This patch increases the ARCH_DMA_MINALIGN to 128 so that it covers the
currently known Cache Writeback Granule (CTR_EL0.CWG) on arm64 and moves
the fallback in cache_line_size() from L1_CACHE_BYTES to this constant.
In addition, it warns (and taints) if the CWG is larger than
ARCH_DMA_MINALIGN as this is not safe with non-coherent DMA.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We're missing a sentinel entry in kpti_safe_list. Thus is_midr_in_range_list()
can walk past the end of kpti_safe_list. Depending on the contents of memory,
this could erroneously match a CPU's MIDR, cause a data abort, or other bad
outcomes.
Add the sentinel entry to avoid this.
Fixes: be5b299830 ("arm64: capabilities: Add support for checks based on a list of MIDRs")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reported-by: Jan Kiszka <jan.kiszka@siemens.com>
Tested-by: Jan Kiszka <jan.kiszka@siemens.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
- VHE optimizations
- EL2 address space randomization
- speculative execution mitigations ("variant 3a", aka execution past invalid
privilege register access)
- bugfixes and cleanups
PPC:
- improvements for the radix page fault handler for HV KVM on POWER9
s390:
- more kvm stat counters
- virtio gpu plumbing
- documentation
- facilities improvements
x86:
- support for VMware magic I/O port and pseudo-PMCs
- AMD pause loop exiting
- support for AMD core performance extensions
- support for synchronous register access
- expose nVMX capabilities to userspace
- support for Hyper-V signaling via eventfd
- use Enlightened VMCS when running on Hyper-V
- allow userspace to disable MWAIT/HLT/PAUSE vmexits
- usual roundup of optimizations and nested virtualization bugfixes
Generic:
- API selftest infrastructure (though the only tests are for x86 as of now)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJay19UAAoJEL/70l94x66DGKYIAIu9PTHAEwaX0et15fPW5y2x
rrtS355lSAmMrPJ1nePRQ+rProD/1B0Kizj3/9O+B9OTKKRsorRYNa4CSu9neO2k
N3rdE46M1wHAPwuJPcYvh3iBVXtgbMayk1EK5aVoSXaMXEHh+PWZextkl+F+G853
kC27yDy30jj9pStwnEFSBszO9ua/URdKNKBATNx8WUP6d9U/dlfm5xv3Dc3WtKt2
UMGmog2wh0i7ecXo7hRkMK4R7OYP3ZxAexq5aa9BOPuFp+ZdzC/MVpN+jsjq2J/M
Zq6RNyA2HFyQeP0E9QgFsYS2BNOPeLZnT5Jg1z4jyiD32lAZ/iC51zwm4oNKcDM=
=bPlD
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM:
- VHE optimizations
- EL2 address space randomization
- speculative execution mitigations ("variant 3a", aka execution past
invalid privilege register access)
- bugfixes and cleanups
PPC:
- improvements for the radix page fault handler for HV KVM on POWER9
s390:
- more kvm stat counters
- virtio gpu plumbing
- documentation
- facilities improvements
x86:
- support for VMware magic I/O port and pseudo-PMCs
- AMD pause loop exiting
- support for AMD core performance extensions
- support for synchronous register access
- expose nVMX capabilities to userspace
- support for Hyper-V signaling via eventfd
- use Enlightened VMCS when running on Hyper-V
- allow userspace to disable MWAIT/HLT/PAUSE vmexits
- usual roundup of optimizations and nested virtualization bugfixes
Generic:
- API selftest infrastructure (though the only tests are for x86 as
of now)"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (174 commits)
kvm: x86: fix a prototype warning
kvm: selftests: add sync_regs_test
kvm: selftests: add API testing infrastructure
kvm: x86: fix a compile warning
KVM: X86: Add Force Emulation Prefix for "emulate the next instruction"
KVM: X86: Introduce handle_ud()
KVM: vmx: unify adjacent #ifdefs
x86: kvm: hide the unused 'cpu' variable
KVM: VMX: remove bogus WARN_ON in handle_ept_misconfig
Revert "KVM: X86: Fix SMRAM accessing even if VM is shutdown"
kvm: Add emulation for movups/movupd
KVM: VMX: raise internal error for exception during invalid protected mode state
KVM: nVMX: Optimization: Dont set KVM_REQ_EVENT when VMExit with nested_run_pending
KVM: nVMX: Require immediate-exit when event reinjected to L2 and L1 event pending
KVM: x86: Fix misleading comments on handling pending exceptions
KVM: x86: Rename interrupt.pending to interrupt.injected
KVM: VMX: No need to clear pending NMI/interrupt on inject realmode interrupt
x86/kvm: use Enlightened VMCS when running on Hyper-V
x86/hyper-v: detect nested features
x86/hyper-v: define struct hv_enlightened_vmcs and clean field bits
...
This reverts commit 1f85b42a69.
The internal dma-direct.h API has changed in -next, which collides with
us trying to use it to manage non-coherent DMA devices on systems with
unreasonably large cache writeback granules.
This isn't at all trivial to resolve, so revert our changes for now and
we can revisit this after the merge window. Effectively, this just
restores our behaviour back to that of 4.16.
Signed-off-by: Will Deacon <will.deacon@arm.com>
An allnoconfig build complains about unused symbols due to functions
that are called via conditional cpufeature and cpu_errata table entries.
Annotate these as __maybe_unused if they are likely to be generic, or
predicate their compilation on the same option as the table entry if
they are specific to a given alternative.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Some variants of the Arm Cortex-55 cores (r0p0, r0p1, r1p0) suffer
from an erratum 1024718, which causes incorrect updates when DBM/AP
bits in a page table entry is modified without a break-before-make
sequence. The work around is to skip enabling the hardware DBM feature
on the affected cores. The hardware Access Flag management features
is not affected. There are some other cores suffering from this
errata, which could be added to the midr_list to trigger the work
around.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: ckadabi@codeaurora.org
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We enable hardware DBM bit in a capable CPU, very early in the
boot via __cpu_setup. This doesn't give us a flexibility of
optionally disable the feature, as the clearing the bit
is a bit costly as the TLB can cache the settings. Instead,
we delay enabling the feature until the CPU is brought up
into the kernel. We use the feature capability mechanism
to handle it.
The hardware DBM is a non-conflicting feature. i.e, the kernel
can safely run with a mix of CPUs with some using the feature
and the others don't. So, it is safe for a late CPU to have
this capability and enable it, even if the active CPUs don't.
To get this handled properly by the infrastructure, we
unconditionally set the capability and only enable it
on CPUs which really have the feature. Also, we print the
feature detection from the "matches" call back to make sure
we don't mislead the user when none of the CPUs could use the
feature.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Some capabilities have different criteria for detection and associated
actions based on the matching criteria, even though they all share the
same capability bit. So far we have used multiple entries with the same
capability bit to handle this. This is prone to errors, as the
cpu_enable is invoked for each entry, irrespective of whether the
detection rule applies to the CPU or not. And also this complicates
other helpers, e.g, __this_cpu_has_cap.
This patch adds a wrapper entry to cover all the possible variations
of a capability by maintaining list of matches + cpu_enable callbacks.
To avoid complicating the prototypes for the "matches()", we use
arm64_cpu_capabilities maintain the list and we ignore all the other
fields except the matches & cpu_enable.
This ensures :
1) The capabilitiy is set when at least one of the entry detects
2) Action is only taken for the entries that "matches".
This avoids explicit checks in the cpu_enable() take some action.
The only constraint here is that, all the entries should have the
same "type" (i.e, scope and conflict rules).
If a cpu_enable() method is associated with multiple matches for a
single capability, care should be taken that either the match criteria
are mutually exclusive, or that the method is robust against being
called multiple times.
This also reverts the changes introduced by commit 67948af41f
("arm64: capabilities: Handle duplicate entries for a capability").
Cc: Robin Murphy <robin.murphy@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Add helpers for detecting an errata on list of midr ranges
of affected CPUs, with the same work around.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We expect all CPUs to be running at the same EL inside the kernel
with or without VHE enabled and we have strict checks to ensure
that any mismatch triggers a kernel panic. If VHE is enabled,
we use the feature based on the boot CPU and all other CPUs
should follow. This makes it a perfect candidate for a capability
based on the boot CPU, which should be matched by all the CPUs
(both when is ON and OFF). This saves us some not-so-pretty
hooks and special code, just for verifying the conflict.
The patch also makes the VHE capability entry depend on
CONFIG_ARM64_VHE.
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The kernel detects and uses some of the features based on the boot
CPU and expects that all the following CPUs conform to it. e.g,
with VHE and the boot CPU running at EL2, the kernel decides to
keep the kernel running at EL2. If another CPU is brought up without
this capability, we use custom hooks (via check_early_cpu_features())
to handle it. To handle such capabilities add support for detecting
and enabling capabilities based on the boot CPU.
A bit is added to indicate if the capability should be detected
early on the boot CPU. The infrastructure then ensures that such
capabilities are probed and "enabled" early on in the boot CPU
and, enabled on the subsequent CPUs.
Cc: Julien Thierry <julien.thierry@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
KPTI is treated as a system wide feature and is only detected if all
the CPUs in the sysetm needs the defense, unless it is forced via kernel
command line. This leaves a system with a mix of CPUs with and without
the defense vulnerable. Also, if a late CPU needs KPTI but KPTI was not
activated at boot time, the CPU is currently allowed to boot, which is a
potential security vulnerability.
This patch ensures that the KPTI is turned on if at least one CPU detects
the capability (i.e, change scope to SCOPE_LOCAL_CPU). Also rejetcs a late
CPU, if it requires the defense, when the system hasn't enabled it,
Cc: Will Deacon <will.deacon@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Now that we have the flexibility of defining system features based
on individual CPUs, introduce CPU feature type that can be detected
on a local SCOPE and ignores the conflict on late CPUs. This is
applicable for ARM64_HAS_NO_HW_PREFETCH, where it is fine for
the system to have CPUs without hardware prefetch turning up
later. We only suffer a performance penalty, nothing fatal.
Cc: Will Deacon <will.deacon@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Now that the features and errata workarounds have the same
rules and flow, group the handling of the tables.
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
So far we have treated the feature capabilities as system wide
and this wouldn't help with features that could be detected locally
on one or more CPUs (e.g, KPTI, Software prefetch). This patch
splits the feature detection to two phases :
1) Local CPU features are checked on all boot time active CPUs.
2) System wide features are checked only once after all CPUs are
active.
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Right now we run through the errata workarounds check on all boot
active CPUs, with SCOPE_ALL. This wouldn't help for detecting erratum
workarounds with a SYSTEM_SCOPE. There are none yet, but we plan to
introduce some: let us clean this up so that such workarounds can be
detected and enabled correctly.
So, we run the checks with SCOPE_LOCAL_CPU on all CPUs and SCOPE_SYSTEM
checks are run only once after all the boot time CPUs are active.
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We are about to group the handling of all capabilities (features
and errata workarounds). This patch open codes the wrapper routines
to make it easier to merge the handling.
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
While processing the list of capabilities, it is useful to
filter out some of the entries based on the given mask for the
scope of the capabilities to allow better control. This can be
used later for handling LOCAL vs SYSTEM wide capabilities and more.
All capabilities should have their scope set to either LOCAL_CPU or
SYSTEM. No functional/flow change.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Now that each capability describes how to treat the conflicts
of CPU cap state vs System wide cap state, we can unify the
verification logic to a single place.
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
When a CPU is brought up, it is checked against the caps that are
known to be enabled on the system (via verify_local_cpu_capabilities()).
Based on the state of the capability on the CPU vs. that of System we
could have the following combinations of conflict.
x-----------------------------x
| Type | System | Late CPU |
|-----------------------------|
| a | y | n |
|-----------------------------|
| b | n | y |
x-----------------------------x
Case (a) is not permitted for caps which are system features, which the
system expects all the CPUs to have (e.g VHE). While (a) is ignored for
all errata work arounds. However, there could be exceptions to the plain
filtering approach. e.g, KPTI is an optional feature for a late CPU as
long as the system already enables it.
Case (b) is not permitted for errata work arounds that cannot be activated
after the kernel has finished booting.And we ignore (b) for features. Here,
yet again, KPTI is an exception, where if a late CPU needs KPTI we are too
late to enable it (because we change the allocation of ASIDs etc).
Add two different flags to indicate how the conflict should be handled.
ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - CPUs may have the capability
ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - CPUs may not have the cappability.
Now that we have the flags to describe the behavior of the errata and
the features, as we treat them, define types for ERRATUM and FEATURE.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We use arm64_cpu_capabilities to represent CPU ELF HWCAPs exposed
to the userspace and the CPU hwcaps used by the kernel, which
include cpu features and CPU errata work arounds. Capabilities
have some properties that decide how they should be treated :
1) Detection, i.e scope : A cap could be "detected" either :
- if it is present on at least one CPU (SCOPE_LOCAL_CPU)
Or
- if it is present on all the CPUs (SCOPE_SYSTEM)
2) When is it enabled ? - A cap is treated as "enabled" when the
system takes some action based on whether the capability is detected or
not. e.g, setting some control register, patching the kernel code.
Right now, we treat all caps are enabled at boot-time, after all
the CPUs are brought up by the kernel. But there are certain caps,
which are enabled early during the boot (e.g, VHE, GIC_CPUIF for NMI)
and kernel starts using them, even before the secondary CPUs are brought
up. We would need a way to describe this for each capability.
3) Conflict on a late CPU - When a CPU is brought up, it is checked
against the caps that are known to be enabled on the system (via
verify_local_cpu_capabilities()). Based on the state of the capability
on the CPU vs. that of System we could have the following combinations
of conflict.
x-----------------------------x
| Type | System | Late CPU |
------------------------------|
| a | y | n |
------------------------------|
| b | n | y |
x-----------------------------x
Case (a) is not permitted for caps which are system features, which the
system expects all the CPUs to have (e.g VHE). While (a) is ignored for
all errata work arounds. However, there could be exceptions to the plain
filtering approach. e.g, KPTI is an optional feature for a late CPU as
long as the system already enables it.
Case (b) is not permitted for errata work arounds which requires some
work around, which cannot be delayed. And we ignore (b) for features.
Here, yet again, KPTI is an exception, where if a late CPU needs KPTI we
are too late to enable it (because we change the allocation of ASIDs
etc).
So this calls for a lot more fine grained behavior for each capability.
And if we define all the attributes to control their behavior properly,
we may be able to use a single table for the CPU hwcaps (which cover
errata and features, not the ELF HWCAPs). This is a prepartory step
to get there. More bits would be added for the properties listed above.
We are going to use a bit-mask to encode all the properties of a
capabilities. This patch encodes the "SCOPE" of the capability.
As such there is no change in how the capabilities are treated.
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We have errata work around processing code in cpu_errata.c,
which calls back into helpers defined in cpufeature.c. Now
that we are going to make the handling of capabilities
generic, by adding the information to each capability,
move the errata work around specific processing code.
No functional changes.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We trigger CPU errata work around check on the boot CPU from
smp_prepare_boot_cpu() to make sure that we run the checks only
after the CPU feature infrastructure is initialised. While this
is correct, we can also do this from init_cpu_features() which
initilises the infrastructure, and is called only on the
Boot CPU. This helps to consolidate the CPU capability handling
to cpufeature.c. No functional changes.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We issue the enable() call back for all CPU hwcaps capabilities
available on the system, on all the CPUs. So far we have ignored
the argument passed to the call back, which had a prototype to
accept a "void *" for use with on_each_cpu() and later with
stop_machine(). However, with commit 0a0d111d40
("arm64: cpufeature: Pass capability structure to ->enable callback"),
there are some users of the argument who wants the matching capability
struct pointer where there are multiple matching criteria for a single
capability. Clean up the declaration of the call back to make it clear.
1) Renamed to cpu_enable(), to imply taking necessary actions on the
called CPU for the entry.
2) Pass const pointer to the capability, to allow the call back to
check the entry. (e.,g to check if any action is needed on the CPU)
3) We don't care about the result of the call back, turning this to
a void.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andre Przywara <andre.przywara@arm.com>
Cc: James Morse <james.morse@arm.com>
Acked-by: Robin Murphy <robin.murphy@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Signed-off-by: Dave Martin <dave.martin@arm.com>
[suzuki: convert more users, rename call back and drop results]
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Expose the new features introduced by Arm v8.4 extensions to
Arm v8-A profile.
These include :
1) Data indpendent timing of instructions. (DIT, exposed as HWCAP_DIT)
2) Unaligned atomic instructions and Single-copy atomicity of loads
and stores. (AT, expose as HWCAP_USCAT)
3) LDAPR and STLR instructions with immediate offsets (extension to
LRCPC, exposed as HWCAP_ILRCPC)
4) Flag manipulation instructions (TS, exposed as HWCAP_FLAGM).
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Now that we can dynamically compute the kernek/hyp VA mask, there
is no need for a feature flag to trigger the alternative patching.
Let's drop the flag and everything that depends on it.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The DCache clean & ICache invalidation requirements for instructions
to be data coherence are discoverable through new fields in CTR_EL0.
The following two control bits DIC and IDC were defined for this
purpose. No need to perform point of unification cache maintenance
operations from software on systems where CPU caches are transparent.
This patch optimize the three functions __flush_cache_user_range(),
clean_dcache_area_pou() and invalidate_icache_range() if the hardware
reports CTR_EL0.IDC and/or CTR_EL0.IDC. Basically it skips the two
instructions 'DC CVAU' and 'IC IVAU', and the associated loop logic
in order to avoid the unnecessary overhead.
CTR_EL0.DIC: Instruction cache invalidation requirements for
instruction to data coherence. The meaning of this bit[29].
0: Instruction cache invalidation to the point of unification
is required for instruction to data coherence.
1: Instruction cache cleaning to the point of unification is
not required for instruction to data coherence.
CTR_EL0.IDC: Data cache clean requirements for instruction to data
coherence. The meaning of this bit[28].
0: Data cache clean to the point of unification is required for
instruction to data coherence, unless CLIDR_EL1.LoC == 0b000
or (CLIDR_EL1.LoUIS == 0b000 && CLIDR_EL1.LoUU == 0b000).
1: Data cache clean to the point of unification is not required
for instruction to data coherence.
Co-authored-by: Philip Elcan <pelcan@codeaurora.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Commit 9730348075 ("arm64: Increase the max granular size") increased
the cache line size to 128 to match Cavium ThunderX, apparently for some
performance benefit which could not be confirmed. This change, however,
has an impact on the network packets allocation in certain
circumstances, requiring slightly over a 4K page with a significant
performance degradation.
This patch reverts L1_CACHE_SHIFT back to 6 (64-byte cache line) while
keeping ARCH_DMA_MINALIGN at 128. The cache_line_size() function was
changed to default to ARCH_DMA_MINALIGN in the absence of a meaningful
CTR_EL0.CWG bit field.
In addition, if a system with ARCH_DMA_MINALIGN < CTR_EL0.CWG is
detected, the kernel will force swiotlb bounce buffering for all
non-coherent devices since DMA cache maintenance on sub-CWG ranges is
not safe, leading to data corruption.
Cc: Tirumalesh Chalamarla <tchalamarla@cavium.com>
Cc: Timur Tabi <timur@codeaurora.org>
Cc: Florian Fainelli <f.fainelli@gmail.com>
Acked-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The word "feature" is repeated in the CPU features reporting. This drops it
for improved readability.
Before (redundant "feature" word):
SMP: Total of 4 processors activated.
CPU features: detected feature: 32-bit EL0 Support
CPU features: detected feature: Kernel page table isolation (KPTI)
CPU features: emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching
CPU: All CPU(s) started at EL2
After:
SMP: Total of 4 processors activated.
CPU features: detected: 32-bit EL0 Support
CPU features: detected: Kernel page table isolation (KPTI)
CPU features: emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching
CPU: All CPU(s) started at EL2
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The PAN emulation notification was only happening for non-boot CPUs
if CPU capabilities had already been configured. This seems to be the
wrong place, as it's system-wide and isn't attached to capabilities,
so its reporting didn't normally happen. Instead, report it once from
the boot CPU.
Before (missing PAN emulation report):
SMP: Total of 4 processors activated.
CPU features: detected feature: 32-bit EL0 Support
CPU features: detected feature: Kernel page table isolation (KPTI)
CPU: All CPU(s) started at EL2
After:
SMP: Total of 4 processors activated.
CPU features: detected feature: 32-bit EL0 Support
CPU features: detected feature: Kernel page table isolation (KPTI)
CPU features: emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching
CPU: All CPU(s) started at EL2
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Our field definitions for CTR_EL0 suffer from a number of problems:
- The IDC and DIC fields are missing, which causes us to enable CTR
trapping on CPUs with either of these returning non-zero values.
- The ERG is FTR_LOWER_SAFE, whereas it should be treated like CWG as
FTR_HIGHER_SAFE so that applications can use it to avoid false sharing.
- [nit] A RES1 field is described as "RAO"
This patch updates the CTR_EL0 field definitions to fix these issues.
Cc: <stable@vger.kernel.org>
Cc: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Spectre v1 mitigation:
- back-end version of array_index_mask_nospec()
- masking of the syscall number to restrict speculation through the
syscall table
- masking of __user pointers prior to deference in uaccess routines
Spectre v2 mitigation update:
- using the new firmware SMC calling convention specification update
- removing the current PSCI GET_VERSION firmware call mitigation as
vendors are deploying new SMCCC-capable firmware
- additional branch predictor hardening for synchronous exceptions and
interrupts while in user mode
Meltdown v3 mitigation update for Cavium Thunder X: unaffected but
hardware erratum gets in the way. The kernel now starts with the page
tables mapped as global and switches to non-global if kpti needs to be
enabled.
Other:
- Theoretical trylock bug fixed
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAlp8lqcACgkQa9axLQDI
XvH2lxAAnsYqthpGQ11MtDJB+/UiBAFkg9QWPDkwrBDvNhgpll+J0VQuCN1QJ2GX
qQ8rkv8uV+y4Fqr8hORGJy5At+0aI63ZCJ72RGkZTzJAtbFbFGIDHP7RhAEIGJBS
Lk9kDZ7k39wLEx30UXIFYTTVzyHar397TdI7vkTcngiTzZ8MdFATfN/hiKO906q3
14pYnU9Um4aHUdcJ+FocL3dxvdgniuuMBWoNiYXyOCZXjmbQOnDNU2UrICroV8lS
mB+IHNEhX1Gl35QzNBtC0ET+aySfHBMJmM5oln+uVUljIGx6En1WLj6mrHYcx8U2
rIBm5qO/X/4iuzYPGkxwQtpjq3wPYxsSUnMdKJrsUZqAfy2QeIhFx6XUtJsZPB2J
/lgls5xSXMOS7oiOQtmVjcDLBURDmYXGwljXR4n4jLm4CT1V9qSLcKHu1gdFU9Mq
VuMUdPOnQub1vqKndi154IoYDTo21jAib2ktbcxpJfSJnDYoit4Gtnv7eWY+M3Pd
Toaxi8htM2HSRwbvslHYGW8ZcVpI79Jit+ti7CsFg7m9Lvgs0zxcnNui4uPYDymT
jh2JYxuirIJbX9aGGhnmkNhq9REaeZJg9LA2JM8S77FCHN3bnlSdaG6wy899J6EI
lK4anCuPQKKKhUia/dc1MeKwrmmC18EfPyGUkOzywg/jGwGCmZM=
=Y0TT
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull more arm64 updates from Catalin Marinas:
"As I mentioned in the last pull request, there's a second batch of
security updates for arm64 with mitigations for Spectre/v1 and an
improved one for Spectre/v2 (via a newly defined firmware interface
API).
Spectre v1 mitigation:
- back-end version of array_index_mask_nospec()
- masking of the syscall number to restrict speculation through the
syscall table
- masking of __user pointers prior to deference in uaccess routines
Spectre v2 mitigation update:
- using the new firmware SMC calling convention specification update
- removing the current PSCI GET_VERSION firmware call mitigation as
vendors are deploying new SMCCC-capable firmware
- additional branch predictor hardening for synchronous exceptions
and interrupts while in user mode
Meltdown v3 mitigation update:
- Cavium Thunder X is unaffected but a hardware erratum gets in the
way. The kernel now starts with the page tables mapped as global
and switches to non-global if kpti needs to be enabled.
Other:
- Theoretical trylock bug fixed"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (38 commits)
arm64: Kill PSCI_GET_VERSION as a variant-2 workaround
arm64: Add ARM_SMCCC_ARCH_WORKAROUND_1 BP hardening support
arm/arm64: smccc: Implement SMCCC v1.1 inline primitive
arm/arm64: smccc: Make function identifiers an unsigned quantity
firmware/psci: Expose SMCCC version through psci_ops
firmware/psci: Expose PSCI conduit
arm64: KVM: Add SMCCC_ARCH_WORKAROUND_1 fast handling
arm64: KVM: Report SMCCC_ARCH_WORKAROUND_1 BP hardening support
arm/arm64: KVM: Turn kvm_psci_version into a static inline
arm/arm64: KVM: Advertise SMCCC v1.1
arm/arm64: KVM: Implement PSCI 1.0 support
arm/arm64: KVM: Add smccc accessors to PSCI code
arm/arm64: KVM: Add PSCI_VERSION helper
arm/arm64: KVM: Consolidate the PSCI include files
arm64: KVM: Increment PC after handling an SMC trap
arm: KVM: Fix SMCCC handling of unimplemented SMC/HVC calls
arm64: KVM: Fix SMCCC handling of unimplemented SMC/HVC calls
arm64: entry: Apply BP hardening for suspicious interrupts from EL0
arm64: entry: Apply BP hardening for high-priority synchronous exceptions
arm64: futex: Mask __user pointers prior to dereference
...
Cavium ThunderX's erratum 27456 results in a corruption of icache
entries that are loaded from memory that is mapped as non-global
(i.e. ASID-tagged).
As KPTI is based on memory being mapped non-global, let's prevent
it from kicking in if this erratum is detected.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
[will: Update comment]
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Defaulting to global mappings for kernel space is generally good for
performance and appears to be necessary for Cavium ThunderX. If we
subsequently decide that we need to enable kpti, then we need to rewrite
our existing page table entries to be non-global. This is fiddly, and
made worse by the possible use of contiguous mappings, which require
a strict break-before-make sequence.
Since the enable callback runs on each online CPU from stop_machine
context, we can have all CPUs enter the idmap, where secondaries can
wait for the primary CPU to rewrite swapper with its MMU off. It's all
fairly horrible, but at least it only runs once.
Tested-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
- Security mitigations:
- variant 2: invalidating the branch predictor with a call to secure firmware
- variant 3: implementing KPTI for arm64
- 52-bit physical address support for arm64 (ARMv8.2)
- arm64 support for RAS (firmware first only) and SDEI (software
delegated exception interface; allows firmware to inject a RAS error
into the OS)
- Perf support for the ARM DynamIQ Shared Unit PMU
- CPUID and HWCAP bits updated for new floating point multiplication
instructions in ARMv8.4
- Removing some virtual memory layout printks during boot
- Fix initial page table creation to cope with larger than 32M kernel
images when 16K pages are enabled
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAlpwxDMACgkQa9axLQDI
XvF55BAAniMpxPXnYNfv6l7/4O8eKo1lJIaG1wbej4JRZ/rT3K4Z3OBXW1dKHO8d
/PTbVmZ90IqIGROkoDrE+6xyjjn9yK3uuW4ytN2zQkBa8VFaHAnHlX+zKQcuwy9f
yxwiHk+C7vK5JR7mpXTazjRknsUv1MPtlTt7DQrSdq0KRDJVDNFC+grmbew2rz0X
cjQDqZqgzuFyrKxdiQVjDmc3zH9NsNBhDo0hlGHf2jK6bGJsAPtI8M2JcLrK8ITG
Ye/dD7BJp1mWD8ff0BPaMxu24qfAMNLH8f2dpTa986/H78irVz7i/t5HG0/1+5Jh
EE4OFRTKZ59Qgyo1zWcaJvdp8YjiaX/L4PWJg8CxM5OhP9dIac9ydcFQfWzpKpUs
xyZfmK6XliGFReAkVOOf5tEqFUDhMtsqhzPYmbmU1lp61wmSYIZ8CTenpWWCJSRO
NOGyG1X2uFBvP69+iPNlfTGz1r7tg1URY5iO8fUEIhY8LrgyORkiqw4OvPEgnMXP
Ngy+dXhyvnps2AAWbSX0O4puRlTgEYLT5KaMLzH/+gWsXATT0rzUCD/aOwUQq/Y7
SWXZHkb3jpmOZZnzZsLL2MNzEIPCFBwSUE9fSv4dA9d/N6tUmlmZALJjHkfzCDpj
+mPsSmAMTj72kUYzm0b5GCtOu/iQ2kDWOZjOM1m4+v/B+f7JoEE=
=iEjP
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"The main theme of this pull request is security covering variants 2
and 3 for arm64. I expect to send additional patches next week
covering an improved firmware interface (requires firmware changes)
for variant 2 and way for KPTI to be disabled on unaffected CPUs
(Cavium's ThunderX doesn't work properly with KPTI enabled because of
a hardware erratum).
Summary:
- Security mitigations:
- variant 2: invalidate the branch predictor with a call to
secure firmware
- variant 3: implement KPTI for arm64
- 52-bit physical address support for arm64 (ARMv8.2)
- arm64 support for RAS (firmware first only) and SDEI (software
delegated exception interface; allows firmware to inject a RAS
error into the OS)
- perf support for the ARM DynamIQ Shared Unit PMU
- CPUID and HWCAP bits updated for new floating point multiplication
instructions in ARMv8.4
- remove some virtual memory layout printks during boot
- fix initial page table creation to cope with larger than 32M kernel
images when 16K pages are enabled"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (104 commits)
arm64: Fix TTBR + PAN + 52-bit PA logic in cpu_do_switch_mm
arm64: Turn on KPTI only on CPUs that need it
arm64: Branch predictor hardening for Cavium ThunderX2
arm64: Run enable method for errata work arounds on late CPUs
arm64: Move BP hardening to check_and_switch_context
arm64: mm: ignore memory above supported physical address size
arm64: kpti: Fix the interaction between ASID switching and software PAN
KVM: arm64: Emulate RAS error registers and set HCR_EL2's TERR & TEA
KVM: arm64: Handle RAS SErrors from EL2 on guest exit
KVM: arm64: Handle RAS SErrors from EL1 on guest exit
KVM: arm64: Save ESR_EL2 on guest SError
KVM: arm64: Save/Restore guest DISR_EL1
KVM: arm64: Set an impdef ESR for Virtual-SError using VSESR_EL2.
KVM: arm/arm64: mask/unmask daif around VHE guests
arm64: kernel: Prepare for a DISR user
arm64: Unconditionally enable IESB on exception entry/return for firmware-first
arm64: kernel: Survive corrected RAS errors notified by SError
arm64: cpufeature: Detect CPU RAS Extentions
arm64: sysreg: Move to use definitions for all the SCTLR bits
arm64: cpufeature: __this_cpu_has_cap() shouldn't stop early
...
Whitelist Broadcom Vulcan/Cavium ThunderX2 processors in
unmap_kernel_at_el0(). These CPUs are not vulnerable to
CVE-2017-5754 and do not need KPTI when KASLR is off.
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Jayachandran C <jnair@caviumnetworks.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
KVM would like to consume any pending SError (or RAS error) after guest
exit. Today it has to unmask SError and use dsb+isb to synchronise the
CPU. With the RAS extensions we can use ESB to synchronise any pending
SError.
Add the necessary macros to allow DISR to be read and converted to an
ESR.
We clear the DISR register when we enable the RAS cpufeature, and the
kernel has not executed any ESB instructions. Any value we find in DISR
must have belonged to firmware. Executing an ESB instruction is the
only way to update DISR, so we can expect firmware to have handled
any deferred SError. By the same logic we clear DISR in the idle path.
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
ARM's v8.2 Extentions add support for Reliability, Availability and
Serviceability (RAS). On CPUs with these extensions system software
can use additional barriers to isolate errors and determine if faults
are pending. Add cpufeature detection.
Platform level RAS support may require additional firmware support.
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Xie XiuQi <xiexiuqi@huawei.com>
[Rebased added config option, reworded commit message]
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
this_cpu_has_cap() tests caps->desc not caps->matches, so it stops
walking the list when it finds a 'silent' feature, instead of
walking to the end of the list.
Prior to v4.6's 644c2ae198 ("arm64: cpufeature: Test 'matches' pointer
to find the end of the list") we always tested desc to find the end of
a capability list. This was changed for dubious things like PAN_NOT_UAO.
v4.7's e3661b128e ("arm64: Allow a capability to be checked on
single CPU") added this_cpu_has_cap() using the old desc style test.
CC: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
It isn't entirely obvious if we're using software PAN because we
don't say anything about it in the boot log. But if we're using
hardware PAN we'll print a nice CPU feature message indicating
it. Add a print for software PAN too so we know if it's being
used or not.
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Sometimes a single capability could be listed multiple times with
differing matches(), e.g, CPU errata for different MIDR versions.
This breaks verify_local_cpu_feature() and this_cpu_has_cap() as
we stop checking for a capability on a CPU with the first
entry in the given table, which is not sufficient. Make sure we
run the checks for all entries of the same capability. We do
this by fixing __this_cpu_has_cap() to run through all the
entries in the given table for a match and reuse it for
verify_local_cpu_feature().
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Now that KVM uses tpidr_el2 in the same way as Linux's cpu_offset in
tpidr_el1, merge the two. This saves KVM from save/restoring tpidr_el1
on VHE hosts, and allows future code to blindly access per-cpu variables
without triggering world-switch.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Aliasing attacks against CPU branch predictors can allow an attacker to
redirect speculative control flow on some CPUs and potentially divulge
information from one context to another.
This patch adds initial skeleton code behind a new Kconfig option to
enable implementation-specific mitigations against these attacks for
CPUs that are affected.
Co-developed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In order to invoke the CPU capability ->matches callback from the ->enable
callback for applying local-CPU workarounds, we need a handle on the
capability structure.
This patch passes a pointer to the capability structure to the ->enable
callback.
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
For non-KASLR kernels where the KPTI behaviour has not been overridden
on the command line we can use ID_AA64PFR0_EL1.CSV3 to determine whether
or not we should unmap the kernel whilst running at EL0.
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
ARM v8.4 extensions add new neon instructions for performing a
multiplication of each FP16 element of one vector with the corresponding
FP16 element of a second vector, and to add or subtract this without an
intermediate rounding to the corresponding FP32 element in a third vector.
This patch detects this feature and let the userspace know about it via a
HWCAP bit and MRS emulation.
Cc: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Dongjiu Geng <gengdongjiu@huawei.com>
Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently, the SVE field in ID_AA64PFR0_EL1 is visible
unconditionally to userspace via the CPU ID register emulation,
irrespective of the kernel config. This means that if a kernel
configured with CONFIG_ARM64_SVE=n is run on SVE-capable hardware,
userspace will see SVE reported as present in the ID regs even
though the kernel forbids execution of SVE instructions.
This patch makes the exposure of the SVE field in ID_AA64PFR0_EL1
conditional on CONFIG_ARM64_SVE=y.
Since future architecture features are likely to encounter a
similar requirement, this patch adds a suitable helper macros for
use when declaring config-conditional ID register fields.
Fixes: 43994d824e ("arm64/sve: Detect SVE and activate runtime support")
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reported-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Cc: Suzuki Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Allow explicit disabling of the entry trampoline on the kernel command
line (kpti=off) by adding a fake CPU feature (ARM64_UNMAP_KERNEL_AT_EL0)
that can be used to toggle the alternative sequences in our entry code and
avoid use of the trampoline altogether if desired. This also allows us to
make use of a static key in arm64_kernel_unmapped_at_el0().
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Plenty of acronym soup here:
- Initial support for the Scalable Vector Extension (SVE)
- Improved handling for SError interrupts (required to handle RAS events)
- Enable GCC support for 128-bit integer types
- Remove kernel text addresses from backtraces and register dumps
- Use of WFE to implement long delay()s
- ACPI IORT updates from Lorenzo Pieralisi
- Perf PMU driver for the Statistical Profiling Extension (SPE)
- Perf PMU driver for Hisilicon's system PMUs
- Misc cleanups and non-critical fixes
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJaCcLqAAoJELescNyEwWM0JREH/2FbmD/khGzEtP8LW+o9D8iV
TBM02uWQxS1bbO1pV2vb+512YQO+iWfeQwJH9Jv2FZcrMvFv7uGRnYgAnJuXNGrl
W+LL6OhN22A24LSawC437RU3Xe7GqrtONIY/yLeJBPablfcDGzPK1eHRA0pUzcyX
VlyDruSHWX44VGBPV6JRd3x0vxpV8syeKOjbRvopRfn3Nwkbd76V3YSfEgwoTG5W
ET1sOnXLmHHdeifn/l1Am5FX1FYstpcd7usUTJ4Oto8y7e09tw3bGJCD0aMJ3vow
v1pCUWohEw7fHqoPc9rTrc1QEnkdML4vjJvMPUzwyTfPrN+7uEuMIEeJierW+qE=
=0qrg
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"The big highlight is support for the Scalable Vector Extension (SVE)
which required extensive ABI work to ensure we don't break existing
applications by blowing away their signal stack with the rather large
new vector context (<= 2 kbit per vector register). There's further
work to be done optimising things like exception return, but the ABI
is solid now.
Much of the line count comes from some new PMU drivers we have, but
they're pretty self-contained and I suspect we'll have more of them in
future.
Plenty of acronym soup here:
- initial support for the Scalable Vector Extension (SVE)
- improved handling for SError interrupts (required to handle RAS
events)
- enable GCC support for 128-bit integer types
- remove kernel text addresses from backtraces and register dumps
- use of WFE to implement long delay()s
- ACPI IORT updates from Lorenzo Pieralisi
- perf PMU driver for the Statistical Profiling Extension (SPE)
- perf PMU driver for Hisilicon's system PMUs
- misc cleanups and non-critical fixes"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (97 commits)
arm64: Make ARMV8_DEPRECATED depend on SYSCTL
arm64: Implement __lshrti3 library function
arm64: support __int128 on gcc 5+
arm64/sve: Add documentation
arm64/sve: Detect SVE and activate runtime support
arm64/sve: KVM: Hide SVE from CPU features exposed to guests
arm64/sve: KVM: Treat guest SVE use as undefined instruction execution
arm64/sve: KVM: Prevent guests from using SVE
arm64/sve: Add sysctl to set the default vector length for new processes
arm64/sve: Add prctl controls for userspace vector length management
arm64/sve: ptrace and ELF coredump support
arm64/sve: Preserve SVE registers around EFI runtime service calls
arm64/sve: Preserve SVE registers around kernel-mode NEON use
arm64/sve: Probe SVE capabilities and usable vector lengths
arm64: cpufeature: Move sys_caps_initialised declarations
arm64/sve: Backend logic for setting the vector length
arm64/sve: Signal handling support
arm64/sve: Support vector length resetting for new processes
arm64/sve: Core task context handling
arm64/sve: Low-level CPU setup
...
This patch enables detection of hardware SVE support via the
cpufeatures framework, and reports its presence to the kernel and
userspace via the new ARM64_SVE cpucap and HWCAP_SVE hwcap
respectively.
Userspace can also detect SVE using ID_AA64PFR0_EL1, using the
cpufeatures MRS emulation.
When running on hardware that supports SVE, this enables runtime
kernel support for SVE, and allows user tasks to execute SVE
instructions and make of the of the SVE-specific user/kernel
interface extensions implemented by this series.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This patch uses the cpufeatures framework to determine common SVE
capabilities and vector lengths, and configures the runtime SVE
support code appropriately.
ZCR_ELx is not really a feature register, but it is convenient to
use it as a template for recording the maximum vector length
supported by a CPU, using the LEN field. This field is similar to
a feature field in that it is a contiguous bitfield for which we
want to determine the minimum system-wide value. This patch adds
ZCR as a pseudo-register in cpuinfo/cpufeatures, with appropriate
custom code to populate it. Finding the minimum supported value of
the LEN field is left to the cpufeatures framework in the usual
way.
The meaning of ID_AA64ZFR0_EL1 is not architecturally defined yet,
so for now we just require it to be zero.
Note that much of this code is dormant and SVE still won't be used
yet, since system_supports_sve() remains hardwired to false.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
update_cpu_features() currently cannot tell whether it is being
called during early or late secondary boot. This doesn't
desperately matter for anything it currently does.
However, SVE will need to know here whether the set of available
vector lengths is known or still to be determined when booting a
CPU, so that it can be updated appropriately.
This patch simply moves the sys_caps_initialised stuff to the top
of the file so that it can be used more widely. There doesn't seem
to be a more obvious place to put it.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Software Step exception is missing after stepping a trapped instruction.
Ensure SPSR.SS gets set to 0 after emulating/skipping a trapped instruction
before doing ERET.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
[will: replaced AARCH32_INSN_SIZE with 4]
Signed-off-by: Will Deacon <will.deacon@arm.com>
Now that the ARM ARM clearly specifies the rules for inferring
the values of the ID register fields, fix the types of the
feature bits we have in the kernel.
As per ARM ARM DDI0487B.b, section D10.1.4 "Principles of the
ID scheme for fields in ID registers" lists the registers to
which the scheme applies along with the exceptions.
This patch changes the relevant feature bits from FTR_EXACT
to FTR_LOWER_SAFE to select the safer value. This will enable
an older kernel running on a new CPU detect the safer option
rather than completely disabling the feature.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Martin <dave.martin@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
ARMv8-A adds a few optional features for ARMv8.2 and ARMv8.3.
Expose them to the userspace via HWCAPs and mrs emulation.
SHA2-512 - Instruction support for SHA512 Hash algorithm (e.g SHA512H,
SHA512H2, SHA512U0, SHA512SU1)
SHA3 - SHA3 crypto instructions (EOR3, RAX1, XAR, BCAX).
SM3 - Instruction support for Chinese cryptography algorithm SM3
SM4 - Instruction support for Chinese cryptography algorithm SM4
DP - Dot Product instructions (UDOT, SDOT).
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Dave Martin <dave.martin@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We trap and emulate some instructions (e.g, mrs, deprecated instructions)
for the userspace. However the handlers for these are registered as
late_initcalls and the userspace could be up and running from the initramfs
by that time (with populate_rootfs, which is a rootfs_initcall()). This
could cause problems for the early applications ending up in failure
like :
[ 11.152061] modprobe[93]: undefined instruction: pc=0000ffff8ca48ff4
This patch promotes the specific calls to core_initcalls, which are
guaranteed to be completed before we hit userspace.
Cc: stable@vger.kernel.org
Cc: Dave Martin <dave.martin@arm.com>
Cc: Matthias Brugger <mbrugger@suse.com>
Cc: James Morse <james.morse@arm.com>
Reported-by: Matwey V. Kornilov <matwey.kornilov@gmail.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add a clean-to-point-of-persistence cache maintenance helper, and wire
up the basic architectural support for the pmem driver based on it.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
[catalin.marinas@arm.com: move arch_*_pmem() functions to arch/arm64/mm/flush.c]
[catalin.marinas@arm.com: change dmb(sy) to dmb(osh)]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The ARMv8.2-DCPoP feature introduces persistent memory support to the
architecture, by defining a point of persistence in the memory
hierarchy, and a corresponding cache maintenance operation, DC CVAP.
Expose the support via HWCAP and MRS emulation.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When debugging a kernel panic(), it can be useful to know which CPU
features have been detected by the kernel, as some code paths can depend
on these (and may have been patched at runtime).
This patch adds a notifier to dump the detected CPU caps (as a hex
string) at panic(), when we log other information useful for debugging.
On a Juno R1 system running v4.12-rc5, this looks like:
[ 615.431249] Kernel panic - not syncing: Fatal exception in interrupt
[ 615.437609] SMP: stopping secondary CPUs
[ 615.441872] Kernel Offset: disabled
[ 615.445372] CPU features: 0x02086
[ 615.448522] Memory Limit: none
A developer can decode this by looking at the corresponding
<asm/cpucaps.h> bits. For example, the above decodes as:
* bit 1: ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE
* bit 2: ARM64_WORKAROUND_845719
* bit 7: ARM64_WORKAROUND_834220
* bit 13: ARM64_HAS_32BIT_EL0
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Steve Capper <steve.capper@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Commit 3fde2999fa ("arm64: cpufeature: Don't dump useless backtrace on
CPU_OUT_OF_SPEC") changed the cpufeature detection code to use add_taint
instead of WARN_TAINT_ONCE when detecting a heterogeneous system with
mismatched feature support. Unfortunately, this resulted in all systems
getting the taint, regardless of any feature mismatch.
This patch fixes the problem by conditionalising the taint on detecting
a feature mismatch.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reported-by: Heiner Kallweit <hkallweit1@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Unfortunately, it turns out that mismatched CPU features in big.LITTLE
systems are starting to appear in the wild. Whilst we should continue to
taint the kernel with CPU_OUT_OF_SPEC for features that differ in ways
that we can't fix up, dumping a useless backtrace out of the cpufeature
code is pointless and irritating.
This patch removes the backtrace from the taint.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Currently, cpus_set_cap() calls static_branch_enable_cpuslocked(), which
must take the jump_label mutex.
We call cpus_set_cap() in the secondary bringup path, from the idle
thread where interrupts are disabled. Taking a mutex in this path "is a
NONO" regardless of whether it's contended, and something we must avoid.
We didn't spot this until recently, as ___might_sleep() won't warn for
this case until all CPUs have been brought up.
This patch avoids taking the mutex in the secondary bringup path. The
poking of static keys is deferred until enable_cpu_capabilities(), which
runs in a suitable context on the boot CPU. To account for the static
keys being set later, cpus_have_const_cap() is updated to use another
static key to check whether the const cap keys have been initialised,
falling back to the caps bitmap until this is the case.
This means that users of cpus_have_const_cap() gain should only gain a
single additional NOP in the fast path once the const caps are
initialised, but should always see the current cap value.
The hyp code should never dereference the caps array, since the caps are
initialized before we run the module initcall to initialise hyp. A check
is added to the hyp init code to document this requirement.
This change will sidestep a number of issues when the upcoming hotplug
locking rework is merged.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Marc Zyniger <marc.zyngier@arm.com>
Reviewed-by: Suzuki Poulose <suzuki.poulose@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Sewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
- Allow checking of a CPU-local erratum
- Add CNTVCT_EL0 trap handler
- Define Cortex-A73 MIDR
- Allow an erratum to be match for all revisions of a core
- Add capability to advertise Cortex-A73 erratum 858921
-----BEGIN PGP SIGNATURE-----
iQJJBAABCAAzFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAljnlbgVHG1hcmMuenlu
Z2llckBhcm0uY29tAAoJECPQ0LrRPXpDx+YP/1OU8GnrVBR2cjEctaTz3s51sPRR
+7j1BZ3pbKnwY3XpM6GJpxc//sSBSphqWZXN5GJZW1lSgw7hpl02mA9rh62G4Xmh
wUqR2hmQ5UdenoR5tE39BZrzMFlef90bA7AZyatSqum6AEQcYPJZEgzOvEvfw/mY
Bc4w73At9OTILRXeZjJZabdeJ4aJLs+6xMfsc9ApgxiZIZ5xhJ7CQzcJFdQ2tFeB
9wYqxkt8i9aZfmj3IX14m3fXISQ4JlXoi8QTBqy7qunCMEFU6jtCwC5aZKj1U3Hh
zebVWomcWMQpFaJw3qxZgjVXftv5r2UsHbMoLo4wFa98Qerr7t9/bGifbFqpKm7S
hA0uzcftUHoQF+l/Qxt9rTlsPKrBMoXjY2XDkKiWP/hqXsXKDBnngKQb2ZFJFT5r
UABMBhqlBQpI2l0/Qn0fL7aEC1xZCVnSgGpAXFvg/Ci7X2K+HH37brt5uNh3vDZI
c5UaWUUycDa5GcCnmoK3QWVeitVW/ydJGaoIT06CKBDrktcpsoO4u4w6CI8xsIJL
RbJwCb72JU5HV7XDpdbc/lLzi30kWceOEUSHrs3dCEnkr41kOunDGm/Xxk/Sm8VL
SeYSx9UotuJvWWozZzVWpLiUSizjh6UB2XWnkSLkT++KA6YPX4L2/hYAw7E3bYVe
FAFoLL7jUYdrjpCF
=XSx4
-----END PGP SIGNATURE-----
Merge tag 'arch-timer-errata-prereq' of git://git.kernel.org/pub/scm/linux/kernel/git/maz/arm-platforms into for-next/core
Pre-requisites for the arch timer errata workarounds:
- Allow checking of a CPU-local erratum
- Add CNTVCT_EL0 trap handler
- Define Cortex-A73 MIDR
- Allow an erratum to be match for all revisions of a core
- Add capability to advertise Cortex-A73 erratum 858921
* tag 'arch-timer-errata-prereq' of git://git.kernel.org/pub/scm/linux/kernel/git/maz/arm-platforms:
arm64: cpu_errata: Add capability to advertise Cortex-A73 erratum 858921
arm64: cpu_errata: Allow an erratum to be match for all revisions of a core
arm64: Define Cortex-A73 MIDR
arm64: Add CNTVCT_EL0 trap handler
arm64: Allow checking of a CPU-local erratum
this_cpu_has_cap() only checks the feature array, and not the errata
one. In order to be able to check for a CPU-local erratum, allow it
to inspect the latter as well.
This is consistent with cpus_have_cap()'s behaviour, which includes
errata already.
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
read_system_reg() can readily be confused with read_sysreg(),
whereas these are really quite different in their meaning.
This patches attempts to reduce the ambiguity be reserving "sysreg"
for the actual system register accessors.
read_system_reg() is instead renamed to read_sanitised_ftr_reg(),
to make it more obvious that the Linux-defined sanitised feature
register cache is being accessed here, not the underlying
architectural system registers.
cpufeature.c's internal __raw_read_system_reg() function is renamed
in line with its actual purpose: a form of read_sysreg() that
indexes on (non-compiletime-constant) encoding rather than symbolic
register name.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
ARMv8.3 adds new instructions to support Release Consistent
processor consistent (RCpc) model, which is weaker than the
RCsc model.
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
ARM v8.3 adds support for new instructions to aid floating-point
multiplication and addition of complex numbers. Expose the support
via HWCAP and MRS emulation
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
ARMv8.3 adds support for a new instruction to perform conversion
from double precision floating point to integer to match the
architected behaviour of the equivalent Javascript conversion.
Expose the availability via HWCAP and MRS emulation.
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
As a recent change to ARMv8, ASID-tagged VIVT I-caches are removed
retrospectively from the architecture. Consequently, we don't need to
support them in Linux either.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In emulate_mrs() we may erroneously write back to the user SP rather
than XZR if we trap an MRS instruction where Xt == 31.
Use the new pt_regs_write_reg() helper to handle this correctly.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Fixes: 77c97b4ee2 ("arm64: cpufeature: Expose CPUID registers by emulation")
Cc: Andre Przywara <andre.przywara@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We recently discovered that __raw_read_system_reg() erroneously mapped
sysreg IDs to the wrong registers.
To ensure that we don't get hit by a similar issue in future, this patch
makes __raw_read_system_reg() use a macro for each case statement,
ensuring that each case reads the correct register.
To ensure that this patch hasn't introduced an issue, I've binary-diffed
the object files before and after this patch. No code or data sections
differ (though some debug section differ due to line numbering
changing).
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Since it was introduced in commit da8d02d19f ("arm64/capabilities:
Make use of system wide safe value"), __raw_read_system_reg() has
erroneously mapped some sysreg IDs to other registers.
For the fields in ID_ISAR5_EL1, our local feature detection will be
erroneous. We may spuriously detect that a feature is uniformly
supported, or may fail to detect when it actually is, meaning some
compat hwcaps may be erroneous (or not enforced upon hotplug).
This patch corrects the erroneous entries.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Fixes: da8d02d19f ("arm64/capabilities: Make use of system wide safe value")
Reported-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: stable@vger.kernel.org
Signed-off-by: Will Deacon <will.deacon@arm.com>
Definition of cpu ranges are hard to read if the cpu variant is not
zero. Provide MIDR_CPU_VAR_REV() macro to describe the full hardware
revision of a cpu including variant and (minor) revision.
Signed-off-by: Robert Richter <rrichter@cavium.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
ARM v8.1 extensions include support for rounding double multiply
add/subtract instructions to the A64 SIMD instructions set. Let
the userspace know about it via a HWCAP bit.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
__pa_symbol is technically the marcro that should be used for kernel
symbols. Switch to this as a pre-requisite for DEBUG_VIRTUAL which
will do bounds checking.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Documentation for the infrastructure to expose CPU feature
register by emulating MRS.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Dave Martin <dave.martin@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This patch adds the hook for emulating MRS instruction to
export the 'user visible' value of supported system registers.
We emulate only the following id space for system registers:
Op0=3, Op1=0, CRn=0, CRm=[0, 4-7]
The rest will fall back to SIGILL. This capability is also
advertised via a new HWCAP_CPUID.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
[will: add missing static keyword to enable_mrs_emulation]
Signed-off-by: Will Deacon <will.deacon@arm.com>
Track the user visible fields of a CPU feature register. This will be
used for exposing the value to the userspace. All the user visible
fields of a feature register will be passed on as it is, while the
others would be filled with their respective safe value.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This patch does the following clean ups :
1) All undescribed fields of a register are now treated as 'strict'
with a safe value of 0. Hence we could leave an empty table for
describing registers which are RAZ.
2) ID_AA64DFR1_EL1 is RAZ and should use the table for RAZ register.
3) ftr_generic32 is used to represent a register with a 32bit feature
value. Rename this to ftr_singl32 to make it more obvious. Since
we don't have a 64bit singe feature register, kill ftr_generic.
Based on a patch by Mark Rutland.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We currently have some RAZ fields described explicitly in our
arm64_ftr_bits arrays. These are inconsistently commented, grouped,
and/or applied, and maintaining these is error-prone.
Luckily, we don't need these at all. We'll never need to inspect RAZ
fields to determine feature support, and init_cpu_ftr_reg() will ensure
that any bits without a corresponding arm64_ftr_bits entry are treated
as RES0 with strict matching requirements. In check_update_ftr_reg()
we'll then compare these bits from the relevant cpuinfo_arm64
structures, and need not store them in a arm64_ftr_reg.
This patch removes the unnecessary arm64_ftr_bits entries for RES0 bits.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Any fields not defined in an arm64_ftr_bits entry are propagated to the
system-wide register value in init_cpu_ftr_reg(), and while we require
that these strictly match for the sanity checks, we don't update them in
update_cpu_ftr_reg().
Generally, the lack of an arm64_ftr_bits entry indicates that the bits
are currently RES0 (as is the case for the upper 32 bits of all
supposedly 32-bit registers).
A better default would be to use zero for the system-wide value of
unallocated bits, making all register checking consistent, and allowing
for subsequent simplifications to the arm64_ftr_bits arrays.
This patch updates init_cpu_ftr_reg() to treat unallocated bits as RES0
for the purpose of the system-wide safe value. These bits will still be
sanity checked with strict match requirements, as is currently the case.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The statistical profiling extension (SPE) is an optional feature of
ARMv8.1 and is unlikely to be supported by all of the CPUs in a
heterogeneous system.
This patch updates the cpufeature checks so that such systems are not
tainted as unsupported.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Suzuki Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Perf already supports multiple PMU instances for heterogeneous systems,
so there's no need to be strict in the cpufeature checking, particularly
as the PMU extension is optional in the architecture.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Since its introduction, the UAO enable call was broken, and useless.
commit 2a6dcb2b5f ("arm64: cpufeature: Schedule enable() calls instead
of calling them via IPI"), fixed the framework so that these calls
are scheduled, so that they can modify PSTATE.
Now it is just useless. Remove it. UAO is enabled by the code patching
which causes get_user() and friends to use the 'ldtr' family of
instructions. This relies on the PSTATE.UAO bit being set to match
addr_limit, which we do in uao_thread_switch() called via __switch_to().
All that is needed to enable UAO is patch the code, and call schedule().
__apply_alternatives_multi_stop() calls stop_machine() when it modifies
the kernel text to enable the alternatives, (including the UAO code in
uao_thread_switch()). Once stop_machine() has finished __switch_to() is
called to reschedule the original task, this causes PSTATE.UAO to be set
appropriately. An explicit enable() call is not needed.
Reported-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
This patch adds the uaccess macros/functions to disable access to user
space by setting TTBR0_EL1 to a reserved zeroed page. Since the value
written to TTBR0_EL1 must be a physical address, for simplicity this
patch introduces a reserved_ttbr0 page at a constant offset from
swapper_pg_dir. The uaccess_disable code uses the ttbr1_el1 value
adjusted by the reserved_ttbr0 offset.
Enabling access to user is done by restoring TTBR0_EL1 with the value
from the struct thread_info ttbr0 variable. Interrupts must be disabled
during the uaccess_ttbr0_enable code to ensure the atomicity of the
thread_info.ttbr0 read and TTBR0_EL1 write. This patch also moves the
get_thread_info asm macro from entry.S to assembler.h for reuse in the
uaccess_ttbr0_* macros.
Cc: Will Deacon <will.deacon@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The arm64 kernel assumes that FP/ASIMD units are always present
and accesses the FP/ASIMD specific registers unconditionally. This
could cause problems when they are absent. This patch adds the
support for kernel handling systems without FP/ASIMD by skipping the
register access within the kernel. For kvm, we trap the accesses
to FP/ASIMD and inject an undefined instruction exception to the VM.
The callers of the exported kernel_neon_begin_partial() should
make sure that the FP/ASIMD is supported.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
[catalin.marinas@arm.com: add comment on the ARM64_HAS_NO_FPSIMD conflict and the new location]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The hypervisor may not have full access to the kernel data structures
and hence cannot safely use cpus_have_cap() helper for checking the
system capability. Add a safe helper for hypervisors to check a constant
system capability, which *doesn't* fall back to checking the bitmap
maintained by the kernel. With this, make the cpus_have_cap() only
check the bitmask and force constant cap checks to use the new API
for quicker checks.
Cc: Robert Ritcher <rritcher@cavium.com>
Cc: Tirumalesh Chalamarla <tchalamarla@cavium.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The enable() call for a cpufeature/errata is called using on_each_cpu().
This issues a cross-call IPI to get the work done. Implicitly, this
stashes the running PSTATE in SPSR when the CPU receives the IPI, and
restores it when we return. This means an enable() call can never modify
PSTATE.
To allow PAN to do this, change the on_each_cpu() call to use
stop_machine(). This schedules the work on each CPU which allows
us to modify PSTATE.
This involves changing the protype of all the enable() functions.
enable_cpu_capabilities() is called during boot and enables the feature
on all online CPUs. This path now uses stop_machine(). CPU features for
hotplug'd CPUs are enabled by verify_local_cpu_features() which only
acts on the local CPU, and can already modify the running PSTATE as it
is called from secondary_start_kernel().
Reported-by: Tony Thompson <anthony.thompson@arm.com>
Reported-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Right now we run through the work around checks on a CPU
from __cpuinfo_store_cpu. There are some problems with that:
1) We initialise the system wide CPU feature registers only after the
Boot CPU updates its cpuinfo. Now, if a work around depends on the
variance of a CPU ID feature (e.g, check for Cache Line size mismatch),
we have no way of performing it cleanly for the boot CPU.
2) It is out of place, invoked from __cpuinfo_store_cpu() in cpuinfo.c. It
is not an obvious place for that.
This patch rearranges the CPU specific capability(aka work around) checks.
1) At the moment we use verify_local_cpu_capabilities() to check if a new
CPU has all the system advertised features. Use this for the secondary CPUs
to perform the work around check. For that we rename
verify_local_cpu_capabilities() => check_local_cpu_capabilities()
which:
If the system wide capabilities haven't been initialised (i.e, the CPU
is activated at the boot), update the system wide detected work arounds.
Otherwise (i.e a CPU hotplugged in later) verify that this CPU conforms to the
system wide capabilities.
2) Boot CPU updates the work arounds from smp_prepare_boot_cpu() after we have
initialised the system wide CPU feature values.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andre Przywara <andre.przywara@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This is a cosmetic change to rename the functions dealing with
the errata work arounds to be more consistent with their naming.
1) check_local_cpu_errata() => update_cpu_errata_workarounds()
check_local_cpu_errata() actually updates the system's errata work
arounds. So rename it to reflect the same.
2) verify_local_cpu_errata() => verify_local_cpu_errata_workarounds()
Use errata_workarounds instead of _errata.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Right now we use 0 as the safe value for CTR_EL0:L1Ip, which is
not defined at the moment. The safer value for the L1Ip should be
the weakest of the policies, which happens to be AIVIVT. While at it,
fix the comment about safe_val.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This patch adds static keys transparently for all the cpu_hwcaps
features by implementing an array of default-false static keys and
enabling them when detected. The cpus_have_cap() check uses the static
keys if the feature being checked is a constant, otherwise the compiler
generates the bitmap test.
Because of the early call to static_branch_enable() via
check_local_cpu_errata() -> update_cpu_capabilities(), the jump labels
are initialised in cpuinfo_store_boot_cpu().
Cc: Will Deacon <will.deacon@arm.com>
Cc: Suzuki K. Poulose <Suzuki.Poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Expose the arm64_ftr_reg struct covering CTR_EL0 outside of cpufeature.o
so that other code can refer to it directly (i.e., without performing the
binary search)
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Constify the arm64_ftr_regs array, by moving the mutable arm64_ftr_reg
fields out of the array itself. This also streamlines the bsearch, since
the entire array can be covered by fewer cachelines. Moving the payload
out of the array also allows us to have special explicitly defined
struct instance in case other code needs to refer to it directly.
Note that this replaces the runtime sorting of the array with a runtime
BUG() check whether the array is sorted correctly in the code.
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The arm64_ftr_bits structures are never modified, so make them read-only.
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
VGIC implementation.
- s390: support for trapping software breakpoints, nested virtualization
(vSIE), the STHYI opcode, initial extensions for CPU model support.
- MIPS: support for MIPS64 hosts (32-bit guests only) and lots of cleanups,
preliminary to this and the upcoming support for hardware virtualization
extensions.
- x86: support for execute-only mappings in nested EPT; reduced vmexit
latency for TSC deadline timer (by about 30%) on Intel hosts; support for
more than 255 vCPUs.
- PPC: bugfixes.
The ugly bit is the conflicts. A couple of them are simple conflicts due
to 4.7 fixes, but most of them are with other trees. There was definitely
too much reliance on Acked-by here. Some conflicts are for KVM patches
where _I_ gave my Acked-by, but the worst are for this pull request's
patches that touch files outside arch/*/kvm. KVM submaintainers should
probably learn to synchronize better with arch maintainers, with the
latter providing topic branches whenever possible instead of Acked-by.
This is what we do with arch/x86. And I should learn to refuse pull
requests when linux-next sends scary signals, even if that means that
submaintainers have to rebase their branches.
Anyhow, here's the list:
- arch/x86/kvm/vmx.c: handle_pcommit and EXIT_REASON_PCOMMIT was removed
by the nvdimm tree. This tree adds handle_preemption_timer and
EXIT_REASON_PREEMPTION_TIMER at the same place. In general all mentions
of pcommit have to go.
There is also a conflict between a stable fix and this patch, where the
stable fix removed the vmx_create_pml_buffer function and its call.
- virt/kvm/kvm_main.c: kvm_cpu_notifier was removed by the hotplug tree.
This tree adds kvm_io_bus_get_dev at the same place.
- virt/kvm/arm/vgic.c: a few final bugfixes went into 4.7 before the
file was completely removed for 4.8.
- include/linux/irqchip/arm-gic-v3.h: this one is entirely our fault;
this is a change that should have gone in through the irqchip tree and
pulled by kvm-arm. I think I would have rejected this kvm-arm pull
request. The KVM version is the right one, except that it lacks
GITS_BASER_PAGES_SHIFT.
- arch/powerpc: what a mess. For the idle_book3s.S conflict, the KVM
tree is the right one; everything else is trivial. In this case I am
not quite sure what went wrong. The commit that is causing the mess
(fd7bacbca4, "KVM: PPC: Book3S HV: Fix TB corruption in guest exit
path on HMI interrupt", 2016-05-15) touches both arch/powerpc/kernel/
and arch/powerpc/kvm/. It's large, but at 396 insertions/5 deletions
I guessed that it wasn't really possible to split it and that the 5
deletions wouldn't conflict. That wasn't the case.
- arch/s390: also messy. First is hypfs_diag.c where the KVM tree
moved some code and the s390 tree patched it. You have to reapply the
relevant part of commits 6c22c98637, plus all of e030c1125e, to
arch/s390/kernel/diag.c. Or pick the linux-next conflict
resolution from http://marc.info/?l=kvm&m=146717549531603&w=2.
Second, there is a conflict in gmap.c between a stable fix and 4.8.
The KVM version here is the correct one.
I have pushed my resolution at refs/heads/merge-20160802 (commit
3d1f53419842) at git://git.kernel.org/pub/scm/virt/kvm/kvm.git.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJXoGm7AAoJEL/70l94x66DugQIAIj703ePAFepB/fCrKHkZZia
SGrsBdvAtNsOhr7FQ5qvvjLxiv/cv7CymeuJivX8H+4kuUHUllDzey+RPHYHD9X7
U6n1PdCH9F15a3IXc8tDjlDdOMNIKJixYuq1UyNZMU6NFwl00+TZf9JF8A2US65b
x/41W98ilL6nNBAsoDVmCLtPNWAqQ3lajaZELGfcqRQ9ZGKcAYOaLFXHv2YHf2XC
qIDMf+slBGSQ66UoATnYV2gAopNlWbZ7n0vO6tE2KyvhHZ1m399aBX1+k8la/0JI
69r+Tz7ZHUSFtmlmyByi5IAB87myy2WQHyAPwj+4vwJkDGPcl0TrupzbG7+T05Y=
=42ti
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
- ARM: GICv3 ITS emulation and various fixes. Removal of the
old VGIC implementation.
- s390: support for trapping software breakpoints, nested
virtualization (vSIE), the STHYI opcode, initial extensions
for CPU model support.
- MIPS: support for MIPS64 hosts (32-bit guests only) and lots
of cleanups, preliminary to this and the upcoming support for
hardware virtualization extensions.
- x86: support for execute-only mappings in nested EPT; reduced
vmexit latency for TSC deadline timer (by about 30%) on Intel
hosts; support for more than 255 vCPUs.
- PPC: bugfixes.
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (302 commits)
KVM: PPC: Introduce KVM_CAP_PPC_HTM
MIPS: Select HAVE_KVM for MIPS64_R{2,6}
MIPS: KVM: Reset CP0_PageMask during host TLB flush
MIPS: KVM: Fix ptr->int cast via KVM_GUEST_KSEGX()
MIPS: KVM: Sign extend MFC0/RDHWR results
MIPS: KVM: Fix 64-bit big endian dynamic translation
MIPS: KVM: Fail if ebase doesn't fit in CP0_EBase
MIPS: KVM: Use 64-bit CP0_EBase when appropriate
MIPS: KVM: Set CP0_Status.KX on MIPS64
MIPS: KVM: Make entry code MIPS64 friendly
MIPS: KVM: Use kmap instead of CKSEG0ADDR()
MIPS: KVM: Use virt_to_phys() to get commpage PFN
MIPS: Fix definition of KSEGX() for 64-bit
KVM: VMX: Add VMCS to CPU's loaded VMCSs before VMPTRLD
kvm: x86: nVMX: maintain internal copy of current VMCS
KVM: PPC: Book3S HV: Save/restore TM state in H_CEDE
KVM: PPC: Book3S HV: Pull out TM state save/restore into separate procedures
KVM: arm64: vgic-its: Simplify MAPI error handling
KVM: arm64: vgic-its: Make vgic_its_cmd_handle_mapi similar to other handlers
KVM: arm64: vgic-its: Turn device_id validation into generic ID validation
...
Add the code that enables the switch to the lower HYP VA range.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Currently we call the (optional) enable function for CPU _features_
only. As CPU _errata_ descriptions share the same data structure and
having an enable function is useful for errata as well (for instance
to set bits in SCTLR), lets call it when enumerating erratas too.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
CPU Errata work arounds are detected and applied to the
kernel code at boot time and the data is then freed up.
If a new hotplugged CPU requires a work around which
was not applied at boot time, there is nothing we can
do but simply fail the booting.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Now that the capabilities are only available once all the CPUs
have booted, we're unable to check for a particular feature
in any subsystem that gets initialized before then.
In order to support this, introduce a local_cpu_has_cap() function
that tests for the presence of a given capability independently
of the whole framework.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
[ Added preemptible() check ]
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
[will: remove duplicate initialisation of caps in this_cpu_has_cap]
Signed-off-by: Will Deacon <will.deacon@arm.com>
Add scope parameter to the arm64_cpu_capabilities::matches(), so that
this can be reused for checking the capability on a given CPU vs the
system wide. The system uses the default scope associated with the
capability for initialising the CPU_HWCAPs and ELF_HWCAPs.
Cc: James Morse <james.morse@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Andre Przywara <andre.przywara@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Make sure we have AArch32 state available for running COMPAT
binaries and also for switching the personality to PER_LINUX32.
Signed-off-by: Yury Norov <ynorov@caviumnetworks.com>
[ Added cap bit, checks for HWCAP, personality ]
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Tested-by: Yury Norov <ynorov@caviumnetworks.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Add cpu_hwcap bit for keeping track of the support for 32bit EL0.
Tested-by: Yury Norov <ynorov@caviumnetworks.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
On ARMv8 support for AArch32 state is optional. Hence it is
not safe to check the AArch32 ID registers for sanity, which
could lead to false warnings. This patch makes sure that the
AArch32 state is implemented before we keep track of the 32bit
ID registers.
As per ARM ARM (D.1.21.2 - Support for Exception Levels and
Execution States, DDI0487A.h), checking the support for AArch32
at EL0 is good enough to check the support for AArch32 (i.e,
AArch32 at EL1 => AArch32 at EL0, but not vice versa).
Tested-by: Yury Norov <ynorov@caviumnetworks.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
In order to handle systems which do not support 32bit at EL0,
split the COMPAT HWCAP entries into a separate table which can
be processed, only if the support is available.
Tested-by: Yury Norov <ynorov@caviumnetworks.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We use hwcaps for referring to ELF hwcaps capability information.
However this can be confusing with 'cpu_hwcaps' which stands for the
CPU capability bit field. This patch cleans up the names to make it
a bit more readable.
Tested-by: Yury Norov <ynorov@caviumnetworks.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
With a VHE capable CPU, kernel can run at EL2 and is a decided at early
boot. If some of the CPUs didn't start it EL2 or doesn't have VHE, we
could have CPUs running at different exception levels, all in the same
kernel! This patch adds an early check for the secondary CPUs to detect
such situations.
For each non-boot CPU add a sanity check to make sure we don't have
different run levels w.r.t the boot CPU. We save the information on
whether the boot CPU is running in hyp mode or not and ensure the
remaining CPUs match it.
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
[will: made boot_cpu_hyp_mode static]
Signed-off-by: Will Deacon <will.deacon@arm.com>
There are some new cpu features which can be identified by id_aa64mmfr2,
this patch appends all fields of it.
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
- Initial page table creation reworked to avoid breaking large block
mappings (huge pages) into smaller ones. The ARM architecture requires
break-before-make in such cases to avoid TLB conflicts but that's not
always possible on live page tables
- Kernel virtual memory layout: the kernel image is no longer linked to
the bottom of the linear mapping (PAGE_OFFSET) but at the bottom of
the vmalloc space, allowing the kernel to be loaded (nearly) anywhere
in physical RAM
- Kernel ASLR: position independent kernel Image and modules being
randomly mapped in the vmalloc space with the randomness is provided
by UEFI (efi_get_random_bytes() patches merged via the arm64 tree,
acked by Matt Fleming)
- Implement relative exception tables for arm64, required by KASLR
(initial code for ARCH_HAS_RELATIVE_EXTABLE added to lib/extable.c but
actual x86 conversion to deferred to 4.7 because of the merge
dependencies)
- Support for the User Access Override feature of ARMv8.2: this allows
uaccess functions (get_user etc.) to be implemented using LDTR/STTR
instructions. Such instructions, when run by the kernel, perform
unprivileged accesses adding an extra level of protection. The
set_fs() macro is used to "upgrade" such instruction to privileged
accesses via the UAO bit
- Half-precision floating point support (part of ARMv8.2)
- Optimisations for CPUs with or without a hardware prefetcher (using
run-time code patching)
- copy_page performance improvement to deal with 128 bytes at a time
- Sanity checks on the CPU capabilities (via CPUID) to prevent
incompatible secondary CPUs from being brought up (e.g. weird
big.LITTLE configurations)
- valid_user_regs() reworked for better sanity check of the sigcontext
information (restored pstate information)
- ACPI parking protocol implementation
- CONFIG_DEBUG_RODATA enabled by default
- VDSO code marked as read-only
- DEBUG_PAGEALLOC support
- ARCH_HAS_UBSAN_SANITIZE_ALL enabled
- Erratum workaround Cavium ThunderX SoC
- set_pte_at() fix for PROT_NONE mappings
- Code clean-ups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJW6u95AAoJEGvWsS0AyF7xMyoP/3x2O6bgreSQ84BdO4JChN4+
RQ9OVdX8u2ItO9sgaCY2AA6KoiBuEjGmPl/XRuK0I7DpODTtRjEXQHuNNhz8AelC
hn4AEVqamY6Z5BzHFIjs8G9ydEbq+OXcKWEdwSsBhP/cMvI7ss3dps1f5iNPT5Vv
50E/kUz+aWYy7pKlB18VDV7TUOA3SuYuGknWV8+bOY5uPb8hNT3Y3fHOg/EuNNN3
DIuYH1V7XQkXtF+oNVIGxzzJCXULBE7egMcWAm1ydSOHK0JwkZAiL7OhI7ceVD0x
YlDxBnqmi4cgzfBzTxITAhn3OParwN6udQprdF1WGtFF6fuY2eRDSH/L/iZoE4DY
OulL951OsBtF8YC3+RKLk908/0bA2Uw8ftjCOFJTYbSnZBj1gWK41VkCYMEXiHQk
EaN8+2Iw206iYIoyvdjGCLw7Y0oakDoVD9vmv12SOaHeQljTkjoN8oIlfjjKTeP7
3AXj5v9BDMDVh40nkVayysRNvqe48Kwt9Wn0rhVTLxwdJEiFG/OIU6HLuTkretdN
dcCNFSQrRieSFHpBK9G0vKIpIss1ZwLm8gjocVXH7VK4Mo/TNQe4p2/wAF29mq4r
xu1UiXmtU3uWxiqZnt72LOYFCarQ0sFA5+pMEvF5W+NrVB0wGpXhcwm+pGsIi4IM
LepccTgykiUBqW5TRzPz
=/oS+
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"Here are the main arm64 updates for 4.6. There are some relatively
intrusive changes to support KASLR, the reworking of the kernel
virtual memory layout and initial page table creation.
Summary:
- Initial page table creation reworked to avoid breaking large block
mappings (huge pages) into smaller ones. The ARM architecture
requires break-before-make in such cases to avoid TLB conflicts but
that's not always possible on live page tables
- Kernel virtual memory layout: the kernel image is no longer linked
to the bottom of the linear mapping (PAGE_OFFSET) but at the bottom
of the vmalloc space, allowing the kernel to be loaded (nearly)
anywhere in physical RAM
- Kernel ASLR: position independent kernel Image and modules being
randomly mapped in the vmalloc space with the randomness is
provided by UEFI (efi_get_random_bytes() patches merged via the
arm64 tree, acked by Matt Fleming)
- Implement relative exception tables for arm64, required by KASLR
(initial code for ARCH_HAS_RELATIVE_EXTABLE added to lib/extable.c
but actual x86 conversion to deferred to 4.7 because of the merge
dependencies)
- Support for the User Access Override feature of ARMv8.2: this
allows uaccess functions (get_user etc.) to be implemented using
LDTR/STTR instructions. Such instructions, when run by the kernel,
perform unprivileged accesses adding an extra level of protection.
The set_fs() macro is used to "upgrade" such instruction to
privileged accesses via the UAO bit
- Half-precision floating point support (part of ARMv8.2)
- Optimisations for CPUs with or without a hardware prefetcher (using
run-time code patching)
- copy_page performance improvement to deal with 128 bytes at a time
- Sanity checks on the CPU capabilities (via CPUID) to prevent
incompatible secondary CPUs from being brought up (e.g. weird
big.LITTLE configurations)
- valid_user_regs() reworked for better sanity check of the
sigcontext information (restored pstate information)
- ACPI parking protocol implementation
- CONFIG_DEBUG_RODATA enabled by default
- VDSO code marked as read-only
- DEBUG_PAGEALLOC support
- ARCH_HAS_UBSAN_SANITIZE_ALL enabled
- Erratum workaround Cavium ThunderX SoC
- set_pte_at() fix for PROT_NONE mappings
- Code clean-ups"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (99 commits)
arm64: kasan: Fix zero shadow mapping overriding kernel image shadow
arm64: kasan: Use actual memory node when populating the kernel image shadow
arm64: Update PTE_RDONLY in set_pte_at() for PROT_NONE permission
arm64: Fix misspellings in comments.
arm64: efi: add missing frame pointer assignment
arm64: make mrs_s prefixing implicit in read_cpuid
arm64: enable CONFIG_DEBUG_RODATA by default
arm64: Rework valid_user_regs
arm64: mm: check at build time that PAGE_OFFSET divides the VA space evenly
arm64: KVM: Move kvm_call_hyp back to its original localtion
arm64: mm: treat memstart_addr as a signed quantity
arm64: mm: list kernel sections in order
arm64: lse: deal with clobbered IP registers after branch via PLT
arm64: mm: dump: Use VA_START directly instead of private LOWEST_ADDR
arm64: kconfig: add submenu for 8.2 architectural features
arm64: kernel: acpi: fix ioremap in ACPI parking protocol cpu_postboot
arm64: Add support for Half precision floating point
arm64: Remove fixmap include fragility
arm64: Add workaround for Cavium erratum 27456
arm64: mm: Mark .rodata as RO
...
Commit 0f54b14e76 ("arm64: cpufeature: Change read_cpuid() to use
sysreg's mrs_s macro") changed read_cpuid to require a SYS_ prefix on
register names, to allow manual assembly of registers unknown by the
toolchain, using tables in sysreg.h.
This interacts poorly with commit 42b5573403 ("efi/arm64: Check
for h/w support before booting a >4 KB granular kernel"), which is
curretly queued via the tip tree, and uses read_cpuid without a SYS_
prefix. Due to this, a build of next-20160304 fails if EFI and 64K pages
are selected.
To avoid this issue when trees are merged, move the required SYS_
prefixing into read_cpuid, and revert all of the updated callsites to
pass plain register names. This effectively reverts the bulk of commit
0f54b14e76.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add a new ARM64_HAS_VIRT_HOST_EXTN features to indicate that the
CPU has the ARMv8.1 VHE capability.
This will be used to trigger kernel patching in KVM.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
ARMv8.2 extensions [1] include an optional feature, which supports
half precision(16bit) floating point/asimd data processing
instructions. This patch adds support for detecting and exposing
the same to the userspace via HWCAPs
[1] https://community.arm.com/groups/processors/blog/2016/01/05/armv8-a-architecture-evolution
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Now that we have a clear understanding of the sign of a feature,
rename the routines to reflect the sign, so that it is not misused.
The cpuid_feature_extract_field() now accepts a 'sign' parameter.
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Use the appropriate accessor for the feature bit by keeping
track of the sign of the feature
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
There is a confusion on whether the values of a feature are signed
or not in ARM. This is not clearly mentioned in the ARM ARM either.
We have dealt most of the bits as signed so far, and marked the
rest as unsigned explicitly. This fixed in ARM ARM and will be rolled
out soon.
Here is the criteria in a nutshell:
1) The fields, which are either signed or unsigned, use increasing
numerical values to indicate an increase in functionality. Thus, if a value
of 0x1 indicates the presence of some instructions, then the 0x2 value will
indicate the presence of those instructions plus some additional instructions
or functionality.
2) For ID field values where the value 0x0 defines that a feature is not present,
the number is an unsigned value.
3) For some features where the feature was made optional or removed after the
start of the definition of the architecture, the value 0x0 is used to
indicate the presence of a feature, and 0xF indicates the absence of the
feature. In these cases, the fields are, in effect, holding signed values.
So with these rules applied, we have only the following fields which are signed and
the rest are unsigned.
a) ID_AA64PFR0_EL1: {FP, ASIMD}
b) ID_AA64MMFR0_EL1: {TGran4K, TGran64K}
c) ID_AA64DFR0_EL1: PMUVer (0xf - PMUv3 not implemented)
d) ID_DFR0_EL1: PerfMon
e) ID_MMFR0_EL1: {InnerShr, OuterShr}
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Correct the feature bit entries for :
ID_DFR0
ID_MMFR0
to fix the default safe value for some of the bits.
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Adds a hook for checking whether a secondary CPU has the
features used already by the kernel during early boot, based
on the boot CPU and plugs in the check for ASID size.
The ID_AA64MMFR0_EL1:ASIDBits determines the size of the mm context
id and is used in the early boot to make decisions. The value is
picked up from the Boot CPU and cannot be delayed until other CPUs
are up. If a secondary CPU has a smaller size than that of the Boot
CPU, things will break horribly and the usual SANITY check is not good
enough to prevent the system from crashing. So, crash the system with
enough information.
Cc: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We verify the capabilities of the secondary CPUs only when
hotplug is enabled. The boot time activated CPUs do not
go through the verification by checking whether the system
wide capabilities were initialised or not.
This patch removes the capability check dependency on CONFIG_HOTPLUG_CPU,
to make sure that all the secondary CPUs go through the check.
The boot time activated CPUs will still skip the system wide
capability check. The plan is to hook in a check for CPU features
used by the kernel at early boot up, based on the Boot CPU values.
Cc: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch moves cpu_die_early to smp.c, where it fits better.
No functional changes, except for adding the necessary checks
for CONFIG_HOTPLUG_CPU.
Cc: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Or in other words, make fail_incapable_cpu() reusable.
We use fail_incapable_cpu() to kill a secondary CPU early during the
bringup, which doesn't have the system advertised capabilities.
This patch makes the routine more generic, to kill a secondary
booting CPU, getting rid of the dependency on capability struct.
This can be used by checks which are not necessarily attached to
a capability struct (e.g, cpu ASIDBits).
In that process, renames the function to cpu_die_early() to better
match its functionality. This will be moved to arch/arm64/kernel/smp.c
later.
Cc: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Adds a routine which can be used to park CPUs (spinning in kernel)
when they can't be killed.
Cc: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
If a CPU supports both Privileged Access Never (PAN) and User Access
Override (UAO), we don't need to disable/re-enable PAN round all
copy_to_user() like calls.
UAO alternatives cause these calls to use the 'unprivileged' load/store
instructions, which are overridden to be the privileged kind when
fs==KERNEL_DS.
This patch changes the copy_to_user() calls to have their PAN toggling
depend on a new composite 'feature' ARM64_ALT_PAN_NOT_UAO.
If both features are detected, PAN will be enabled, but the copy_to_user()
alternatives will not be applied. This means PAN will be enabled all the
time for these functions. If only PAN is detected, the toggling will be
enabled as normal.
This will save the time taken to disable/re-enable PAN, and allow us to
catch copy_to_user() accesses that occur with fs==KERNEL_DS.
Futex and swp-emulation code continue to hang their PAN toggling code on
ARM64_HAS_PAN.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
CPU feature code uses the desc field as a test to find the end of the list,
this means every entry must have a description. This generates noise for
entries in the list that aren't really features, but combinations of them.
e.g.
> CPU features: detected feature: Privileged Access Never
> CPU features: detected feature: PAN and not UAO
These combination features are needed for corner cases with alternatives,
where cpu features interact.
Change all walkers of the arm64_features[] and arm64_hwcaps[] lists to test
'matches' not 'desc', and only print 'desc' if it is non-NULL.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by : Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
'User Access Override' is a new ARMv8.2 feature which allows the
unprivileged load and store instructions to be overridden to behave in
the normal way.
This patch converts {get,put}_user() and friends to use ldtr*/sttr*
instructions - so that they can only access EL0 memory, then enables
UAO when fs==KERNEL_DS so that these functions can access kernel memory.
This allows user space's read/write permissions to be checked against the
page tables, instead of testing addr<USER_DS, then using the kernel's
read/write permissions.
Signed-off-by: James Morse <james.morse@arm.com>
[catalin.marinas@arm.com: move uao_thread_switch() above dsb()]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
ARMv8.2 adds a new feature register id_aa64mmfr2. This patch adds the
cpu feature boiler plate used by the actual features in later patches.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Older assemblers may not have support for newer feature registers. To get
round this, sysreg.h provides a 'mrs_s' macro that takes a register
encoding and generates the raw instruction.
Change read_cpuid() to use mrs_s in all cases so that new registers
don't have to be a special case. Including sysreg.h means we need to move
the include and definition of read_cpuid() after the #ifndef __ASSEMBLY__
to avoid syntax errors in vmlinux.lds.
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Most CPUs have a hardware prefetcher which generally performs better
without explicit prefetch instructions issued by software, however
some CPUs (e.g. Cavium ThunderX) rely solely on explicit prefetch
instructions.
This patch adds an alternative pattern (ARM64_HAS_NO_HW_PREFETCH) to
allow our library code to make use of explicit prefetch instructions
during things like copy routines only when the CPU does not have the
capability to perform the prefetching itself.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Tested-by: Andrew Pinski <apinski@cavium.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
These functions/variables are not needed after booting, so mark them
as __init or __initdata.
Signed-off-by: Jisheng Zhang <jszhang@marvell.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Some of the feature bits have unsigned values and need
to be treated accordingly to avoid errors. Adds the property
to the feature bits and use the appropriate field extract helpers.
Reported-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
- __cmpxchg_double*() return type fix to avoid truncation of a long to
int and subsequent logical "not" in cmpxchg_double() misinterpreting
the operation success/failure
- BPF fixes for mod and div by zero
- Fix compilation with STRICT_MM_TYPECHECKS enabled
- VDSO build fix without libgcov
- Some static and __maybe_unused annotations
- Kconfig clean-up (FRAME_POINTER)
- defconfig update for CRYPTO_CRC32_ARM64
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJWRNNbAAoJEGvWsS0AyF7xp+wQAIc0A+uSReEJ0Be3kSWZIy0O
9wGCtfp2e3X78ibgVoP/+KvA1JUrMJNwNH54CgGgG6H4rwjRthCvIV/HbKfYufM8
vfuTL2MV1ywkNO0uTzspsICqgKPcpG27SwAlgOcxNXpO0Kui2OlKSxS4kTA8+6Z5
Lm64qDmFG7Z6wcBHhr8JSngC+xvXOvlcUW8odnjXjyCimwnpCFXXnRWDU3RnXJZa
3Khgp8OiRtnCSLfj7YBQA9wfNNgPgKdJ5wevz2g7hiIbYx0IOHmDpzbb3sUNMMKV
XLKeeJgqZL4EXZBCzapHRHCE/q0kiiBhzYSHw6aOBwjD9v683aytT/ax2/AgjzvW
nB3ZPdrbRMjcmNRBT2bheoU8diilhtfxSxf+4T+pVUnVMXDNl/xY9hekGA0hFO1z
nH5P5vkFKsX3U02Ox/G50Od2rM6p7uGRGFYuomSIoJYBItuxGOAuYWlY2+ujcxY5
YvAQ+3FYCkjLipVutlqLxKoZSY8Ex+0LOjPYYsI/+rsE70IVjGuLj0bTm8B/aTcy
dOctNqvOGwo8O5n2jsKM3XkjfUCPRdzu1C7rQz2BqfE9cPAZxg2fQpPv4SGtPuFe
lEvokuYRJ3qYnMt5MG/9Mkqmczfbch88A41wgS9/ySQ57eo3wISLkOiKqzKdJjOa
0qldWaEvST2iVUQmiMl7
=ApkD
-----END PGP SIGNATURE-----
Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes and clean-ups from Catalin Marinas:
"Here's a second pull request for this merging window with some
fixes/clean-ups:
- __cmpxchg_double*() return type fix to avoid truncation of a long
to int and subsequent logical "not" in cmpxchg_double()
misinterpreting the operation success/failure
- BPF fixes for mod and div by zero
- Fix compilation with STRICT_MM_TYPECHECKS enabled
- VDSO build fix without libgcov
- Some static and __maybe_unused annotations
- Kconfig clean-up (FRAME_POINTER)
- defconfig update for CRYPTO_CRC32_ARM64"
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: suspend: make hw_breakpoint_restore static
arm64: mmu: make split_pud and fixup_executable static
arm64: smp: make of_parse_and_init_cpus static
arm64: use linux/types.h in kvm.h
arm64: build vdso without libgcov
arm64: mark cpus_have_hwcap as __maybe_unused
arm64: remove redundant FRAME_POINTER kconfig option and force to select it
arm64: fix R/O permissions of FDT mapping
arm64: fix STRICT_MM_TYPECHECKS issue in PTE_CONT manipulation
arm64: bpf: fix mod-by-zero case
arm64: bpf: fix div-by-zero case
arm64: Enable CRYPTO_CRC32_ARM64 in defconfig
arm64: cmpxchg_dbl: fix return value type
cpus_have_hwcap() is defined as a 'static' function an only used in
one place that is inside of an #ifdef, so we get a warning when
the only user is disabled:
arch/arm64/kernel/cpufeature.c:699:13: warning: 'cpus_have_hwcap' defined but not used [-Wunused-function]
This marks the function as __maybe_unused, so the compiler knows that
it can drop the function definition without warning about it.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Fixes: 37b01d53ce ("arm64/HWCAP: Use system wide safe values")
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
- "genirq: Introduce generic irq migration for cpu hotunplugged" patch
merged from tip/irq/for-arm to allow the arm64-specific part to be
upstreamed via the arm64 tree
- CPU feature detection reworked to cope with heterogeneous systems
where CPUs may not have exactly the same features. The features
reported by the kernel via internal data structures or ELF_HWCAP are
delayed until all the CPUs are up (and before user space starts)
- Support for 16KB pages, with the additional bonus of a 36-bit VA
space, though the latter only depending on EXPERT
- Implement native {relaxed, acquire, release} atomics for arm64
- New ASID allocation algorithm which avoids IPI on roll-over, together
with TLB invalidation optimisations (using local vs global where
feasible)
- KASan support for arm64
- EFI_STUB clean-up and isolation for the kernel proper (required by
KASan)
- copy_{to,from,in}_user optimisations (sharing the memcpy template)
- perf: moving arm64 to the arm32/64 shared PMU framework
- L1_CACHE_BYTES increased to 128 to accommodate Cavium hardware
- Support for the contiguous PTE hint on kernel mapping (16 consecutive
entries may be able to use a single TLB entry)
- Generic CONFIG_HZ now used on arm64
- defconfig updates
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJWOkmIAAoJEGvWsS0AyF7x4GgQAINU3NePjFFvWZNCkqobeH9+
jFKwtXamIudhTSdnXNXyYWmtRL9Krg3qI4zDQf68dvDFAZAze2kVuOi1yPpCbpFZ
/j/afNyQc7+PoyqRAzmT+EMPZlcuOA84Prrl1r3QWZ58QaFeVk/6ZxrHunTHxN0x
mR9PIXfWx73MTo+UnG8FChkmEY6LmV4XpemgTaMR9FqFhdT51OZSxDDAYXOTm4JW
a5HdN9OWjjJ2rhLlFEaC7tszG9B5doHdy2tr5ge/YERVJzIPDogHkMe8ZhfAJc+x
SQU5tKN6Pg4MOi+dLhxlk0/mKCvHLiEQ5KVREJnt8GxupAR54Bat+DQ+rP9cSnpq
dRQTcARIOyy9LGgy+ROAsSo+NiyM5WuJ0/WJUYKmgWTJOfczRYoZv6TMKlwNOUYb
tGLCZHhKPM3yBHJlWbQykl3xmSuudxCMmjlZzg7B+MVfTP6uo0CRSPmYl+v67q+J
bBw/Z2RYXWYGnvlc6OfbMeImI6prXeE36+5ytyJFga0m+IqcTzRGzjcLxKEvdbiU
pr8n9i+hV9iSsT/UwukXZ8ay6zH7PrTLzILWQlieutfXlvha7MYeGxnkbLmdYcfe
GCj374io5cdImHcVKmfhnOMlFOLuOHphl9cmsd/O2LmCIqBj9BIeNH2Om8mHVK2F
YHczMdpESlJApE7kUc1e
=3six
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- "genirq: Introduce generic irq migration for cpu hotunplugged" patch
merged from tip/irq/for-arm to allow the arm64-specific part to be
upstreamed via the arm64 tree
- CPU feature detection reworked to cope with heterogeneous systems
where CPUs may not have exactly the same features. The features
reported by the kernel via internal data structures or ELF_HWCAP are
delayed until all the CPUs are up (and before user space starts)
- Support for 16KB pages, with the additional bonus of a 36-bit VA
space, though the latter only depending on EXPERT
- Implement native {relaxed, acquire, release} atomics for arm64
- New ASID allocation algorithm which avoids IPI on roll-over, together
with TLB invalidation optimisations (using local vs global where
feasible)
- KASan support for arm64
- EFI_STUB clean-up and isolation for the kernel proper (required by
KASan)
- copy_{to,from,in}_user optimisations (sharing the memcpy template)
- perf: moving arm64 to the arm32/64 shared PMU framework
- L1_CACHE_BYTES increased to 128 to accommodate Cavium hardware
- Support for the contiguous PTE hint on kernel mapping (16 consecutive
entries may be able to use a single TLB entry)
- Generic CONFIG_HZ now used on arm64
- defconfig updates
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (91 commits)
arm64/efi: fix libstub build under CONFIG_MODVERSIONS
ARM64: Enable multi-core scheduler support by default
arm64/efi: move arm64 specific stub C code to libstub
arm64: page-align sections for DEBUG_RODATA
arm64: Fix build with CONFIG_ZONE_DMA=n
arm64: Fix compat register mappings
arm64: Increase the max granular size
arm64: remove bogus TASK_SIZE_64 check
arm64: make Timer Interrupt Frequency selectable
arm64/mm: use PAGE_ALIGNED instead of IS_ALIGNED
arm64: cachetype: fix definitions of ICACHEF_* flags
arm64: cpufeature: declare enable_cpu_capabilities as static
genirq: Make the cpuhotplug migration code less noisy
arm64: Constify hwcap name string arrays
arm64/kvm: Make use of the system wide safe values
arm64/debug: Make use of the system wide safe value
arm64: Move FP/ASIMD hwcap handling to common code
arm64/HWCAP: Use system wide safe values
arm64/capabilities: Make use of system wide safe value
arm64: Delay cpu feature capability checks
...
enable_cpu_capabilities is only called from within cpufeature.c, so it
can be declared static.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The FP/ASIMD is detected in fpsimd_init(), which is built-in
unconditionally. Lets move the hwcap handling to the central place.
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Tested-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Extend struct arm64_cpu_capabilities to handle the HWCAP detection
and make use of the system wide value of the feature registers for
a reliable set of HWCAPs.
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Tested-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Now that we can reliably read the system wide safe value for a
feature register, use that to compute the system capability.
This patch also replaces the 'feature-register-specific'
methods with a generic routine to check the capability.
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Tested-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
At the moment we run through the arm64_features capability list for
each CPU and set the capability if one of the CPU supports it. This
could be problematic in a heterogeneous system with differing capabilities.
Delay the CPU feature checks until all the enabled CPUs are up(i.e,
smp_cpus_done(), so that we can make better decisions based on the
overall system capability. Once we decide and advertise the capabilities
the alternatives can be applied. From this state, we cannot roll back
a feature to disabled based on the values from a new hotplugged CPU,
due to the runtime patching and other reasons. So, for all new CPUs,
we need to make sure that they have the established system capabilities.
Failing which, we bring the CPU down, preventing it from turning online.
Once the capabilities are decided, any new CPU booting up goes through
verification to ensure that it has all the enabled capabilities and also
invokes the respective enable() method on the CPU.
The CPU errata checks are not delayed and is still executed per-CPU
to detect the respective capabilities. If we ever come across a non-errata
capability that needs to be checked on each-CPU, we could introduce them via
a new capability table(or introduce a flag), which can be processed per CPU.
The next patch will make the feature checks use the system wide
safe value of a feature register.
NOTE: The enable() methods associated with the capability is scheduled
on all the CPUs (which is the only use case at the moment). If we need
a different type of 'enable()' which only needs to be run once on any CPU,
we should be able to handle that when needed.
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Tested-by: Dave Martin <Dave.Martin@arm.com>
[catalin.marinas@arm.com: static variable and coding style fixes]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
check_cpu_capabilities runs through a given list of caps and
checks if the system has the cap, updates the system capability
bitmap and also runs any enable() methods associated with them.
All of this is not quite obvious from the name 'check'. This
patch splits the check_cpu_capabilities into two parts :
1) update_cpu_capabilities
=> Runs through the given list and updates the system
wide capability map.
2) enable_cpu_capabilities
=> Runs through the given list and invokes enable() (if any)
for the caps enabled on the system.
Cc: Andre Przywara <andre.przywara@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Suggested-by: Catalin Marinas <catalin.marinsa@arm.com>
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Tested-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Make use of the system wide safe register to decide the support
for mixed endian.
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Tested-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add an API for reading the safe CPUID value across the
system from the new infrastructure.
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Tested-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch consolidates the CPU Sanity check to the new infrastructure.
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Tested-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch adds an infrastructure to keep track of the CPU feature
registers on the system. For each register, the infrastructure keeps
track of the system wide safe value of the feature bits. Also, tracks
the which fields of a register should be matched strictly across all
the CPUs on the system for the SANITY check infrastructure.
The feature bits are classified into following 3 types depending on
the implication of the possible values. This information is used to
decide the safe value for a feature.
LOWER_SAFE - The smaller value is safer
HIGHER_SAFE - The bigger value is safer
EXACT - We can't decide between the two, so a predefined safe_value is used.
This infrastructure will be later used to make better decisions for:
- Kernel features (e.g, KVM, Debug)
- SANITY Check
- CPU capability
- ELF HWCAP
- Exposing CPU Feature register to userspace.
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Tested-by: Dave Martin <Dave.Martin@arm.com>
[catalin.marinas@arm.com: whitespace fix]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Move the mixed endian support detection code to cpufeature.c
from cpuinfo.c. This also moves the update_cpu_features()
used by mixed endian detection code, which will get more
functionality.
Also moves the ID register field shifts to asm/sysreg.h,
where all the useful definitions will end up in later patches.
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Tested-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch moves the CPU feature detection code from
arch/arm64/kernel/{setup.c to cpufeature.c}
The plan is to consolidate all the CPU feature handling
in cpufeature.c.
Apart from changing pr_fmt from "alternatives" to "cpu features",
there are no functional changes.
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Tested-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
As the firmware (or the hypervisor) may have disabled SRE access,
check that SRE can actually be enabled before declaring that we
do have that capability.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Rework the cpufeature detection to support ISAR0 and use that for
detecting the presence of LSE atomics.
Signed-off-by: Will Deacon <will.deacon@arm.com>
'Privileged Access Never' is a new arm8.1 feature which prevents
privileged code from accessing any virtual address where read or write
access is also permitted at EL0.
This patch enables the PAN feature on all CPUs, and modifies {get,put}_user
helpers temporarily to permit access.
This will catch kernel bugs where user memory is accessed directly.
'Unprivileged loads and stores' using ldtrb et al are unaffected by PAN.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
[will: use ALTERNATIVE in asm and tidy up pan_enable check]
Signed-off-by: Will Deacon <will.deacon@arm.com>
When a new cpu feature is available, the cpu feature bits will have some
initial value, which is incremented when the feature is updated.
This patch changes 'register_value' to be 'min_field_value', and checks
the feature bits value (interpreted as a signed int) is greater than this
minimum.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This patch adds an 'enable()' callback to cpu capability/feature
detection, allowing features that require some setup or configuration
to get this opportunity once the feature has been detected.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Add a new item to the feature set (ARM64_HAS_SYSREG_GIC_CPUIF)
to indicate that we have a system register GIC CPU interface
This will help KVM switching to alternative instruction patching.
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>