Commit Graph

170 Commits

Author SHA1 Message Date
Glauber Costa 9ddabbe72e KVM: KVM Steal time guest/host interface
To implement steal time, we need the hypervisor to pass the guest information
about how much time was spent running other processes outside the VM.
This is per-vcpu, and using the kvmclock structure for that is an abuse
we decided not to make.

In this patchset, I am introducing a new msr, KVM_MSR_STEAL_TIME, that
holds the memory area address containing information about steal time

This patch contains the headers for it. I am keeping it separate to facilitate
backports to people who wants to backport the kernel part but not the
hypervisor, or the other way around.

Signed-off-by: Glauber Costa <glommer@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Tested-by: Eric B Munson <emunson@mgebm.net>
CC: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
CC: Peter Zijlstra <peterz@infradead.org>
CC: Anthony Liguori <aliguori@us.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-07-12 13:17:03 +03:00
Paul Mackerras aa04b4cc5b KVM: PPC: Allocate RMAs (Real Mode Areas) at boot for use by guests
This adds infrastructure which will be needed to allow book3s_hv KVM to
run on older POWER processors, including PPC970, which don't support
the Virtual Real Mode Area (VRMA) facility, but only the Real Mode
Offset (RMO) facility.  These processors require a physically
contiguous, aligned area of memory for each guest.  When the guest does
an access in real mode (MMU off), the address is compared against a
limit value, and if it is lower, the address is ORed with an offset
value (from the Real Mode Offset Register (RMOR)) and the result becomes
the real address for the access.  The size of the RMA has to be one of
a set of supported values, which usually includes 64MB, 128MB, 256MB
and some larger powers of 2.

Since we are unlikely to be able to allocate 64MB or more of physically
contiguous memory after the kernel has been running for a while, we
allocate a pool of RMAs at boot time using the bootmem allocator.  The
size and number of the RMAs can be set using the kvm_rma_size=xx and
kvm_rma_count=xx kernel command line options.

KVM exports a new capability, KVM_CAP_PPC_RMA, to signal the availability
of the pool of preallocated RMAs.  The capability value is 1 if the
processor can use an RMA but doesn't require one (because it supports
the VRMA facility), or 2 if the processor requires an RMA for each guest.

This adds a new ioctl, KVM_ALLOCATE_RMA, which allocates an RMA from the
pool and returns a file descriptor which can be used to map the RMA.  It
also returns the size of the RMA in the argument structure.

Having an RMA means we will get multiple KMV_SET_USER_MEMORY_REGION
ioctl calls from userspace.  To cope with this, we now preallocate the
kvm->arch.ram_pginfo array when the VM is created with a size sufficient
for up to 64GB of guest memory.  Subsequently we will get rid of this
array and use memory associated with each memslot instead.

This moves most of the code that translates the user addresses into
host pfns (page frame numbers) out of kvmppc_prepare_vrma up one level
to kvmppc_core_prepare_memory_region.  Also, instead of having to look
up the VMA for each page in order to check the page size, we now check
that the pages we get are compound pages of 16MB.  However, if we are
adding memory that is mapped to an RMA, we don't bother with calling
get_user_pages_fast and instead just offset from the base pfn for the
RMA.

Typically the RMA gets added after vcpus are created, which makes it
inconvenient to have the LPCR (logical partition control register) value
in the vcpu->arch struct, since the LPCR controls whether the processor
uses RMA or VRMA for the guest.  This moves the LPCR value into the
kvm->arch struct and arranges for the MER (mediated external request)
bit, which is the only bit that varies between vcpus, to be set in
assembly code when going into the guest if there is a pending external
interrupt request.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:57 +03:00
Paul Mackerras 371fefd6f2 KVM: PPC: Allow book3s_hv guests to use SMT processor modes
This lifts the restriction that book3s_hv guests can only run one
hardware thread per core, and allows them to use up to 4 threads
per core on POWER7.  The host still has to run single-threaded.

This capability is advertised to qemu through a new KVM_CAP_PPC_SMT
capability.  The return value of the ioctl querying this capability
is the number of vcpus per virtual CPU core (vcore), currently 4.

To use this, the host kernel should be booted with all threads
active, and then all the secondary threads should be offlined.
This will put the secondary threads into nap mode.  KVM will then
wake them from nap mode and use them for running guest code (while
they are still offline).  To wake the secondary threads, we send
them an IPI using a new xics_wake_cpu() function, implemented in
arch/powerpc/sysdev/xics/icp-native.c.  In other words, at this stage
we assume that the platform has a XICS interrupt controller and
we are using icp-native.c to drive it.  Since the woken thread will
need to acknowledge and clear the IPI, we also export the base
physical address of the XICS registers using kvmppc_set_xics_phys()
for use in the low-level KVM book3s code.

When a vcpu is created, it is assigned to a virtual CPU core.
The vcore number is obtained by dividing the vcpu number by the
number of threads per core in the host.  This number is exported
to userspace via the KVM_CAP_PPC_SMT capability.  If qemu wishes
to run the guest in single-threaded mode, it should make all vcpu
numbers be multiples of the number of threads per core.

We distinguish three states of a vcpu: runnable (i.e., ready to execute
the guest), blocked (that is, idle), and busy in host.  We currently
implement a policy that the vcore can run only when all its threads
are runnable or blocked.  This way, if a vcpu needs to execute elsewhere
in the kernel or in qemu, it can do so without being starved of CPU
by the other vcpus.

When a vcore starts to run, it executes in the context of one of the
vcpu threads.  The other vcpu threads all go to sleep and stay asleep
until something happens requiring the vcpu thread to return to qemu,
or to wake up to run the vcore (this can happen when another vcpu
thread goes from busy in host state to blocked).

It can happen that a vcpu goes from blocked to runnable state (e.g.
because of an interrupt), and the vcore it belongs to is already
running.  In that case it can start to run immediately as long as
the none of the vcpus in the vcore have started to exit the guest.
We send the next free thread in the vcore an IPI to get it to start
to execute the guest.  It synchronizes with the other threads via
the vcore->entry_exit_count field to make sure that it doesn't go
into the guest if the other vcpus are exiting by the time that it
is ready to actually enter the guest.

Note that there is no fixed relationship between the hardware thread
number and the vcpu number.  Hardware threads are assigned to vcpus
as they become runnable, so we will always use the lower-numbered
hardware threads in preference to higher-numbered threads if not all
the vcpus in the vcore are runnable, regardless of which vcpus are
runnable.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:57 +03:00
David Gibson 54738c0971 KVM: PPC: Accelerate H_PUT_TCE by implementing it in real mode
This improves I/O performance for guests using the PAPR
paravirtualization interface by making the H_PUT_TCE hcall faster, by
implementing it in real mode.  H_PUT_TCE is used for updating virtual
IOMMU tables, and is used both for virtual I/O and for real I/O in the
PAPR interface.

Since this moves the IOMMU tables into the kernel, we define a new
KVM_CREATE_SPAPR_TCE ioctl to allow qemu to create the tables.  The
ioctl returns a file descriptor which can be used to mmap the newly
created table.  The qemu driver models use them in the same way as
userspace managed tables, but they can be updated directly by the
guest with a real-mode H_PUT_TCE implementation, reducing the number
of host/guest context switches during guest IO.

There are certain circumstances where it is useful for userland qemu
to write to the TCE table even if the kernel H_PUT_TCE path is used
most of the time.  Specifically, allowing this will avoid awkwardness
when we need to reset the table.  More importantly, we will in the
future need to write the table in order to restore its state after a
checkpoint resume or migration.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:56 +03:00
Paul Mackerras de56a948b9 KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode.  Using hypervisor mode means
that the guest can use the processor's supervisor mode.  That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host.  This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.

This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses.  That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification.  In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.

Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.

This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.

With the guest running in supervisor mode, most exceptions go straight
to the guest.  We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest.  Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.

We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.

In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount.  Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.

The POWER7 processor has a restriction that all threads in a core have
to be in the same partition.  MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest.  At present we require the host and guest to run
in single-thread mode because of this hardware restriction.

This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA).  We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management.  This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.

This also adds a few new exports needed by the book3s_hv code.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:54 +03:00
Scott Wood a4cd8b23ac KVM: PPC: e500: enable magic page
This is a shared page used for paravirtualization.  It is always present
in the guest kernel's effective address space at the address indicated
by the hypercall that enables it.

The physical address specified by the hypercall is not used, as
e500 does not have real mode.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:37 +03:00
Avi Kivity 411c588dfb KVM: MMU: Adjust shadow paging to work when SMEP=1 and CR0.WP=0
When CR0.WP=0, we sometimes map user pages as kernel pages (to allow
the kernel to write to them).  Unfortunately this also allows the kernel
to fetch from these pages, even if CR4.SMEP is set.

Adjust for this by also setting NX on the spte in these circumstances.

Signed-off-by: Avi Kivity <avi@redhat.com>
2011-07-12 13:16:26 +03:00
Jan Kiszka 58f0964ee4 KVM: Fix KVM_ASSIGN_SET_MSIX_ENTRY documentation
The documented behavior did not match the implemented one (which also
never changed).

Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-07-12 13:16:19 +03:00
Jan Kiszka 91e3d71db2 KVM: Clarify KVM_ASSIGN_PCI_DEVICE documentation
Neither host_irq nor the guest_msi struct are used anymore today.
Tag the former, drop the latter to avoid confusion.

Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-07-12 13:16:16 +03:00
Jan Kiszka 7f4382e8fd KVM: Fixup documentation section numbering
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2011-07-12 13:16:10 +03:00
Sasha Levin 55399a02e9 KVM: Document KVM_IOEVENTFD
Document KVM_IOEVENTFD that can be used to receive
notifications of PIO/MMIO events without triggering
an exit.

Signed-off-by: Sasha Levin <levinsasha928@gmail.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2011-07-12 13:15:56 +03:00
Nadav Har'El 823e396558 KVM: nVMX: Documentation
This patch includes a brief introduction to the nested vmx feature in the
Documentation/kvm directory. The document also includes a copy of the
vmcs12 structure, as requested by Avi Kivity.

[marcelo: move to Documentation/virtual/kvm]

Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2011-07-12 13:15:22 +03:00
Avi Kivity e76779339b KVM: Document KVM_GET_LAPIC, KVM_SET_LAPIC ioctl
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2011-07-12 11:44:55 +03:00
Rusty Russell 990c91f0af lguest: remove support for VIRTIO_F_NOTIFY_ON_EMPTY.
No virtio device does this any more, so no need to clutter lguest with it.

Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2011-05-30 11:14:12 +09:30
Rusty Russell bc805a03c2 lguest: fix up compilation after move
ed16648eb5 "Move kvm, uml, and lguest
subdirectories" broke the lguest example launcher.

Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2011-05-30 11:14:12 +09:30
Nolan Leake 4ff4d8d342 um: add ucast ethernet transport
The ucast transport is similar to the mcast transport (and, in fact,
shares most of its code), only it uses UDP unicast to move packets.

Obviously this is only useful for point-to-point connections between
virtual ethernet devices.

Signed-off-by: Nolan Leake <nolan@cumulusnetworks.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25 08:39:41 -07:00
Linus Torvalds f4b10bc60a Merge branch 'kvm-updates/2.6.40' of git://git.kernel.org/pub/scm/virt/kvm/kvm
* 'kvm-updates/2.6.40' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (131 commits)
  KVM: MMU: Use ptep_user for cmpxchg_gpte()
  KVM: Fix kvm mmu_notifier initialization order
  KVM: Add documentation for KVM_CAP_NR_VCPUS
  KVM: make guest mode entry to be rcu quiescent state
  KVM: x86 emulator: Make jmp far emulation into a separate function
  KVM: x86 emulator: Rename emulate_grpX() to em_grpX()
  KVM: x86 emulator: Remove unused arg from emulate_pop()
  KVM: x86 emulator: Remove unused arg from writeback()
  KVM: x86 emulator: Remove unused arg from read_descriptor()
  KVM: x86 emulator: Remove unused arg from seg_override()
  KVM: Validate userspace_addr of memslot when registered
  KVM: MMU: Clean up gpte reading with copy_from_user()
  KVM: PPC: booke: add sregs support
  KVM: PPC: booke: save/restore VRSAVE (a.k.a. USPRG0)
  KVM: PPC: use ticks, not usecs, for exit timing
  KVM: PPC: fix exit accounting for SPRs, tlbwe, tlbsx
  KVM: PPC: e500: emulate SVR
  KVM: VMX: Cache vmcs segment fields
  KVM: x86 emulator: consolidate segment accessors
  KVM: VMX: Avoid reading %rip unnecessarily when handling exceptions
  ...
2011-05-23 08:42:08 -07:00
Rob Landley 6151658751 Correct occurrences of
- Documentation/kvm/ to Documentation/virtual/kvm
- Documentation/uml/ to Documentation/virtual/uml
- Documentation/lguest/ to Documentation/virtual/lguest
throughout the kernel source tree.

Signed-off-by: Rob Landley <rob@landley.net>
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
2011-05-06 09:27:55 -07:00
Rob Landley 570aa13a5d Add a 00-INDEX file to Documentation/virtual
Remove uml from the top level 00-INDEX file.

Signed-off-by: Rob Landley <rlandley@parallels.com>
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
2011-05-06 09:23:23 -07:00
Rob Landley ed16648eb5 Move kvm, uml, and lguest subdirectories under a common "virtual" directory, I.E:
cd Documentation
  mkdir virtual
  git mv kvm uml lguest virtual

Signed-off-by: Rob Landley <rlandley@parallels.com>
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
2011-05-06 09:22:02 -07:00