happens in btrfs_alloc_from_bitmap for the
clustering code, but that is not as bad since we will just go and redo our
cluster allocation.

Also this adds some debugging checks to make sure that the free space we are
trying to remove from the bitmap is in fact there.  This can probably go away
after a while, but since this code is only used by the tree-logging stuff it
would be nice to run with it for a while to make sure there are no problems.

Signed-off-by: Josef Bacik <jbacik@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-07-31 11:03:58 -04:00
Josef Bacik 817d52f8db Btrfs: async block group caching
This patch moves the caching of the block group off to a kthread in order to
allow people to allocate sooner.  Instead of blocking up behind the caching
mutex, we instead kick of the caching kthread, and then attempt to make an
allocation.  If we cannot, we wait on the block groups caching waitqueue, which
the caching kthread will wake the waiting threads up everytime it finds 2 meg
worth of space, and then again when its finished caching.  This is how I tested
the speedup from this

mkfs the disk
mount the disk
fill the disk up with fs_mark
unmount the disk
mount the disk
time touch /mnt/foo

Without my changes this took 11 seconds on my box, with these changes it now
takes 1 second.

Another change thats been put in place is we lock the super mirror's in the
pinned extent map in order to keep us from adding that stuff as free space when
caching the block group.  This doesn't really change anything else as far as the
pinned extent map is concerned, since for actual pinned extents we use
EXTENT_DIRTY, but it does mean that when we unmount we have to go in and unlock
those extents to keep from leaking memory.

I've also added a check where when we are reading block groups from disk, if the
amount of space used == the size of the block group, we go ahead and mark the
block group as cached.  This drastically reduces the amount of time it takes to
cache the block groups.  Using the same test as above, except doing a dd to a
file and then unmounting, it used to take 33 seconds to umount, now it takes 3
seconds.

This version uses the commit_root in the caching kthread, and then keeps track
of how many async caching threads are running at any given time so if one of the
async threads is still running as we cross transactions we can wait until its
finished before handling the pinned extents.  Thank you,

Signed-off-by: Josef Bacik <jbacik@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-07-24 09:23:39 -04:00
Josef Bacik 9630308170 Btrfs: use hybrid extents+bitmap rb tree for free space
Currently btrfs has a problem where it can use a ridiculous amount of RAM simply
tracking free space.  As free space gets fragmented, we end up with thousands of
entries on an rb-tree per block group, which usually spans 1 gig of area.  Since
we currently don't ever flush free space cache back to disk this gets to be a
bit unweildly on large fs's with lots of fragmentation.

This patch solves this problem by using PAGE_SIZE bitmaps for parts of the free
space cache.  Initially we calculate a threshold of extent entries we can
handle, which is however many extent entries we can cram into 16k of ram.  The
maximum amount of RAM that should ever be used to track 1 gigabyte of diskspace
will be 32k of RAM, which scales much better than we did before.

Once we pass the extent threshold, we start adding bitmaps and using those
instead for tracking the free space.  This patch also makes it so that any free
space thats less than 4 * sectorsize we go ahead and put into a bitmap.  This is
nice since we try and allocate out of the front of a block group, so if the
front of a block group is heavily fragmented and then has a huge chunk of free
space at the end, we go ahead and add the fragmented areas to bitmaps and use a
normal extent entry to track the big chunk at the back of the block group.

I've also taken the opportunity to revamp how we search for free space.
Previously we indexed free space via an offset indexed rb tree and a bytes
indexed rb tree.  I've dropped the bytes indexed rb tree and use only the offset
indexed rb tree.  This cuts the number of tree operations we were doing
previously down by half, and gives us a little bit of a better allocation
pattern since we will always start from a specific offset and search forward
from there, instead of searching for the size we need and try and get it as
close as possible to the offset we want.

I've given this a healthy amount of testing pre-new format stuff, as well as
post-new format stuff.  I've booted up my fedora box which is installed on btrfs
with this patch and ran with it for a few days without issues.  I've not seen
any performance regressions in any of my tests.

Since the last patch Yan Zheng fixed a problem where we could have overlapping
entries, so updating their offset inline would cause problems.  Thanks,

Signed-off-by: Josef Bacik <jbacik@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-07-24 09:23:30 -04:00
Chris Mason 451d7585a8 Btrfs: add mount -o ssd_spread to spread allocations out
Some SSDs perform best when reusing block numbers often, while
others perform much better when clustering strictly allocates
big chunks of unused space.

The default mount -o ssd will find rough groupings of blocks
where there are a bunch of free blocks that might have some
allocated blocks mixed in.

mount -o ssd_spread will make sure there are no allocated blocks
mixed in.  It should perform better on lower end SSDs.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 11:29:52 -04:00
Chris Mason c604480171 Btrfs: avoid allocation clusters that are too spread out
In SSD mode for data, and all the time for metadata the allocator
will try to find a cluster of nearby blocks for allocations.  This
commit adds extra checks to make sure that each free block in the
cluster is close to the last one.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 11:29:51 -04:00
Chris Mason 2c943de6ad Btrfs: reduce mount -o ssd CPU usage
The block allocator in SSD mode will try to find groups of free blocks
that are close together.  This commit makes it loop less on a given
group size before bumping it.

The end result is that we are less likely to fill small holes in the
available free space, but we don't waste as much CPU building the
large cluster used by ssd mode.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 11:29:48 -04:00
Joel Becker 21380931eb Btrfs: Fix a bunch of printk() warnings.
Just happened to notice a bunch of %llu vs u64 warnings.  Here's a patch
to cast them all.

Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-04-27 08:37:49 -04:00
Stoyan Gaydarov c293498be6 Btrfs: BUG to BUG_ON changes
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-04-02 17:05:11 -04:00
Chris Mason fa9c0d795f Btrfs: rework allocation clustering
Because btrfs is copy-on-write, we end up picking new locations for
blocks very often.  This makes it fairly difficult to maintain perfect
read patterns over time, but we can at least do some optimizations
for writes.

This is done today by remembering the last place we allocated and
trying to find a free space hole big enough to hold more than just one
allocation.  The end result is that we tend to write sequentially to
the drive.

This happens all the time for metadata and it happens for data
when mounted -o ssd.  But, the way we record it is fairly racey
and it tends to fragment the free space over time because we are trying
to allocate fairly large areas at once.

This commit gets rid of the races by adding a free space cluster object
with dedicated locking to make sure that only one process at a time
is out replacing the cluster.

The free space fragmentation is somewhat solved by allowing a cluster
to be comprised of smaller free space extents.  This part definitely
adds some CPU time to the cluster allocations, but it allows the allocator
to consume the small holes left behind by cow.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-04-03 09:47:43 -04:00
Josef Bacik 6226cb0a5e Btrfs: kill the block group alloc mutex
This patch removes the block group alloc mutex used to protect the free space
tree for allocations and replaces it with a spin lock which is used only to
protect the free space rb tree.  This means we only take the lock when we are
directly manipulating the tree, which makes us a touch faster with
multi-threaded workloads.

This patch also gets rid of btrfs_find_free_space and replaces it with
btrfs_find_space_for_alloc, which takes the number of bytes you want to
allocate, and empty_size, which is used to indicate how much free space should
be at the end of the allocation.

It will return an offset for the allocator to use.  If we don't end up using it
we _must_ call btrfs_add_free_space to put it back.  This is the tradeoff to
kill the alloc_mutex, since we need to make sure nobody else comes along and
takes our space.

Signed-off-by: Josef Bacik <jbacik@redhat.com>
2009-04-03 10:14:18 -04:00
Josef Bacik 70cb074345 Btrfs: free space cache cleanups
This patch cleans up the free space cache code a bit.  It better documents the
idiosyncrasies of tree_search_offset and makes the code make a bit more sense.
I took out the info allocation at the start of __btrfs_add_free_space and put it
where it makes more sense.  This was left over cruft from when alloc_mutex
existed.  Also all of the re-searches we do to make sure we inserted properly.

Signed-off-by: Josef Bacik <jbacik@redhat.com>
2009-04-03 10:14:19 -04:00
Chris Mason d397712bcc Btrfs: Fix checkpatch.pl warnings
There were many, most are fixed now.  struct-funcs.c generates some warnings
but these are bogus.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-01-05 21:25:51 -05:00
Yan Zheng a512bbf855 Btrfs: superblock duplication
This patch implements superblock duplication. Superblocks
are stored at offset 16K, 64M and 256G on every devices.
Spaces used by superblocks are preserved by the allocator,
which uses a reverse mapping function to find the logical
addresses that correspond to superblocks. Thank you,

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
2008-12-08 16:46:26 -05:00
Christoph Hellwig b2950863c6 Btrfs: make things static and include the right headers
Shut up various sparse warnings about symbols that should be either
static or have their declarations in scope.

Signed-off-by: Christoph Hellwig <hch@lst.de>
2008-12-02 09:54:17 -05:00
Josef Bacik 2517920135 Btrfs: nuke fs wide allocation mutex V2
This patch removes the giant fs_info->alloc_mutex and replaces it with a bunch
of little locks.

There is now a pinned_mutex, which is used when messing with the pinned_extents
extent io tree, and the extent_ins_mutex which is used with the pending_del and
extent_ins extent io trees.

The locking for the extent tree stuff was inspired by a patch that Yan Zheng
wrote to fix a race condition, I cleaned it up some and changed the locking
around a little bit, but the idea remains the same.  Basically instead of
holding the extent_ins_mutex throughout the processing of an extent on the
extent_ins or pending_del trees, we just hold it while we're searching and when
we clear the bits on those trees, and lock the extent for the duration of the
operations on the extent.

Also to keep from getting hung up waiting to lock an extent, I've added a
try_lock_extent so if we cannot lock the extent, move on to the next one in the
tree and we'll come back to that one.  I have tested this heavily and it does
not appear to break anything.  This has to be applied on top of my
find_free_extent redo patch.

I tested this patch on top of Yan's space reblancing code and it worked fine.
The only thing that has changed since the last version is I pulled out all my
debugging stuff, apparently I forgot to run guilt refresh before I sent the
last patch out.  Thank you,

Signed-off-by: Josef Bacik <jbacik@redhat.com>
2008-10-29 14:49:05 -04:00
Josef Bacik 37d3cdddf5 Btrfs: make tree_search_offset more flexible in its searching
Sometimes we end up freeing a reserved extent because we don't need it, however
this means that its possible for transaction->last_alloc to point to the middle
of a free area.

When we search for free space in find_free_space we do a tree_search_offset
with contains set to 0, because we want it to find the next best free area if
we do not have an offset starting on the given offset.

Unfortunately that currently means that if the offset we were given as a hint
points to the middle of a free area, we won't find anything.  This is especially
bad if we happened to last allocate from the big huge chunk of a newly formed
block group, since we won't find anything and have to go back and search the
long way around.

This fixes this problem by making it so that we return the free space area
regardless of the contains variable.  This made cache missing happen _alot_
less, and speeds things up considerably.

Signed-off-by: Josef Bacik <jbacik@redhat.com>
2008-10-10 10:24:32 -04:00
Chris Mason 9b49c9b9f9 Btrfs: Fix allocation completions in tree log replay
After a crash, the tree log code uses btrfs_alloc_logged_extent to
record allocations of data extents that it finds in the log tree.  These
come in basically random order, which does not fit how
btrfs_remove_free_space() expects to be called.

btrfs_remove_free_space was changed to support recording an extent
allocation in the middle of a region of free space.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 15:41:59 -04:00
Josef Bacik 0f9dd46cda Btrfs: free space accounting redo
1) replace the per fs_info extent_io_tree that tracked free space with two
rb-trees per block group to track free space areas via offset and size.  The
reason to do this is because most allocations come with a hint byte where to
start, so we can usually find a chunk of free space at that hint byte to satisfy
the allocation and get good space packing.  If we cannot find free space at or
after the given offset we fall back on looking for a chunk of the given size as
close to that given offset as possible.  When we fall back on the size search we
also try to find a slot as close to the size we want as possible, to avoid
breaking small chunks off of huge areas if possible.

2) remove the extent_io_tree that tracked the block group cache from fs_info and
replaced it with an rb-tree thats tracks block group cache via offset.  also
added a per space_info list that tracks the block group cache for the particular
space so we can lookup related block groups easily.

3) cleaned up the allocation code to make it a little easier to read and a
little less complicated.  Basically there are 3 steps, first look from our
provided hint.  If we couldn't find from that given hint, start back at our
original search start and look for space from there.  If that fails try to
allocate space if we can and start looking again.  If not we're screwed and need
to start over again.

4) small fixes.  there were some issues in volumes.c where we wouldn't allocate
the rest of the disk.  fixed cow_file_range to actually pass the alloc_hint,
which has helped a good bit in making the fs_mark test I run have semi-normal
results as we run out of space.  Generally with data allocations we don't track
where we last allocated from, so everytime we did a data allocation we'd search
through every block group that we have looking for free space.  Now searching a
block group with no free space isn't terribly time consuming, it was causing a
slight degradation as we got more data block groups.  The alloc_hint has fixed
this slight degredation and made things semi-normal.

There is still one nagging problem I'm working on where we will get ENOSPC when
there is definitely plenty of space.  This only happens with metadata
allocations, and only when we are almost full.  So you generally hit the 85%
mark first, but sometimes you'll hit the BUG before you hit the 85% wall.  I'm
still tracking it down, but until then this seems to be pretty stable and make a
significant performance gain.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:07 -04:00