* Introduce MAP_SYNC and MAP_SHARED_VALIDATE, a mechanism to enable
'userspace flush' of persistent memory updates via filesystem-dax
mappings. It arranges for any filesystem metadata updates that may be
required to satisfy a write fault to also be flushed ("on disk") before
the kernel returns to userspace from the fault handler. Effectively
every write-fault that dirties metadata completes an fsync() before
returning from the fault handler. The new MAP_SHARED_VALIDATE mapping
type guarantees that the MAP_SYNC flag is validated as supported by the
filesystem's ->mmap() file operation.
* Add support for the standard ACPI 6.2 label access methods that
replace the NVDIMM_FAMILY_INTEL (vendor specific) label methods. This
enables interoperability with environments that only implement the
standardized methods.
* Add support for the ACPI 6.2 NVDIMM media error injection methods.
* Add support for the NVDIMM_FAMILY_INTEL v1.6 DIMM commands for latch
last shutdown status, firmware update, SMART error injection, and
SMART alarm threshold control.
* Cleanup physical address information disclosures to be root-only.
* Fix revalidation of the DIMM "locked label area" status to support
dynamic unlock of the label area.
* Expand unit test infrastructure to mock the ACPI 6.2 Translate SPA
(system-physical-address) command and error injection commands.
Acknowledgements that came after the commits were pushed to -next:
957ac8c421 dax: fix PMD faults on zero-length files
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
a39e596baa xfs: support for synchronous DAX faults
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
7b565c9f96 xfs: Implement xfs_filemap_pfn_mkwrite() using __xfs_filemap_fault()
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJaDfvcAAoJEB7SkWpmfYgCk7sP/2qJhBH+VTTdg2osDnhAdAhI
co/AGEmsHFlUCMBb/Ek7UnMAmhBYiJU2q4ywPsNFBpusXpMlqNy5Iwo7k4/wQHE/
SJcIM0g4zg0ViFuUhwV+C2T0R5UzFR8JLd9EYWj/YS6aJpurtotm5l4UStaM0Hzo
AhxSXJLrBDuqCpbOxbctfiGEmdRL7aRfBEAARTNRKBn/iXxJUcYHlp62rtXQS+t4
I6LC/URCWTNTTMGmzW6TRsgSD9WMfd19xKcGzN3qL6ee0KFccxN4ctFqHA/sFGOh
iYLeR0XJUjJxyp+PkWGteXPVZL0Kj3bD/lSTG+Co5bm/ra8a/sh3TSFfgFyoBZD1
EqMN8Ryf80hGp3FabeH2Iw2SviYPZpHSWgjddjxLD0RA6OmpzINc+Wm8eqApjMME
sbZDTOijiab4QMQ0XamF4GuDHyQtawv5Y/w2Ehhl1tmiqW+5tKhsKqxkQt+/V3Yt
RTVSRe2Pkway66b+cD64IdQ6L2tyonPnmi5IzgkKOhlOEGomy+4/U2Jt2bMbhzq6
ymszKmXp2XI8P06wU8sHrIUeXO5I9qoKn/fZA73Eb8aIzgJe3tBE/5+Ab7RG6HB9
1OVfcMWoXU1gNgNktTs63X1Lsg4aW9kt/K4fPHHcqUcaliEJpJTlAbg9GLF2buoW
nQ+0fTRgMRihE3ZA0Fs3
=h2vZ
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm and dax updates from Dan Williams:
"Save for a few late fixes, all of these commits have shipped in -next
releases since before the merge window opened, and 0day has given a
build success notification.
The ext4 touches came from Jan, and the xfs touches have Darrick's
reviewed-by. An xfstest for the MAP_SYNC feature has been through
a few round of reviews and is on track to be merged.
- Introduce MAP_SYNC and MAP_SHARED_VALIDATE, a mechanism to enable
'userspace flush' of persistent memory updates via filesystem-dax
mappings. It arranges for any filesystem metadata updates that may
be required to satisfy a write fault to also be flushed ("on disk")
before the kernel returns to userspace from the fault handler.
Effectively every write-fault that dirties metadata completes an
fsync() before returning from the fault handler. The new
MAP_SHARED_VALIDATE mapping type guarantees that the MAP_SYNC flag
is validated as supported by the filesystem's ->mmap() file
operation.
- Add support for the standard ACPI 6.2 label access methods that
replace the NVDIMM_FAMILY_INTEL (vendor specific) label methods.
This enables interoperability with environments that only implement
the standardized methods.
- Add support for the ACPI 6.2 NVDIMM media error injection methods.
- Add support for the NVDIMM_FAMILY_INTEL v1.6 DIMM commands for
latch last shutdown status, firmware update, SMART error injection,
and SMART alarm threshold control.
- Cleanup physical address information disclosures to be root-only.
- Fix revalidation of the DIMM "locked label area" status to support
dynamic unlock of the label area.
- Expand unit test infrastructure to mock the ACPI 6.2 Translate SPA
(system-physical-address) command and error injection commands.
Acknowledgements that came after the commits were pushed to -next:
- 957ac8c421 ("dax: fix PMD faults on zero-length files"):
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
- a39e596baa ("xfs: support for synchronous DAX faults") and
7b565c9f96 ("xfs: Implement xfs_filemap_pfn_mkwrite() using __xfs_filemap_fault()")
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>"
* tag 'libnvdimm-for-4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (49 commits)
acpi, nfit: add 'Enable Latch System Shutdown Status' command support
dax: fix general protection fault in dax_alloc_inode
dax: fix PMD faults on zero-length files
dax: stop requiring a live device for dax_flush()
brd: remove dax support
dax: quiet bdev_dax_supported()
fs, dax: unify IOMAP_F_DIRTY read vs write handling policy in the dax core
tools/testing/nvdimm: unit test clear-error commands
acpi, nfit: validate commands against the device type
tools/testing/nvdimm: stricter bounds checking for error injection commands
xfs: support for synchronous DAX faults
xfs: Implement xfs_filemap_pfn_mkwrite() using __xfs_filemap_fault()
ext4: Support for synchronous DAX faults
ext4: Simplify error handling in ext4_dax_huge_fault()
dax: Implement dax_finish_sync_fault()
dax, iomap: Add support for synchronous faults
mm: Define MAP_SYNC and VM_SYNC flags
dax: Allow tuning whether dax_insert_mapping_entry() dirties entry
dax: Allow dax_iomap_fault() to return pfn
dax: Fix comment describing dax_iomap_fault()
...
Define new MAP_SYNC flag and corresponding VMA VM_SYNC flag. As the
MAP_SYNC flag is not part of LEGACY_MAP_MASK, currently it will be
refused by all MAP_SHARED_VALIDATE map attempts and silently ignored for
everything else.
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The mmap(2) syscall suffers from the ABI anti-pattern of not validating
unknown flags. However, proposals like MAP_SYNC need a mechanism to
define new behavior that is known to fail on older kernels without the
support. Define a new MAP_SHARED_VALIDATE flag pattern that is
guaranteed to fail on all legacy mmap implementations.
It is worth noting that the original proposal was for a standalone
MAP_VALIDATE flag. However, when that could not be supported by all
archs Linus observed:
I see why you *think* you want a bitmap. You think you want
a bitmap because you want to make MAP_VALIDATE be part of MAP_SYNC
etc, so that people can do
ret = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED
| MAP_SYNC, fd, 0);
and "know" that MAP_SYNC actually takes.
And I'm saying that whole wish is bogus. You're fundamentally
depending on special semantics, just make it explicit. It's already
not portable, so don't try to make it so.
Rename that MAP_VALIDATE as MAP_SHARED_VALIDATE, make it have a value
of 0x3, and make people do
ret = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED_VALIDATE
| MAP_SYNC, fd, 0);
and then the kernel side is easier too (none of that random garbage
playing games with looking at the "MAP_VALIDATE bit", but just another
case statement in that map type thing.
Boom. Done.
Similar to ->fallocate() we also want the ability to validate the
support for new flags on a per ->mmap() 'struct file_operations'
instance basis. Towards that end arrange for flags to be generically
validated against a mmap_supported_flags exported by 'struct
file_operations'. By default all existing flags are implicitly
supported, but new flags require MAP_SHARED_VALIDATE and
per-instance-opt-in.
Cc: Jan Kara <jack@suse.cz>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Suggested-by: Christoph Hellwig <hch@lst.de>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Many user space API headers are missing licensing information, which
makes it hard for compliance tools to determine the correct license.
By default are files without license information under the default
license of the kernel, which is GPLV2. Marking them GPLV2 would exclude
them from being included in non GPLV2 code, which is obviously not
intended. The user space API headers fall under the syscall exception
which is in the kernels COPYING file:
NOTE! This copyright does *not* cover user programs that use kernel
services by normal system calls - this is merely considered normal use
of the kernel, and does *not* fall under the heading of "derived work".
otherwise syscall usage would not be possible.
Update the files which contain no license information with an SPDX
license identifier. The chosen identifier is 'GPL-2.0 WITH
Linux-syscall-note' which is the officially assigned identifier for the
Linux syscall exception. SPDX license identifiers are a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne. See the previous patch in this series for the
methodology of how this patch was researched.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Pull namespace updates from Eric Biederman:
"Life has been busy and I have not gotten half as much done this round
as I would have liked. I delayed it so that a minor conflict
resolution with the mips tree could spend a little time in linux-next
before I sent this pull request.
This includes two long delayed user namespace changes from Kirill
Tkhai. It also includes a very useful change from Serge Hallyn that
allows the security capability attribute to be used inside of user
namespaces. The practical effect of this is people can now untar
tarballs and install rpms in user namespaces. It had been suggested to
generalize this and encode some of the namespace information
information in the xattr name. Upon close inspection that makes the
things that should be hard easy and the things that should be easy
more expensive.
Then there is my bugfix/cleanup for signal injection that removes the
magic encoding of the siginfo union member from the kernel internal
si_code. The mips folks reported the case where I had used FPE_FIXME
me is impossible so I have remove FPE_FIXME from mips, while at the
same time including a return statement in that case to keep gcc from
complaining about unitialized variables.
I almost finished the work to get make copy_siginfo_to_user a trivial
copy to user. The code is available at:
git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace.git neuter-copy_siginfo_to_user-v3
But I did not have time/energy to get the code posted and reviewed
before the merge window opened.
I was able to see that the security excuse for just copying fields
that we know are initialized doesn't work in practice there are buggy
initializations that don't initialize the proper fields in siginfo. So
we still sometimes copy unitialized data to userspace"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
Introduce v3 namespaced file capabilities
mips/signal: In force_fcr31_sig return in the impossible case
signal: Remove kernel interal si_code magic
fcntl: Don't use ambiguous SIG_POLL si_codes
prctl: Allow local CAP_SYS_ADMIN changing exe_file
security: Use user_namespace::level to avoid redundant iterations in cap_capable()
userns,pidns: Verify the userns for new pid namespaces
signal/testing: Don't look for __SI_FAULT in userspace
signal/mips: Document a conflict with SI_USER with SIGFPE
signal/sparc: Document a conflict with SI_USER with SIGFPE
signal/ia64: Document a conflict with SI_USER with SIGFPE
signal/alpha: Document a conflict with SI_USER for SIGTRAP
Merge updates from Andrew Morton:
- various misc bits
- DAX updates
- OCFS2
- most of MM
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (119 commits)
mm,fork: introduce MADV_WIPEONFORK
x86,mpx: make mpx depend on x86-64 to free up VMA flag
mm: add /proc/pid/smaps_rollup
mm: hugetlb: clear target sub-page last when clearing huge page
mm: oom: let oom_reap_task and exit_mmap run concurrently
swap: choose swap device according to numa node
mm: replace TIF_MEMDIE checks by tsk_is_oom_victim
mm, oom: do not rely on TIF_MEMDIE for memory reserves access
z3fold: use per-cpu unbuddied lists
mm, swap: don't use VMA based swap readahead if HDD is used as swap
mm, swap: add sysfs interface for VMA based swap readahead
mm, swap: VMA based swap readahead
mm, swap: fix swap readahead marking
mm, swap: add swap readahead hit statistics
mm/vmalloc.c: don't reinvent the wheel but use existing llist API
mm/vmstat.c: fix wrong comment
selftests/memfd: add memfd_create hugetlbfs selftest
mm/shmem: add hugetlbfs support to memfd_create()
mm, devm_memremap_pages: use multi-order radix for ZONE_DEVICE lookups
mm/vmalloc.c: halve the number of comparisons performed in pcpu_get_vm_areas()
...
Introduce MADV_WIPEONFORK semantics, which result in a VMA being empty
in the child process after fork. This differs from MADV_DONTFORK in one
important way.
If a child process accesses memory that was MADV_WIPEONFORK, it will get
zeroes. The address ranges are still valid, they are just empty.
If a child process accesses memory that was MADV_DONTFORK, it will get a
segmentation fault, since those address ranges are no longer valid in
the child after fork.
Since MADV_DONTFORK also seems to be used to allow very large programs
to fork in systems with strict memory overcommit restrictions, changing
the semantics of MADV_DONTFORK might break existing programs.
MADV_WIPEONFORK only works on private, anonymous VMAs.
The use case is libraries that store or cache information, and want to
know that they need to regenerate it in the child process after fork.
Examples of this would be:
- systemd/pulseaudio API checks (fail after fork) (replacing a getpid
check, which is too slow without a PID cache)
- PKCS#11 API reinitialization check (mandated by specification)
- glibc's upcoming PRNG (reseed after fork)
- OpenSSL PRNG (reseed after fork)
The security benefits of a forking server having a re-inialized PRNG in
every child process are pretty obvious. However, due to libraries
having all kinds of internal state, and programs getting compiled with
many different versions of each library, it is unreasonable to expect
calling programs to re-initialize everything manually after fork.
A further complication is the proliferation of clone flags, programs
bypassing glibc's functions to call clone directly, and programs calling
unshare, causing the glibc pthread_atfork hook to not get called.
It would be better to have the kernel take care of this automatically.
The patch also adds MADV_KEEPONFORK, to undo the effects of a prior
MADV_WIPEONFORK.
This is similar to the OpenBSD minherit syscall with MAP_INHERIT_ZERO:
https://man.openbsd.org/minherit.2
[akpm@linux-foundation.org: numerically order arch/parisc/include/uapi/asm/mman.h #defines]
Link: http://lkml.kernel.org/r/20170811212829.29186-3-riel@redhat.com
Signed-off-by: Rik van Riel <riel@redhat.com>
Reported-by: Florian Weimer <fweimer@redhat.com>
Reported-by: Colm MacCártaigh <colm@allcosts.net>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Drewry <wad@chromium.org>
Cc: <linux-api@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A non-default huge page size can be encoded in the flags argument of the
mmap system call. The definitions for these encodings are in arch
specific header files. However, all architectures use the same values.
Consolidate all the definitions in the primary user header file
(uapi/linux/mman.h). Include definitions for all known huge page sizes.
Use the generic encoding definitions in hugetlb_encode.h as the basis
for these definitions.
Link: http://lkml.kernel.org/r/1501527386-10736-3-git-send-email-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Consolidate system call hugetlb page size encodings".
These patches are the result of discussions in
https://lkml.org/lkml/2017/3/8/548. The following changes are made in the
patch set:
1) Put all the log2 encoded huge page size definitions in a common
header file. The idea is have a set of definitions that can be use as
the basis for system call specific definitions such as MAP_HUGE_* and
SHM_HUGE_*.
2) Remove MAP_HUGE_* definitions in arch specific files. All these
definitions are the same. Consolidate all definitions in the primary
user header file (uapi/linux/mman.h).
3) Remove SHM_HUGE_* definitions intended for user space from kernel
header file, and add to user (uapi/linux/shm.h) header file. Add
definitions for all known huge page size encodings as in mmap.
This patch (of 3):
If hugetlb pages are requested in mmap or shmget system calls, a huge
page size other than default can be requested. This is accomplished by
encoding the log2 of the huge page size in the upper bits of the flag
argument. asm-generic and arch specific headers all define the same
values for these encodings.
Put common definitions in a single header file. The primary uapi header
files for mmap and shm will use these definitions as a basis for
definitions specific to those system calls.
Link: http://lkml.kernel.org/r/1501527386-10736-2-git-send-email-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The send call ignores unknown flags. Legacy applications may already
unwittingly pass MSG_ZEROCOPY. Continue to ignore this flag unless a
socket opts in to zerocopy.
Introduce socket option SO_ZEROCOPY to enable MSG_ZEROCOPY processing.
Processes can also query this socket option to detect kernel support
for the feature. Older kernels will return ENOPROTOOPT.
Signed-off-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
struct siginfo is a union and the kernel since 2.4 has been hiding a union
tag in the high 16bits of si_code using the values:
__SI_KILL
__SI_TIMER
__SI_POLL
__SI_FAULT
__SI_CHLD
__SI_RT
__SI_MESGQ
__SI_SYS
While this looks plausible on the surface, in practice this situation has
not worked well.
- Injected positive signals are not copied to user space properly
unless they have these magic high bits set.
- Injected positive signals are not reported properly by signalfd
unless they have these magic high bits set.
- These kernel internal values leaked to userspace via ptrace_peek_siginfo
- It was possible to inject these kernel internal values and cause the
the kernel to misbehave.
- Kernel developers got confused and expected these kernel internal values
in userspace in kernel self tests.
- Kernel developers got confused and set si_code to __SI_FAULT which
is SI_USER in userspace which causes userspace to think an ordinary user
sent the signal and that it was not kernel generated.
- The values make it impossible to reorganize the code to transform
siginfo_copy_to_user into a plain copy_to_user. As si_code must
be massaged before being passed to userspace.
So remove these kernel internal si codes and make the kernel code simpler
and more maintainable.
To replace these kernel internal magic si_codes introduce the helper
function siginfo_layout, that takes a signal number and an si_code and
computes which union member of siginfo is being used. Have
siginfo_layout return an enumeration so that gcc will have enough
information to warn if a switch statement does not handle all of union
members.
A couple of architectures have a messed up ABI that defines signal
specific duplications of SI_USER which causes more special cases in
siginfo_layout than I would like. The good news is only problem
architectures pay the cost.
Update all of the code that used the previous magic __SI_ values to
use the new SIL_ values and to call siginfo_layout to get those
values. Escept where not all of the cases are handled remove the
defaults in the switch statements so that if a new case is missed in
the future the lack will show up at compile time.
Modify the code that copies siginfo si_code to userspace to just copy
the value and not cast si_code to a short first. The high bits are no
longer used to hold a magic union member.
Fixup the siginfo header files to stop including the __SI_ values in
their constants and for the headers that were missing it to properly
update the number of si_codes for each signal type.
The fixes to copy_siginfo_from_user32 implementations has the
interesting property that several of them perviously should never have
worked as the __SI_ values they depended up where kernel internal.
With that dependency gone those implementations should work much
better.
The idea of not passing the __SI_ values out to userspace and then
not reinserting them has been tested with criu and criu worked without
changes.
Ref: 2.4.0-test1
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
We have a weird and problematic intersection of features that when
they all come together result in ambiguous siginfo values, that
we can not support properly.
- Supporting fcntl(F_SETSIG,...) with arbitrary valid signals.
- Using positive values for POLL_IN, POLL_OUT, POLL_MSG, ..., etc
that imply they are signal specific si_codes and using the
aforementioned arbitrary signal to deliver them.
- Supporting injection of arbitrary siginfo values for debugging and
checkpoint/restore.
The result is that just looking at siginfo si_codes of 1 to 6 are
ambigious. It could either be a signal specific si_code or it could
be a generic si_code.
For most of the kernel this is a non-issue but for sending signals
with siginfo it is impossible to play back the kernel signals and
get the same result.
Strictly speaking when the si_code was changed from SI_SIGIO to
POLL_IN and friends between 2.2 and 2.4 this functionality was not
ambiguous, as only real time signals were supported. Before 2.4 was
released the kernel began supporting siginfo with non realtime signals
so they could give details of why the signal was sent.
The result is that if F_SETSIG is set to one of the signals with signal
specific si_codes then user space can not know why the signal was sent.
I grepped through a bunch of userspace programs using debian code
search to get a feel for how often people choose a signal that results
in an ambiguous si_code. I only found one program doing so and it was
using SIGCHLD to test the F_SETSIG functionality, and did not appear
to be a real world usage.
Therefore the ambiguity does not appears to be a real world problem in
practice. Remove the ambiguity while introducing the smallest chance
of breakage by changing the si_code to SI_SIGIO when signals with
signal specific si_codes are targeted.
Fixes: v2.3.40 -- Added support for queueing non-rt signals
Fixes: v2.3.21 -- Changed the si_code from SI_SIGIO
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
This ioctl does nothing to justify an _IOC_READ or _IOC_WRITE flag
because it doesn't copy anything from/to userspace to access the
argument.
Fixes: 54ebbfb160 ("tty: add TIOCGPTPEER ioctl")
Signed-off-by: Gleb Fotengauer-Malinovskiy <glebfm@altlinux.org>
Acked-by: Aleksa Sarai <asarai@suse.de>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Pull networking updates from David Miller:
"Reasonably busy this cycle, but perhaps not as busy as in the 4.12
merge window:
1) Several optimizations for UDP processing under high load from
Paolo Abeni.
2) Support pacing internally in TCP when using the sch_fq packet
scheduler for this is not practical. From Eric Dumazet.
3) Support mutliple filter chains per qdisc, from Jiri Pirko.
4) Move to 1ms TCP timestamp clock, from Eric Dumazet.
5) Add batch dequeueing to vhost_net, from Jason Wang.
6) Flesh out more completely SCTP checksum offload support, from
Davide Caratti.
7) More plumbing of extended netlink ACKs, from David Ahern, Pablo
Neira Ayuso, and Matthias Schiffer.
8) Add devlink support to nfp driver, from Simon Horman.
9) Add RTM_F_FIB_MATCH flag to RTM_GETROUTE queries, from Roopa
Prabhu.
10) Add stack depth tracking to BPF verifier and use this information
in the various eBPF JITs. From Alexei Starovoitov.
11) Support XDP on qed device VFs, from Yuval Mintz.
12) Introduce BPF PROG ID for better introspection of installed BPF
programs. From Martin KaFai Lau.
13) Add bpf_set_hash helper for TC bpf programs, from Daniel Borkmann.
14) For loads, allow narrower accesses in bpf verifier checking, from
Yonghong Song.
15) Support MIPS in the BPF selftests and samples infrastructure, the
MIPS eBPF JIT will be merged in via the MIPS GIT tree. From David
Daney.
16) Support kernel based TLS, from Dave Watson and others.
17) Remove completely DST garbage collection, from Wei Wang.
18) Allow installing TCP MD5 rules using prefixes, from Ivan
Delalande.
19) Add XDP support to Intel i40e driver, from Björn Töpel
20) Add support for TC flower offload in nfp driver, from Simon
Horman, Pieter Jansen van Vuuren, Benjamin LaHaise, Jakub
Kicinski, and Bert van Leeuwen.
21) IPSEC offloading support in mlx5, from Ilan Tayari.
22) Add HW PTP support to macb driver, from Rafal Ozieblo.
23) Networking refcount_t conversions, From Elena Reshetova.
24) Add sock_ops support to BPF, from Lawrence Brako. This is useful
for tuning the TCP sockopt settings of a group of applications,
currently via CGROUPs"
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1899 commits)
net: phy: dp83867: add workaround for incorrect RX_CTRL pin strap
dt-bindings: phy: dp83867: provide a workaround for incorrect RX_CTRL pin strap
cxgb4: Support for get_ts_info ethtool method
cxgb4: Add PTP Hardware Clock (PHC) support
cxgb4: time stamping interface for PTP
nfp: default to chained metadata prepend format
nfp: remove legacy MAC address lookup
nfp: improve order of interfaces in breakout mode
net: macb: remove extraneous return when MACB_EXT_DESC is defined
bpf: add missing break in for the TCP_BPF_SNDCWND_CLAMP case
bpf: fix return in load_bpf_file
mpls: fix rtm policy in mpls_getroute
net, ax25: convert ax25_cb.refcount from atomic_t to refcount_t
net, ax25: convert ax25_route.refcount from atomic_t to refcount_t
net, ax25: convert ax25_uid_assoc.refcount from atomic_t to refcount_t
net, sctp: convert sctp_ep_common.refcnt from atomic_t to refcount_t
net, sctp: convert sctp_transport.refcnt from atomic_t to refcount_t
net, sctp: convert sctp_chunk.refcnt from atomic_t to refcount_t
net, sctp: convert sctp_datamsg.refcnt from atomic_t to refcount_t
net, sctp: convert sctp_auth_bytes.refcnt from atomic_t to refcount_t
...
Here is the large tty/serial patchset for 4.13-rc1.
A lot of tty and serial driver updates are in here, along with some
fixups for some __get/put_user usages that were reported. Nothing huge,
just lots of development by a number of different developers, full
details in the shortlog.
All of these have been in linux-next for a while. There will be a merge
issue with the arm-soc tree in the include/linux/platform_data/atmel.h
file. Stephen has sent out a fixup for it, so it shouldn't be that
difficult to merge.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCWVpZ9w8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ylkTgCfV2HhbxIph/aEL1nJmwW64oCXFrMAoK59ZH65
tBZIosv0d91K1A+mObBT
=adPL
-----END PGP SIGNATURE-----
Merge tag 'tty-4.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
Pull tty/serial updates from Greg KH:
"Here is the large tty/serial patchset for 4.13-rc1.
A lot of tty and serial driver updates are in here, along with some
fixups for some __get/put_user usages that were reported. Nothing
huge, just lots of development by a number of different developers,
full details in the shortlog.
All of these have been in linux-next for a while"
* tag 'tty-4.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty: (71 commits)
tty: serial: lpuart: add a more accurate baud rate calculation method
tty: serial: lpuart: add earlycon support for imx7ulp
tty: serial: lpuart: add imx7ulp support
dt-bindings: serial: fsl-lpuart: add i.MX7ULP support
tty: serial: lpuart: add little endian 32 bit register support
tty: serial: lpuart: refactor lpuart32_{read|write} prototype
tty: serial: lpuart: introduce lpuart_soc_data to represent SoC property
serial: imx-serial - move DMA buffer configuration to DT
serial: imx: Enable RTSD only when needed
serial: imx: Remove unused members from imx_port struct
serial: 8250: 8250_omap: Fix race b/w dma completion and RX timeout
serial: 8250: Fix THRE flag usage for CAP_MINI
tty/serial: meson_uart: update to stable bindings
dt-bindings: serial: Add bindings for the Amlogic Meson UARTs
serial: Delete dead code for CIR serial ports
serial: sirf: make of_device_ids const
serial/mpsc: switch to dma_alloc_attrs
tty: serial: Add Actions Semi Owl UART earlycon
dt-bindings: serial: Document Actions Semi Owl UARTs
tty/serial: atmel: make the driver DT only
...
This adds the new getsockopt(2) option SO_PEERGROUPS on SOL_SOCKET to
retrieve the auxiliary groups of the remote peer. It is designed to
naturally extend SO_PEERCRED. That is, the underlying data is from the
same credentials. Regarding its syntax, it is based on SO_PEERSEC. That
is, if the provided buffer is too small, ERANGE is returned and @optlen
is updated. Otherwise, the information is copied, @optlen is set to the
actual size, and 0 is returned.
While SO_PEERCRED (and thus `struct ucred') already returns the primary
group, it lacks the auxiliary group vector. However, nearly all access
controls (including kernel side VFS and SYSVIPC, but also user-space
polkit, DBus, ...) consider the entire set of groups, rather than just
the primary group. But this is currently not possible with pure
SO_PEERCRED. Instead, user-space has to work around this and query the
system database for the auxiliary groups of a UID retrieved via
SO_PEERCRED.
Unfortunately, there is no race-free way to query the auxiliary groups
of the PID/UID retrieved via SO_PEERCRED. Hence, the current user-space
solution is to use getgrouplist(3p), which itself falls back to NSS and
whatever is configured in nsswitch.conf(3). This effectively checks
which groups we *would* assign to the user if it logged in *now*. On
normal systems it is as easy as reading /etc/group, but with NSS it can
resort to quering network databases (eg., LDAP), using IPC or network
communication.
Long story short: Whenever we want to use auxiliary groups for access
checks on IPC, we need further IPC to talk to the user/group databases,
rather than just relying on SO_PEERCRED and the incoming socket. This
is unfortunate, and might even result in dead-locks if the database
query uses the same IPC as the original request.
So far, those recursions / dead-locks have been avoided by using
primitive IPC for all crucial NSS modules. However, we want to avoid
re-inventing the wheel for each NSS module that might be involved in
user/group queries. Hence, we would preferably make DBus (and other IPC
that supports access-management based on groups) work without resorting
to the user/group database. This new SO_PEERGROUPS ioctl would allow us
to make dbus-daemon work without ever calling into NSS.
Cc: Michal Sekletar <msekleta@redhat.com>
Cc: Simon McVittie <simon.mcvittie@collabora.co.uk>
Reviewed-by: Tom Gundersen <teg@jklm.no>
Signed-off-by: David Herrmann <dh.herrmann@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When opening the slave end of a PTY, it is not possible for userspace to
safely ensure that /dev/pts/$num is actually a slave (in cases where the
mount namespace in which devpts was mounted is controlled by an
untrusted process). In addition, there are several unresolvable
race conditions if userspace were to attempt to detect attacks through
stat(2) and other similar methods [in addition it is not clear how
userspace could detect attacks involving FUSE].
Resolve this by providing an interface for userpace to safely open the
"peer" end of a PTY file descriptor by using the dentry cached by
devpts. Since it is not possible to have an open master PTY without
having its slave exposed in /dev/pts this interface is safe. This
interface currently does not provide a way to get the master pty (since
it is not clear whether such an interface is safe or even useful).
Cc: Christian Brauner <christian.brauner@ubuntu.com>
Cc: Valentin Rothberg <vrothberg@suse.com>
Signed-off-by: Aleksa Sarai <asarai@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
By moving the kernel side __SI_* defintions right next to the userspace
ones we can kill the non-uapi versions of <asm/siginfo.h> include
include/asm-generic/siginfo.h and untangle the unholy mess of includes.
[ tglx: Removed uapi/asm/siginfo.h from m32r, microblaze, mn10300 and score ]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-ia64@vger.kernel.org
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: sparclinux@vger.kernel.org
Cc: "David S. Miller" <davem@davemloft.net>
Link: http://lkml.kernel.org/r/20170603190102.28866-6-hch@lst.de
Add SOF_TIMESTAMPING_OPT_PKTINFO option to request a new control message
for incoming packets with hardware timestamps. It contains the index of
the real interface which received the packet and the length of the
packet at layer 2.
The index is useful with bonding, bridges and other interfaces, where
IP_PKTINFO doesn't allow applications to determine which PHC made the
timestamp. With the L2 length (and link speed) it is possible to
transpose preamble timestamps to trailer timestamps, which are used in
the NTP protocol.
While this information could be provided by two new socket options
independently from timestamping, it doesn't look like they would be very
useful. With this option any performance impact is limited to hardware
timestamping.
Use dev_get_by_napi_id() to get the device and its index. On kernels
with disabled CONFIG_NET_RX_BUSY_POLL or drivers not using NAPI, a zero
index will be returned in the control message.
CC: Richard Cochran <richardcochran@gmail.com>
Acked-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: Miroslav Lichvar <mlichvar@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Regularly, when a new header is created in include/uapi/, the developer
forgets to add it in the corresponding Kbuild file. This error is usually
detected after the release is out.
In fact, all headers under uapi directories should be exported, thus it's
useless to have an exhaustive list.
After this patch, the following files, which were not exported, are now
exported (with make headers_install_all):
asm-arc/kvm_para.h
asm-arc/ucontext.h
asm-blackfin/shmparam.h
asm-blackfin/ucontext.h
asm-c6x/shmparam.h
asm-c6x/ucontext.h
asm-cris/kvm_para.h
asm-h8300/shmparam.h
asm-h8300/ucontext.h
asm-hexagon/shmparam.h
asm-m32r/kvm_para.h
asm-m68k/kvm_para.h
asm-m68k/shmparam.h
asm-metag/kvm_para.h
asm-metag/shmparam.h
asm-metag/ucontext.h
asm-mips/hwcap.h
asm-mips/reg.h
asm-mips/ucontext.h
asm-nios2/kvm_para.h
asm-nios2/ucontext.h
asm-openrisc/shmparam.h
asm-parisc/kvm_para.h
asm-powerpc/perf_regs.h
asm-sh/kvm_para.h
asm-sh/ucontext.h
asm-tile/shmparam.h
asm-unicore32/shmparam.h
asm-unicore32/ucontext.h
asm-x86/hwcap2.h
asm-xtensa/kvm_para.h
drm/armada_drm.h
drm/etnaviv_drm.h
drm/vgem_drm.h
linux/aspeed-lpc-ctrl.h
linux/auto_dev-ioctl.h
linux/bcache.h
linux/btrfs_tree.h
linux/can/vxcan.h
linux/cifs/cifs_mount.h
linux/coresight-stm.h
linux/cryptouser.h
linux/fsmap.h
linux/genwqe/genwqe_card.h
linux/hash_info.h
linux/kcm.h
linux/kcov.h
linux/kfd_ioctl.h
linux/lightnvm.h
linux/module.h
linux/nbd-netlink.h
linux/nilfs2_api.h
linux/nilfs2_ondisk.h
linux/nsfs.h
linux/pr.h
linux/qrtr.h
linux/rpmsg.h
linux/sched/types.h
linux/sed-opal.h
linux/smc.h
linux/smc_diag.h
linux/stm.h
linux/switchtec_ioctl.h
linux/vfio_ccw.h
linux/wil6210_uapi.h
rdma/bnxt_re-abi.h
Note that I have removed from this list the files which are generated in every
exported directories (like .install or .install.cmd).
Thanks to Julien Floret <julien.floret@6wind.com> for the tip to get all
subdirs with a pure makefile command.
For the record, note that exported files for asm directories are a mix of
files listed by:
- include/uapi/asm-generic/Kbuild.asm;
- arch/<arch>/include/uapi/asm/Kbuild;
- arch/<arch>/include/asm/Kbuild.
Signed-off-by: Nicolas Dichtel <nicolas.dichtel@6wind.com>
Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Acked-by: Russell King <rmk+kernel@armlinux.org.uk>
Acked-by: Mark Salter <msalter@redhat.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Pull networking updates from David Millar:
"Here are some highlights from the 2065 networking commits that
happened this development cycle:
1) XDP support for IXGBE (John Fastabend) and thunderx (Sunil Kowuri)
2) Add a generic XDP driver, so that anyone can test XDP even if they
lack a networking device whose driver has explicit XDP support
(me).
3) Sparc64 now has an eBPF JIT too (me)
4) Add a BPF program testing framework via BPF_PROG_TEST_RUN (Alexei
Starovoitov)
5) Make netfitler network namespace teardown less expensive (Florian
Westphal)
6) Add symmetric hashing support to nft_hash (Laura Garcia Liebana)
7) Implement NAPI and GRO in netvsc driver (Stephen Hemminger)
8) Support TC flower offload statistics in mlxsw (Arkadi Sharshevsky)
9) Multiqueue support in stmmac driver (Joao Pinto)
10) Remove TCP timewait recycling, it never really could possibly work
well in the real world and timestamp randomization really zaps any
hint of usability this feature had (Soheil Hassas Yeganeh)
11) Support level3 vs level4 ECMP route hashing in ipv4 (Nikolay
Aleksandrov)
12) Add socket busy poll support to epoll (Sridhar Samudrala)
13) Netlink extended ACK support (Johannes Berg, Pablo Neira Ayuso,
and several others)
14) IPSEC hw offload infrastructure (Steffen Klassert)"
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (2065 commits)
tipc: refactor function tipc_sk_recv_stream()
tipc: refactor function tipc_sk_recvmsg()
net: thunderx: Optimize page recycling for XDP
net: thunderx: Support for XDP header adjustment
net: thunderx: Add support for XDP_TX
net: thunderx: Add support for XDP_DROP
net: thunderx: Add basic XDP support
net: thunderx: Cleanup receive buffer allocation
net: thunderx: Optimize CQE_TX handling
net: thunderx: Optimize RBDR descriptor handling
net: thunderx: Support for page recycling
ipx: call ipxitf_put() in ioctl error path
net: sched: add helpers to handle extended actions
qed*: Fix issues in the ptp filter config implementation.
qede: Fix concurrency issue in PTP Tx path processing.
stmmac: Add support for SIMATIC IOT2000 platform
net: hns: fix ethtool_get_strings overflow in hns driver
tcp: fix wraparound issue in tcp_lp
bpf, arm64: fix jit branch offset related to ldimm64
bpf, arm64: implement jiting of BPF_XADD
...
Unlike normal compat syscall variants, it is needed only for
biarch architectures that have different alignement requirements for
u64 in 32bit and 64bit ABI *and* have __put_user() that won't handle
a store of 64bit value at 32bit-aligned address. We used to have one
such (ia64), but its biarch support has been gone since 2010 (after
being broken in 2008, which went unnoticed since nobody had been using
it).
It had escaped removal at the same time only because back in 2004
a patch that switched several syscalls on amd64 from private wrappers to
generic compat ones had switched to use of compat_sys_getdents64(), which
hadn't needed (or used) a compat wrapper on amd64.
Let's bury it - it's at least 7 years overdue.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Introduce a new getsockopt operation to retrieve the socket cookie
for a specific socket based on the socket fd. It returns a unique
non-decreasing cookie for each socket.
Tested: https://android-review.googlesource.com/#/c/358163/
Acked-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: Chenbo Feng <fengc@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Mostly simple cases of overlapping changes (adding code nearby,
a function whose name changes, for example).
Signed-off-by: David S. Miller <davem@davemloft.net>
This socket option returns the NAPI ID associated with the queue on which
the last frame is received. This information can be used by the apps to
split the incoming flows among the threads based on the Rx queue on which
they are received.
If the NAPI ID actually represents a sender_cpu then the value is ignored
and 0 is returned.
Signed-off-by: Sridhar Samudrala <sridhar.samudrala@intel.com>
Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Allows reading of SK_MEMINFO_VARS via socket option. This way an
application can get all meminfo related information in single socket
option call instead of multiple calls.
Adds helper function, sk_get_meminfo(), and uses that for both
getsockopt and sock_diag_put_meminfo().
Suggested by Eric Dumazet.
Signed-off-by: Josh Hunt <johunt@akamai.com>
Reviewed-by: Jason Baron <jbaron@akamai.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The new syscall statx is implemented as generic code, so enable it
for architectures like openrisc which use the generic syscall table.
Fixes: a528d35e8b ("statx: Add a system call to make enhanced file info available")
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: David Howells <dhowells@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Signed-off-by: Stafford Horne <shorne@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Patch series "userfaultfd tmpfs/hugetlbfs/non-cooperative", v2
These userfaultfd features are finished and are ready for larger
exposure in -mm and upstream merging.
1) tmpfs non present userfault
2) hugetlbfs non present userfault
3) non cooperative userfault for fork/madvise/mremap
qemu development code is already exercising 2) and container postcopy
live migration needs 3).
1) is not currently used but there's a self test and we know some qemu
user for various reasons uses tmpfs as backing for KVM so it'll need it
too to use postcopy live migration with tmpfs memory.
All review feedback from the previous submit has been handled and the
fixes are included. There's no outstanding issue AFIK.
Upstream code just did a s/fe/vmf/ conversion in the page faults and
this has been converted as well incrementally.
In addition to the previous submits, this also wakes up stuck userfaults
during UFFDIO_UNREGISTER. The non cooperative testcase actually
reproduced this problem by getting stuck instead of quitting clean in
some rare case as it could call UFFDIO_UNREGISTER while some userfault
could be still in flight. The other option would have been to keep
leaving it up to userland to serialize itself and to patch the testcase
instead but the wakeup during unregister I think is preferable.
David also asked the UFFD_FEATURE_MISSING_HUGETLBFS and
UFFD_FEATURE_MISSING_SHMEM feature flags to be added so QEMU can avoid
to probe if the hugetlbfs/shmem missing support is available by calling
UFFDIO_REGISTER. QEMU already checks HUGETLBFS_MAGIC with fstatfs so if
UFFD_FEATURE_MISSING_HUGETLBFS is also set, it knows UFFDIO_REGISTER
will succeed (or if it fails, it's for some other more concerning
reason). There's no reason to worry about adding too many feature
flags. There are 64 available and worst case we've to bump the API if
someday we're really going to run out of them.
The round-trip network latency of hugetlbfs userfaults during postcopy
live migration is still of the order of dozen milliseconds on 10GBit if
at 2MB hugepage granularity so it's working perfectly and it should
provide for higher bandwidth or lower CPU usage (which makes it
interesting to add an option in the future to support THP granularity
too for anonymous memory, UFFDIO_COPY would then have to create THP if
alignment/len allows for it). 1GB hugetlbfs granularity will require
big changes in hugetlbfs to work so it's deferred for later.
This patch (of 42):
This adds proper documentation (inline) to avoid the risk of further
misunderstandings about the semantics of _IOW/_IOR and it also reminds
whoever will bump the UFFDIO_API in the future, to change the two ioctl
to _IOW.
This was found while implementing strace support for those ioctl,
otherwise we could have never found it by just reviewing kernel code and
testing it.
_IOC_READ or _IOC_WRITE alters nothing but the ioctl number itself, so
it's only worth fixing if the UFFDIO_API is bumped someday.
Link: http://lkml.kernel.org/r/20161216144821.5183-2-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: "Dmitry V. Levin" <ldv@altlinux.org>
Cc: Michael Rapoport <RAPOPORT@il.ibm.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch exports the sender chronograph stats via the socket
SO_TIMESTAMPING channel. Currently we can instrument how long a
particular application unit of data was queued in TCP by tracking
SOF_TIMESTAMPING_TX_SOFTWARE and SOF_TIMESTAMPING_TX_SCHED. Having
these sender chronograph stats exported simultaneously along with
these timestamps allow further breaking down the various sender
limitation. For example, a video server can tell if a particular
chunk of video on a connection takes a long time to deliver because
TCP was experiencing small receive window. It is not possible to
tell before this patch without packet traces.
To prepare these stats, the user needs to set
SOF_TIMESTAMPING_OPT_STATS and SOF_TIMESTAMPING_OPT_TSONLY flags
while requesting other SOF_TIMESTAMPING TX timestamps. When the
timestamps are available in the error queue, the stats are returned
in a separate control message of type SCM_TIMESTAMPING_OPT_STATS,
in a list of TLVs (struct nlattr) of types: TCP_NLA_BUSY_TIME,
TCP_NLA_RWND_LIMITED, TCP_NLA_SNDBUF_LIMITED. Unit is microsecond.
Signed-off-by: Francis Yan <francisyyan@gmail.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
pkey_set() and pkey_get() were syscalls present in older versions
of the protection keys patches. They were fully excised from the
x86 code, but some cruft was left in the generic syscall code. The
C++ comments were intended to help to make it more glaring to me to
fix them before actually submitting them. That technique worked,
but later than I would have liked.
I test-compiled this for arm64.
Fixes: a60f7b69d9 ("generic syscalls: Wire up memory protection keys syscalls")
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86@kernel.org
Cc: linux-arch@vger.kernel.org
Cc: mgorman@techsingularity.net
Cc: linux-api@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: luto@kernel.org
Cc: akpm@linux-foundation.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds two new system calls:
int pkey_alloc(unsigned long flags, unsigned long init_access_rights)
int pkey_free(int pkey);
These implement an "allocator" for the protection keys
themselves, which can be thought of as analogous to the allocator
that the kernel has for file descriptors. The kernel tracks
which numbers are in use, and only allows operations on keys that
are valid. A key which was not obtained by pkey_alloc() may not,
for instance, be passed to pkey_mprotect().
These system calls are also very important given the kernel's use
of pkeys to implement execute-only support. These help ensure
that userspace can never assume that it has control of a key
unless it first asks the kernel. The kernel does not promise to
preserve PKRU (right register) contents except for allocated
pkeys.
The 'init_access_rights' argument to pkey_alloc() specifies the
rights that will be established for the returned pkey. For
instance:
pkey = pkey_alloc(flags, PKEY_DENY_WRITE);
will allocate 'pkey', but also sets the bits in PKRU[1] such that
writing to 'pkey' is already denied.
The kernel does not prevent pkey_free() from successfully freeing
in-use pkeys (those still assigned to a memory range by
pkey_mprotect()). It would be expensive to implement the checks
for this, so we instead say, "Just don't do it" since sane
software will never do it anyway.
Any piece of userspace calling pkey_alloc() needs to be prepared
for it to fail. Why? pkey_alloc() returns the same error code
(ENOSPC) when there are no pkeys and when pkeys are unsupported.
They can be unsupported for a whole host of reasons, so apps must
be prepared for this. Also, libraries or LD_PRELOADs might steal
keys before an application gets access to them.
This allocation mechanism could be implemented in userspace.
Even if we did it in userspace, we would still need additional
user/kernel interfaces to tell userspace which keys are being
used by the kernel internally (such as for execute-only
mappings). Having the kernel provide this facility completely
removes the need for these additional interfaces, or having an
implementation of this in userspace at all.
Note that we have to make changes to all of the architectures
that do not use mman-common.h because we use the new
PKEY_DENY_ACCESS/WRITE macros in arch-independent code.
1. PKRU is the Protection Key Rights User register. It is a
usermode-accessible register that controls whether writes
and/or access to each individual pkey is allowed or denied.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: linux-arch@vger.kernel.org
Cc: Dave Hansen <dave@sr71.net>
Cc: arnd@arndb.de
Cc: linux-api@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: luto@kernel.org
Cc: akpm@linux-foundation.org
Cc: torvalds@linux-foundation.org
Link: http://lkml.kernel.org/r/20160729163015.444FE75F@viggo.jf.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The newer renameat2 syscall provides all the functionality provided by
the renameat syscall and adds flags, so future architectures won't need
to include renameat.
Therefore drop the renameat syscall from the generic syscall list unless
__ARCH_WANT_RENAMEAT is defined by the architecture's unistd.h prior to
including asm-generic/unistd.h, and adjust all architectures using the
generic syscall list to define it so that no in-tree architectures are
affected.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Acked-by: Vineet Gupta <vgupta@synopsys.com>
Cc: linux-arch@vger.kernel.org
Cc: linux-snps-arc@lists.infradead.org
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: Mark Salter <msalter@redhat.com>
Cc: Aurelien Jacquiot <a-jacquiot@ti.com>
Cc: linux-c6x-dev@linux-c6x.org
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: linux-hexagon@vger.kernel.org
Cc: linux-metag@vger.kernel.org
Cc: Jonas Bonn <jonas@southpole.se>
Cc: linux@lists.openrisc.net
Cc: Chen Liqin <liqin.linux@gmail.com>
Cc: Lennox Wu <lennox.wu@gmail.com>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: nios2-dev@lists.rocketboards.org
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: uclinux-h8-devel@lists.sourceforge.jp
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Compat architectures that does not use generic unistd (mips, s390),
declare compat version in their syscall tables for preadv2 and
pwritev2. Generic unistd syscall table should do it as well.
[arnd: this initially slipped through the review and an
incorrect patch got merged. arch/tile/ is the only architecture
that could be affected for their 32-bit compat mode, every
other architecture we support today is fine.]
Signed-off-by: Yury Norov <ynorov@caviumnetworks.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
These new syscalls are implemented as generic code, so enable them for
architectures like arm64 which use the generic syscall table.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Pull x86 protection key support from Ingo Molnar:
"This tree adds support for a new memory protection hardware feature
that is available in upcoming Intel CPUs: 'protection keys' (pkeys).
There's a background article at LWN.net:
https://lwn.net/Articles/643797/
The gist is that protection keys allow the encoding of
user-controllable permission masks in the pte. So instead of having a
fixed protection mask in the pte (which needs a system call to change
and works on a per page basis), the user can map a (handful of)
protection mask variants and can change the masks runtime relatively
cheaply, without having to change every single page in the affected
virtual memory range.
This allows the dynamic switching of the protection bits of large
amounts of virtual memory, via user-space instructions. It also
allows more precise control of MMU permission bits: for example the
executable bit is separate from the read bit (see more about that
below).
This tree adds the MM infrastructure and low level x86 glue needed for
that, plus it adds a high level API to make use of protection keys -
if a user-space application calls:
mmap(..., PROT_EXEC);
or
mprotect(ptr, sz, PROT_EXEC);
(note PROT_EXEC-only, without PROT_READ/WRITE), the kernel will notice
this special case, and will set a special protection key on this
memory range. It also sets the appropriate bits in the Protection
Keys User Rights (PKRU) register so that the memory becomes unreadable
and unwritable.
So using protection keys the kernel is able to implement 'true'
PROT_EXEC on x86 CPUs: without protection keys PROT_EXEC implies
PROT_READ as well. Unreadable executable mappings have security
advantages: they cannot be read via information leaks to figure out
ASLR details, nor can they be scanned for ROP gadgets - and they
cannot be used by exploits for data purposes either.
We know about no user-space code that relies on pure PROT_EXEC
mappings today, but binary loaders could start making use of this new
feature to map binaries and libraries in a more secure fashion.
There is other pending pkeys work that offers more high level system
call APIs to manage protection keys - but those are not part of this
pull request.
Right now there's a Kconfig that controls this feature
(CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) that is default enabled
(like most x86 CPU feature enablement code that has no runtime
overhead), but it's not user-configurable at the moment. If there's
any serious problem with this then we can make it configurable and/or
flip the default"
* 'mm-pkeys-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (38 commits)
x86/mm/pkeys: Fix mismerge of protection keys CPUID bits
mm/pkeys: Fix siginfo ABI breakage caused by new u64 field
x86/mm/pkeys: Fix access_error() denial of writes to write-only VMA
mm/core, x86/mm/pkeys: Add execute-only protection keys support
x86/mm/pkeys: Create an x86 arch_calc_vm_prot_bits() for VMA flags
x86/mm/pkeys: Allow kernel to modify user pkey rights register
x86/fpu: Allow setting of XSAVE state
x86/mm: Factor out LDT init from context init
mm/core, x86/mm/pkeys: Add arch_validate_pkey()
mm/core, arch, powerpc: Pass a protection key in to calc_vm_flag_bits()
x86/mm/pkeys: Actually enable Memory Protection Keys in the CPU
x86/mm/pkeys: Add Kconfig prompt to existing config option
x86/mm/pkeys: Dump pkey from VMA in /proc/pid/smaps
x86/mm/pkeys: Dump PKRU with other kernel registers
mm/core, x86/mm/pkeys: Differentiate instruction fetches
x86/mm/pkeys: Optimize fault handling in access_error()
mm/core: Do not enforce PKEY permissions on remote mm access
um, pkeys: Add UML arch_*_access_permitted() methods
mm/gup, x86/mm/pkeys: Check VMAs and PTEs for protection keys
x86/mm/gup: Simplify get_user_pages() PTE bit handling
...
Stephen Rothwell reported this linux-next build failure:
http://lkml.kernel.org/r/20160226164406.065a1ffc@canb.auug.org.au
... caused by the Memory Protection Keys patches from the tip tree triggering
a newly introduced build-time sanity check on an ARM build, because they changed
the ABI of siginfo in an unexpected way.
If u64 has a natural alignment of 8 bytes (which is the case on most mainstream
platforms, with the notable exception of x86-32), then the leadup to the
_sifields union matters:
typedef struct siginfo {
int si_signo;
int si_errno;
int si_code;
union {
...
} _sifields;
} __ARCH_SI_ATTRIBUTES siginfo_t;
Note how the first 3 fields give us 12 bytes, so _sifields is not 8
naturally bytes aligned.
Before the _pkey field addition the largest element of _sifields (on
32-bit platforms) was 32 bits. With the u64 added, the minimum alignment
requirement increased to 8 bytes on those (rare) 32-bit platforms. Thus
GCC padded the space after si_code with 4 extra bytes, and shifted all
_sifields offsets by 4 bytes - breaking the ABI of all of those
remaining fields.
On 64-bit platforms this problem was hidden due to _sifields already
having numerous fields with natural 8 bytes alignment (pointers).
To fix this, we replace the u64 with an '__u32'. The __u32 does not
increase the minimum alignment requirement of the union, and it is
also large enough to store the 16-bit pkey we have today on x86.
Reported-by: Stehen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Stehen Rothwell <sfr@canb.auug.org.au>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dave Hansen <dave@sr71.net>
Cc: Helge Deller <deller@gmx.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-next@vger.kernel.org
Fixes: cd0ea35ff5 ("signals, pkeys: Notify userspace about protection key faults")
Link: http://lkml.kernel.org/r/20160301125451.02C7426D@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch add the SO_CNX_ADVICE socket option (setsockopt only). The
purpose is to allow an application to give feedback to the kernel about
the quality of the network path for a connected socket. The value
argument indicates the type of quality report. For this initial patch
the only supported advice is a value of 1 which indicates "bad path,
please reroute"-- the action taken by the kernel is to call
dst_negative_advice which will attempt to choose a different ECMP route,
reset the TX hash for flow label and UDP source port in encapsulation,
etc.
This facility should be useful for connected UDP sockets where only the
application can provide any feedback about path quality. It could also
be useful for TCP applications that have additional knowledge about the
path outside of the normal TCP control loop.
Signed-off-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
A protection key fault is very similar to any other access error.
There must be a VMA, etc... We even want to take the same action
(SIGSEGV) that we do with a normal access fault.
However, we do need to let userspace know that something is
different. We do this the same way what we did with SEGV_BNDERR
with Memory Protection eXtensions (MPX): define a new SEGV code:
SEGV_PKUERR.
We add a siginfo field: si_pkey that reveals to userspace which
protection key was set on the PTE that we faulted on. There is
no other easy way for userspace to figure this out. They could
parse smaps but that would be a bit cruel.
We share space with in siginfo with _addr_bnd. #BR faults from
MPX are completely separate from page faults (#PF) that trigger
from protection key violations, so we never need both at the same
time.
Note that _pkey is a 64-bit value. The current hardware only
supports 4-bit protection keys. We do this because there is
_plenty_ of space in _sigfault and it is possible that future
processors would support more than 4 bits of protection keys.
The x86 code to actually fill in the siginfo is in the next
patch.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Amanieu d'Antras <amanieu@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rik van Riel <riel@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: linux-arch@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20160212210212.3A9B83AC@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For uapi, need try to let all macros have same value, and MADV_FREE is
added into main branch recently, so need redefine MADV_FREE for it.
At present, '8' can be shared with all architectures, so redefine it to
'8'.
[sudipm.mukherjee@gmail.com: correct uniform value of MADV_FREE]
Signed-off-by: Chen Gang <gang.chen.5i5j@gmail.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Chris Zankel <chris@zankel.net>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Roland Dreier <roland@kernel.org>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Shaohua Li <shli@kernel.org>
Cc: <yalin.wang2010@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Daniel Micay <danielmicay@gmail.com>
Cc: Jason Evans <je@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mika Penttil <mika.penttila@nextfour.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Shaohua Li <shli@kernel.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Sudip Mukherjee <sudip@vectorindia.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Linux doesn't have an ability to free pages lazy while other OS already
have been supported that named by madvise(MADV_FREE).
The gain is clear that kernel can discard freed pages rather than
swapping out or OOM if memory pressure happens.
Without memory pressure, freed pages would be reused by userspace
without another additional overhead(ex, page fault + allocation +
zeroing).
Jason Evans said:
: Facebook has been using MAP_UNINITIALIZED
: (https://lkml.org/lkml/2012/1/18/308) in some of its applications for
: several years, but there are operational costs to maintaining this
: out-of-tree in our kernel and in jemalloc, and we are anxious to retire it
: in favor of MADV_FREE. When we first enabled MAP_UNINITIALIZED it
: increased throughput for much of our workload by ~5%, and although the
: benefit has decreased using newer hardware and kernels, there is still
: enough benefit that we cannot reasonably retire it without a replacement.
:
: Aside from Facebook operations, there are numerous broadly used
: applications that would benefit from MADV_FREE. The ones that immediately
: come to mind are redis, varnish, and MariaDB. I don't have much insight
: into Android internals and development process, but I would hope to see
: MADV_FREE support eventually end up there as well to benefit applications
: linked with the integrated jemalloc.
:
: jemalloc will use MADV_FREE once it becomes available in the Linux kernel.
: In fact, jemalloc already uses MADV_FREE or equivalent everywhere it's
: available: *BSD, OS X, Windows, and Solaris -- every platform except Linux
: (and AIX, but I'm not sure it even compiles on AIX). The lack of
: MADV_FREE on Linux forced me down a long series of increasingly
: sophisticated heuristics for madvise() volume reduction, and even so this
: remains a common performance issue for people using jemalloc on Linux.
: Please integrate MADV_FREE; many people will benefit substantially.
How it works:
When madvise syscall is called, VM clears dirty bit of ptes of the
range. If memory pressure happens, VM checks dirty bit of page table
and if it found still "clean", it means it's a "lazyfree pages" so VM
could discard the page instead of swapping out. Once there was store
operation for the page before VM peek a page to reclaim, dirty bit is
set so VM can swap out the page instead of discarding.
One thing we should notice is that basically, MADV_FREE relies on dirty
bit in page table entry to decide whether VM allows to discard the page
or not. IOW, if page table entry includes marked dirty bit, VM
shouldn't discard the page.
However, as a example, if swap-in by read fault happens, page table
entry doesn't have dirty bit so MADV_FREE could discard the page
wrongly.
For avoiding the problem, MADV_FREE did more checks with PageDirty and
PageSwapCache. It worked out because swapped-in page lives on swap
cache and since it is evicted from the swap cache, the page has PG_dirty
flag. So both page flags check effectively prevent wrong discarding by
MADV_FREE.
However, a problem in above logic is that swapped-in page has PG_dirty
still after they are removed from swap cache so VM cannot consider the
page as freeable any more even if madvise_free is called in future.
Look at below example for detail.
ptr = malloc();
memset(ptr);
..
..
.. heavy memory pressure so all of pages are swapped out
..
..
var = *ptr; -> a page swapped-in and could be removed from
swapcache. Then, page table doesn't mark
dirty bit and page descriptor includes PG_dirty
..
..
madvise_free(ptr); -> It doesn't clear PG_dirty of the page.
..
..
..
.. heavy memory pressure again.
.. In this time, VM cannot discard the page because the page
.. has *PG_dirty*
To solve the problem, this patch clears PG_dirty if only the page is
owned exclusively by current process when madvise is called because
PG_dirty represents ptes's dirtiness in several processes so we could
clear it only if we own it exclusively.
Firstly, heavy users would be general allocators(ex, jemalloc, tcmalloc
and hope glibc supports it) and jemalloc/tcmalloc already have supported
the feature for other OS(ex, FreeBSD)
barrios@blaptop:~/benchmark/ebizzy$ lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 12
On-line CPU(s) list: 0-11
Thread(s) per core: 1
Core(s) per socket: 1
Socket(s): 12
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 2
Stepping: 3
CPU MHz: 3200.185
BogoMIPS: 6400.53
Virtualization: VT-x
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 32K
L1i cache: 32K
L2 cache: 4096K
NUMA node0 CPU(s): 0-11
ebizzy benchmark(./ebizzy -S 10 -n 512)
Higher avg is better.
vanilla-jemalloc MADV_free-jemalloc
1 thread
records: 10 records: 10
avg: 2961.90 avg: 12069.70
std: 71.96(2.43%) std: 186.68(1.55%)
max: 3070.00 max: 12385.00
min: 2796.00 min: 11746.00
2 thread
records: 10 records: 10
avg: 5020.00 avg: 17827.00
std: 264.87(5.28%) std: 358.52(2.01%)
max: 5244.00 max: 18760.00
min: 4251.00 min: 17382.00
4 thread
records: 10 records: 10
avg: 8988.80 avg: 27930.80
std: 1175.33(13.08%) std: 3317.33(11.88%)
max: 9508.00 max: 30879.00
min: 5477.00 min: 21024.00
8 thread
records: 10 records: 10
avg: 13036.50 avg: 33739.40
std: 170.67(1.31%) std: 5146.22(15.25%)
max: 13371.00 max: 40572.00
min: 12785.00 min: 24088.00
16 thread
records: 10 records: 10
avg: 11092.40 avg: 31424.20
std: 710.60(6.41%) std: 3763.89(11.98%)
max: 12446.00 max: 36635.00
min: 9949.00 min: 25669.00
32 thread
records: 10 records: 10
avg: 11067.00 avg: 34495.80
std: 971.06(8.77%) std: 2721.36(7.89%)
max: 12010.00 max: 38598.00
min: 9002.00 min: 30636.00
In summary, MADV_FREE is about much faster than MADV_DONTNEED.
This patch (of 12):
Add core MADV_FREE implementation.
[akpm@linux-foundation.org: small cleanups]
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Mika Penttil <mika.penttila@nextfour.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Jason Evans <je@fb.com>
Cc: Daniel Micay <danielmicay@gmail.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Shaohua Li <shli@kernel.org>
Cc: <yalin.wang2010@gmail.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: "Shaohua Li" <shli@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chen Gang <gang.chen.5i5j@gmail.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Helge Deller <deller@gmx.de>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Roland Dreier <roland@kernel.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Shaohua Li <shli@kernel.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull networking updates from Davic Miller:
1) Support busy polling generically, for all NAPI drivers. From Eric
Dumazet.
2) Add byte/packet counter support to nft_ct, from Floriani Westphal.
3) Add RSS/XPS support to mvneta driver, from Gregory Clement.
4) Implement IPV6_HDRINCL socket option for raw sockets, from Hannes
Frederic Sowa.
5) Add support for T6 adapter to cxgb4 driver, from Hariprasad Shenai.
6) Add support for VLAN device bridging to mlxsw switch driver, from
Ido Schimmel.
7) Add driver for Netronome NFP4000/NFP6000, from Jakub Kicinski.
8) Provide hwmon interface to mlxsw switch driver, from Jiri Pirko.
9) Reorganize wireless drivers into per-vendor directories just like we
do for ethernet drivers. From Kalle Valo.
10) Provide a way for administrators "destroy" connected sockets via the
SOCK_DESTROY socket netlink diag operation. From Lorenzo Colitti.
11) Add support to add/remove multicast routes via netlink, from Nikolay
Aleksandrov.
12) Make TCP keepalive settings per-namespace, from Nikolay Borisov.
13) Add forwarding and packet duplication facilities to nf_tables, from
Pablo Neira Ayuso.
14) Dead route support in MPLS, from Roopa Prabhu.
15) TSO support for thunderx chips, from Sunil Goutham.
16) Add driver for IBM's System i/p VNIC protocol, from Thomas Falcon.
17) Rationalize, consolidate, and more completely document the checksum
offloading facilities in the networking stack. From Tom Herbert.
18) Support aborting an ongoing scan in mac80211/cfg80211, from
Vidyullatha Kanchanapally.
19) Use per-bucket spinlock for bpf hash facility, from Tom Leiming.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1375 commits)
net: bnxt: always return values from _bnxt_get_max_rings
net: bpf: reject invalid shifts
phonet: properly unshare skbs in phonet_rcv()
dwc_eth_qos: Fix dma address for multi-fragment skbs
phy: remove an unneeded condition
mdio: remove an unneed condition
mdio_bus: NULL dereference on allocation error
net: Fix typo in netdev_intersect_features
net: freescale: mac-fec: Fix build error from phy_device API change
net: freescale: ucc_geth: Fix build error from phy_device API change
bonding: Prevent IPv6 link local address on enslaved devices
IB/mlx5: Add flow steering support
net/mlx5_core: Export flow steering API
net/mlx5_core: Make ipv4/ipv6 location more clear
net/mlx5_core: Enable flow steering support for the IB driver
net/mlx5_core: Initialize namespaces only when supported by device
net/mlx5_core: Set priority attributes
net/mlx5_core: Connect flow tables
net/mlx5_core: Introduce modify flow table command
net/mlx5_core: Managing root flow table
...
Expose socket options for setting a classic or extended BPF program
for use when selecting sockets in an SO_REUSEPORT group. These options
can be used on the first socket to belong to a group before bind or
on any socket in the group after bind.
This change includes refactoring of the existing sk_filter code to
allow reuse of the existing BPF filter validation checks.
Signed-off-by: Craig Gallek <kraig@google.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add a copy_file_range() system call for offloading copies between
regular files.
This gives an interface to underlying layers of the storage stack which
can copy without reading and writing all the data. There are a few
candidates that should support copy offloading in the nearer term:
- btrfs shares extent references with its clone ioctl
- NFS has patches to add a COPY command which copies on the server
- SCSI has a family of XCOPY commands which copy in the device
This system call avoids the complexity of also accelerating the creation
of the destination file by operating on an existing destination file
descriptor, not a path.
Currently the high level vfs entry point limits copy offloading to files
on the same mount and super (and not in the same file). This can be
relaxed if we get implementations which can copy between file systems
safely.
Signed-off-by: Zach Brown <zab@redhat.com>
[Anna Schumaker: Change -EINVAL to -EBADF during file verification,
Change flags parameter from int to unsigned int,
Add function to include/linux/syscalls.h,
Check copy len after file open mode,
Don't forbid ranges inside the same file,
Use rw_verify_area() to veriy ranges,
Use file_out rather than file_in,
Add COPY_FR_REFLINK flag]
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The previous patch introduced a flag that specified pages in a VMA should
be placed on the unevictable LRU, but they should not be made present when
the area is created. This patch adds the ability to set this state via
the new mlock system calls.
We add MLOCK_ONFAULT for mlock2 and MCL_ONFAULT for mlockall.
MLOCK_ONFAULT will set the VM_LOCKONFAULT modifier for VM_LOCKED.
MCL_ONFAULT should be used as a modifier to the two other mlockall flags.
When used with MCL_CURRENT, all current mappings will be marked with
VM_LOCKED | VM_LOCKONFAULT. When used with MCL_FUTURE, the mm->def_flags
will be marked with VM_LOCKED | VM_LOCKONFAULT. When used with both
MCL_CURRENT and MCL_FUTURE, all current mappings and mm->def_flags will be
marked with VM_LOCKED | VM_LOCKONFAULT.
Prior to this patch, mlockall() will unconditionally clear the
mm->def_flags any time it is called without MCL_FUTURE. This behavior is
maintained after adding MCL_ONFAULT. If a call to mlockall(MCL_FUTURE) is
followed by mlockall(MCL_CURRENT), the mm->def_flags will be cleared and
new VMAs will be unlocked. This remains true with or without MCL_ONFAULT
in either mlockall() invocation.
munlock() will unconditionally clear both vma flags. munlockall()
unconditionally clears for VMA flags on all VMAs and in the mm->def_flags
field.
Signed-off-by: Eric B Munson <emunson@akamai.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With the refactored mlock code, introduce a new system call for mlock.
The new call will allow the user to specify what lock states are being
added. mlock2 is trivial at the moment, but a follow on patch will add a
new mlock state making it useful.
Signed-off-by: Eric B Munson <emunson@akamai.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
MINSIGSTKSZ and SIGSTKSZ for ARM64 are not correctly set in latest kernel.
This patch fixes this issue.
This issue is reported in LTP (testcase: sigaltstack02.c).
Testcase failed when sigaltstack() called with stack size "MINSIGSTKSZ - 1"
Since in Glibc-2.22, MINSIGSTKSZ is set to 5120 but in kernel
it is set to 2048 so testcase gets failed.
Testcase Output:
sigaltstack02 1 TPASS : stgaltstack() fails, Invalid Flag value,errno:22
sigaltstack02 2 TFAIL : sigaltstack() returned 0, expected -1,errno:12
Reported Issue in Glibc Bugzilla:
Bugfix in Glibc-2.22: [Bug 16850]
https://sourceware.org/bugzilla/show_bug.cgi?id=16850
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Akhilesh Kumar <akhilesh.k@samsung.com>
Signed-off-by: Manjeet Pawar <manjeet.p@samsung.com>
Signed-off-by: Rohit Thapliyal <r.thapliyal@samsung.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Add the userfaultfd syscalls to uapi asm-generic, it was tested with
postcopy live migration on aarch64 with both 4k and 64k pagesize
kernels.
Signed-off-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Thierry Reding <treding@nvidia.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Here is an implementation of a new system call, sys_membarrier(), which
executes a memory barrier on all threads running on the system. It is
implemented by calling synchronize_sched(). It can be used to
distribute the cost of user-space memory barriers asymmetrically by
transforming pairs of memory barriers into pairs consisting of
sys_membarrier() and a compiler barrier. For synchronization primitives
that distinguish between read-side and write-side (e.g. userspace RCU
[1], rwlocks), the read-side can be accelerated significantly by moving
the bulk of the memory barrier overhead to the write-side.
The existing applications of which I am aware that would be improved by
this system call are as follows:
* Through Userspace RCU library (http://urcu.so)
- DNS server (Knot DNS) https://www.knot-dns.cz/
- Network sniffer (http://netsniff-ng.org/)
- Distributed object storage (https://sheepdog.github.io/sheepdog/)
- User-space tracing (http://lttng.org)
- Network storage system (https://www.gluster.org/)
- Virtual routers (https://events.linuxfoundation.org/sites/events/files/slides/DPDK_RCU_0MQ.pdf)
- Financial software (https://lkml.org/lkml/2015/3/23/189)
Those projects use RCU in userspace to increase read-side speed and
scalability compared to locking. Especially in the case of RCU used by
libraries, sys_membarrier can speed up the read-side by moving the bulk of
the memory barrier cost to synchronize_rcu().
* Direct users of sys_membarrier
- core dotnet garbage collector (https://github.com/dotnet/coreclr/issues/198)
Microsoft core dotnet GC developers are planning to use the mprotect()
side-effect of issuing memory barriers through IPIs as a way to implement
Windows FlushProcessWriteBuffers() on Linux. They are referring to
sys_membarrier in their github thread, specifically stating that
sys_membarrier() is what they are looking for.
To explain the benefit of this scheme, let's introduce two example threads:
Thread A (non-frequent, e.g. executing liburcu synchronize_rcu())
Thread B (frequent, e.g. executing liburcu
rcu_read_lock()/rcu_read_unlock())
In a scheme where all smp_mb() in thread A are ordering memory accesses
with respect to smp_mb() present in Thread B, we can change each
smp_mb() within Thread A into calls to sys_membarrier() and each
smp_mb() within Thread B into compiler barriers "barrier()".
Before the change, we had, for each smp_mb() pairs:
Thread A Thread B
previous mem accesses previous mem accesses
smp_mb() smp_mb()
following mem accesses following mem accesses
After the change, these pairs become:
Thread A Thread B
prev mem accesses prev mem accesses
sys_membarrier() barrier()
follow mem accesses follow mem accesses
As we can see, there are two possible scenarios: either Thread B memory
accesses do not happen concurrently with Thread A accesses (1), or they
do (2).
1) Non-concurrent Thread A vs Thread B accesses:
Thread A Thread B
prev mem accesses
sys_membarrier()
follow mem accesses
prev mem accesses
barrier()
follow mem accesses
In this case, thread B accesses will be weakly ordered. This is OK,
because at that point, thread A is not particularly interested in
ordering them with respect to its own accesses.
2) Concurrent Thread A vs Thread B accesses
Thread A Thread B
prev mem accesses prev mem accesses
sys_membarrier() barrier()
follow mem accesses follow mem accesses
In this case, thread B accesses, which are ensured to be in program
order thanks to the compiler barrier, will be "upgraded" to full
smp_mb() by synchronize_sched().
* Benchmarks
On Intel Xeon E5405 (8 cores)
(one thread is calling sys_membarrier, the other 7 threads are busy
looping)
1000 non-expedited sys_membarrier calls in 33s =3D 33 milliseconds/call.
* User-space user of this system call: Userspace RCU library
Both the signal-based and the sys_membarrier userspace RCU schemes
permit us to remove the memory barrier from the userspace RCU
rcu_read_lock() and rcu_read_unlock() primitives, thus significantly
accelerating them. These memory barriers are replaced by compiler
barriers on the read-side, and all matching memory barriers on the
write-side are turned into an invocation of a memory barrier on all
active threads in the process. By letting the kernel perform this
synchronization rather than dumbly sending a signal to every process
threads (as we currently do), we diminish the number of unnecessary wake
ups and only issue the memory barriers on active threads. Non-running
threads do not need to execute such barrier anyway, because these are
implied by the scheduler context switches.
Results in liburcu:
Operations in 10s, 6 readers, 2 writers:
memory barriers in reader: 1701557485 reads, 2202847 writes
signal-based scheme: 9830061167 reads, 6700 writes
sys_membarrier: 9952759104 reads, 425 writes
sys_membarrier (dyn. check): 7970328887 reads, 425 writes
The dynamic sys_membarrier availability check adds some overhead to
the read-side compared to the signal-based scheme, but besides that,
sys_membarrier slightly outperforms the signal-based scheme. However,
this non-expedited sys_membarrier implementation has a much slower grace
period than signal and memory barrier schemes.
Besides diminishing the number of wake-ups, one major advantage of the
membarrier system call over the signal-based scheme is that it does not
need to reserve a signal. This plays much more nicely with libraries,
and with processes injected into for tracing purposes, for which we
cannot expect that signals will be unused by the application.
An expedited version of this system call can be added later on to speed
up the grace period. Its implementation will likely depend on reading
the cpu_curr()->mm without holding each CPU's rq lock.
This patch adds the system call to x86 and to asm-generic.
[1] http://urcu.so
membarrier(2) man page:
MEMBARRIER(2) Linux Programmer's Manual MEMBARRIER(2)
NAME
membarrier - issue memory barriers on a set of threads
SYNOPSIS
#include <linux/membarrier.h>
int membarrier(int cmd, int flags);
DESCRIPTION
The cmd argument is one of the following:
MEMBARRIER_CMD_QUERY
Query the set of supported commands. It returns a bitmask of
supported commands.
MEMBARRIER_CMD_SHARED
Execute a memory barrier on all threads running on the system.
Upon return from system call, the caller thread is ensured that
all running threads have passed through a state where all memory
accesses to user-space addresses match program order between
entry to and return from the system call (non-running threads
are de facto in such a state). This covers threads from all pro=E2=80=90
cesses running on the system. This command returns 0.
The flags argument needs to be 0. For future extensions.
All memory accesses performed in program order from each targeted
thread is guaranteed to be ordered with respect to sys_membarrier(). If
we use the semantic "barrier()" to represent a compiler barrier forcing
memory accesses to be performed in program order across the barrier,
and smp_mb() to represent explicit memory barriers forcing full memory
ordering across the barrier, we have the following ordering table for
each pair of barrier(), sys_membarrier() and smp_mb():
The pair ordering is detailed as (O: ordered, X: not ordered):
barrier() smp_mb() sys_membarrier()
barrier() X X O
smp_mb() X O O
sys_membarrier() O O O
RETURN VALUE
On success, these system calls return zero. On error, -1 is returned,
and errno is set appropriately. For a given command, with flags
argument set to 0, this system call is guaranteed to always return the
same value until reboot.
ERRORS
ENOSYS System call is not implemented.
EINVAL Invalid arguments.
Linux 2015-04-15 MEMBARRIER(2)
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Nicholas Miell <nmiell@comcast.net>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Stephen Hemminger <stephen@networkplumber.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Pranith Kumar <bobby.prani@gmail.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ENOSYS is the mechanism used by user code to detect whether the running
kernel implements a given system call. It should not be returned by
anything except an unimplemented system call.
Unfortunately, it is rather frequently used in the kernel to indicate that
various new functions of existing system calls are not implemented. This
should be discouraged.
Improve the comment in errno.h to help clarify ENOSYS's purpose.
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>