Currently dm_dax_flush() is not being called, even if underlying dax
device supports write cache, because DAXDEV_WRITE_CACHE is not being
propagated up to the DM dax device.
If the underlying dax device supports write cache, set
DAXDEV_WRITE_CACHE on the DM dax device. This will cause dm_dax_flush()
to be called.
Fixes: abebfbe2f7 ("dm: add ->flush() dax operation support")
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
The madvise policy for transparent huge pages is meant to avoid unwanted
allocations of transparent huge pages. It allows a policy of disabling
the extra memory pressure and effort to arrange for a huge page when it
is not needed.
DAX by definition never incurs this overhead since it is statically
allocated. The policy choice makes even less sense for device-dax which
tries to guarantee a given tlb-fault size. Specifically, the following
setting:
echo never > /sys/kernel/mm/transparent_hugepage/enabled
...violates that guarantee and silently disables all device-dax
instances with a 2M or 1G alignment. So, let's avoid that non-obvious
side effect by force enabling thp for dax mappings in all cases.
It is worth noting that the reason this uses vma_is_dax(), and the
resulting header include changes, is that previous attempts to add a
VM_DAX flag were NAKd.
Link: http://lkml.kernel.org/r/149739531127.20686.15813586620597484283.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The dax_flush() operation can be turned into a nop on platforms where
firmware arranges for cpu caches to be flushed on a power-fail event.
The ACPI 6.2 specification defines a mechanism for the platform to
indicate this capability so the kernel can select the proper default.
However, for other platforms, the administrator must toggle this setting
manually.
Given this flush setting is a dax-specific mechanism we advertise it
through a 'dax' attribute group hanging off a host device. For example,
a 'pmem0' block-device gets a 'dax' sysfs-subdirectory with a
'write_cache' attribute to control response to dax cache flush requests.
This is similar to the 'queue/write_cache' attribute that appears under
block devices.
Cc: Jan Kara <jack@suse.cz>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Suggested-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Require all dax-drivers to register a ->copy_from_iter() operation so
that it is clear which dax_operations are optional and which must be
implemented for filesystem-dax to operate.
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Suggested-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Allow device-mapper to route flush operations to the
per-target implementation. In order for the device stacking to work we
need a dax_dev and a pgoff relative to that device. This gives each
layer of the stack the information it needs to look up the operation
pointer for the next level.
This conceptually allows for an array of mixed device drivers with
varying flush implementations.
Reviewed-by: Toshi Kani <toshi.kani@hpe.com>
Reviewed-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Filesystem-DAX flushes caches whenever it writes to the address returned
through dax_direct_access() and when writing back dirty radix entries.
That flushing is only required in the pmem case, so add a dax operation
to allow pmem to take this extra action, but skip it for other dax
capable devices that do not provide a flush routine.
An example for this differentiation might be a volatile ram disk where
there is no expectation of persistence. In fact the pmem driver itself might
front such an address range specified by the NFIT. So, this "no flush"
property might be something passed down by the bus / libnvdimm.
Cc: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Allow device-mapper to route copy_from_iter operations to the
per-target implementation. In order for the device stacking to work we
need a dax_dev and a pgoff relative to that device. This gives each
layer of the stack the information it needs to look up the operation
pointer for the next level.
This conceptually allows for an array of mixed device drivers with
varying copy_from_iter implementations.
Reviewed-by: Toshi Kani <toshi.kani@hpe.com>
Reviewed-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The pmem driver has a need to transfer data with a persistent memory
destination and be able to rely on the fact that the destination writes are not
cached. It is sufficient for the writes to be flushed to a cpu-store-buffer
(non-temporal / "movnt" in x86 terms), as we expect userspace to call fsync()
to ensure data-writes have reached a power-fail-safe zone in the platform. The
fsync() triggers a REQ_FUA or REQ_FLUSH to the pmem driver which will turn
around and fence previous writes with an "sfence".
Implement a __copy_from_user_inatomic_flushcache, memcpy_page_flushcache, and
memcpy_flushcache, that guarantee that the destination buffer is not dirty in
the cpu cache on completion. The new copy_from_iter_flushcache and sub-routines
will be used to replace the "pmem api" (include/linux/pmem.h +
arch/x86/include/asm/pmem.h). The availability of copy_from_iter_flushcache()
and memcpy_flushcache() are gated by the CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
config symbol, and fallback to copy_from_iter_nocache() and plain memcpy()
otherwise.
This is meant to satisfy the concern from Linus that if a driver wants to do
something beyond the normal nocache semantics it should be something private to
that driver [1], and Al's concern that anything uaccess related belongs with
the rest of the uaccess code [2].
The first consumer of this interface is a new 'copy_from_iter' dax operation so
that pmem can inject cache maintenance operations without imposing this
overhead on other dax-capable drivers.
[1]: https://lists.01.org/pipermail/linux-nvdimm/2017-January/008364.html
[2]: https://lists.01.org/pipermail/linux-nvdimm/2017-April/009942.html
Cc: <x86@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Tetsuo reports:
fs/built-in.o: In function `xfs_file_iomap_end':
xfs_iomap.c:(.text+0xe0ef9): undefined reference to `put_dax'
fs/built-in.o: In function `xfs_file_iomap_begin':
xfs_iomap.c:(.text+0xe1a7f): undefined reference to `dax_get_by_host'
make: *** [vmlinux] Error 1
$ grep DAX .config
CONFIG_DAX=m
# CONFIG_DEV_DAX is not set
# CONFIG_FS_DAX is not set
When FS_DAX=n we can/must throw away the dax code in filesystems.
Implement 'fs_' versions of dax_get_by_host() and put_dax() that are
nops in the FS_DAX=n case.
Cc: <linux-xfs@vger.kernel.org>
Cc: <linux-ext4@vger.kernel.org>
Cc: Jan Kara <jack@suse.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: "Darrick J. Wong" <darrick.wong@oracle.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Tested-by: Tony Luck <tony.luck@intel.com>
Fixes: ef51042472 ("block, dax: move 'select DAX' from BLOCK to FS_DAX")
Reported-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Merge misc fixes from Andrew Morton:
"15 fixes"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
mm, docs: update memory.stat description with workingset* entries
mm: vmscan: scan until it finds eligible pages
mm, thp: copying user pages must schedule on collapse
dax: fix PMD data corruption when fault races with write
dax: fix data corruption when fault races with write
ext4: return to starting transaction in ext4_dax_huge_fault()
mm: fix data corruption due to stale mmap reads
dax: prevent invalidation of mapped DAX entries
Tigran has moved
mm, vmalloc: fix vmalloc users tracking properly
mm/khugepaged: add missed tracepoint for collapse_huge_page_swapin
gcov: support GCC 7.1
mm, vmstat: Remove spurious WARN() during zoneinfo print
time: delete current_fs_time()
hwpoison, memcg: forcibly uncharge LRU pages
Patch series "mm,dax: Fix data corruption due to mmap inconsistency",
v4.
This series fixes data corruption that can happen for DAX mounts when
page faults race with write(2) and as a result page tables get out of
sync with block mappings in the filesystem and thus data seen through
mmap is different from data seen through read(2).
The series passes testing with t_mmap_stale test program from Ross and
also other mmap related tests on DAX filesystem.
This patch (of 4):
dax_invalidate_mapping_entry() currently removes DAX exceptional entries
only if they are clean and unlocked. This is done via:
invalidate_mapping_pages()
invalidate_exceptional_entry()
dax_invalidate_mapping_entry()
However, for page cache pages removed in invalidate_mapping_pages()
there is an additional criteria which is that the page must not be
mapped. This is noted in the comments above invalidate_mapping_pages()
and is checked in invalidate_inode_page().
For DAX entries this means that we can can end up in a situation where a
DAX exceptional entry, either a huge zero page or a regular DAX entry,
could end up mapped but without an associated radix tree entry. This is
inconsistent with the rest of the DAX code and with what happens in the
page cache case.
We aren't able to unmap the DAX exceptional entry because according to
its comments invalidate_mapping_pages() isn't allowed to block, and
unmap_mapping_range() takes a write lock on the mapping->i_mmap_rwsem.
Since we essentially never have unmapped DAX entries to evict from the
radix tree, just remove dax_invalidate_mapping_entry().
Fixes: c6dcf52c23 ("mm: Invalidate DAX radix tree entries only if appropriate")
Link: http://lkml.kernel.org/r/20170510085419.27601-2-jack@suse.cz
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Reported-by: Jan Kara <jack@suse.cz>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: <stable@vger.kernel.org> [4.10+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For configurations that do not enable DAX filesystems or drivers, do not
require the DAX core to be built.
Given that the 'direct_access' method has been removed from
'block_device_operations', we can also go ahead and remove the
block-related dax helper functions from fs/block_dev.c to
drivers/dax/super.c. This keeps dax details out of the block layer and
lets the DAX core be built as a module in the FS_DAX=n case.
Filesystems need to include dax.h to call bdev_dax_supported().
Cc: linux-xfs@vger.kernel.org
Cc: Jens Axboe <axboe@kernel.dk>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: "Darrick J. Wong" <darrick.wong@oracle.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.com>
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Now that a dax_device is plumbed through all dax-capable drivers we can
switch from block_device_operations to dax_operations for invoking
->direct_access.
This also lets us kill off some usages of struct blk_dax_ctl on the way
to its eventual removal.
Suggested-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
commit d1a5f2b4d8 ("block: use DAX for partition table reads") was
part of a stalled effort to allow dax mappings of block devices. Since
then the device-dax mechanism has filled the role of dax-mapping static
device ranges.
Now that we are moving ->direct_access() from a block_device operation
to a dax_inode operation we would need block devices to map and carry
their own dax_inode reference.
Unless / until we decide to revive dax mapping of raw block devices
through the dax_inode scheme, there is no need to carry
read_dax_sector(). Its removal in turn allows for the removal of
bdev_direct_access() and should have been included in commit
2237570168 ("block_dev: remove DAX leftovers").
Cc: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Replace bdev_direct_access() with dax_direct_access() that uses
dax_device and dax_operations instead of a block_device and
block_device_operations for dax. Once all consumers of the old api have
been converted bdev_direct_access() will be deleted.
Given that block device partitioning decisions can cause dax page
alignment constraints to be violated this also introduces the
bdev_dax_pgoff() helper. It handles calculating a logical pgoff relative
to the dax_device and also checks for page alignment.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Setup a dax_device to have the same lifetime as the pmem block device
and add a ->direct_access() method that is equivalent to
pmem_direct_access(). Once fs/dax.c has been converted to use
dax_operations the old pmem_direct_access() will be removed.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Track a set of dax_operations per dax_device that can be set at
alloc_dax() time. These operations will be used to stop the abuse of
block_device_operations for communicating dax capabilities to
filesystems. It will also be used to replace the "pmem api" and move
pmem-specific cache maintenance, and other dax-driver-specific
filesystem-dax operations, to dax device methods. In particular this
allows us to stop abusing __copy_user_nocache(), via memcpy_to_pmem(),
with a driver specific replacement.
This is a standalone introduction of the operations. Follow on patches
convert each dax-driver and teach fs/dax.c to use ->direct_access() from
dax_operations instead of block_device_operations.
Suggested-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
For the current block_device based filesystem-dax path, we need a way
for it to lookup the dax_device associated with a block_device. Add a
'host' property of a dax_device that can be used for this purpose. It is
a free form string, but for a dax_device associated with a block device
it is the bdev name.
This is a stop-gap until filesystems are able to mount on a dax-inode
directly.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
We want dax capable drivers to be able to publish a set of dax
operations [1]. However, we do not want to further abuse block_devices
to advertise these operations. Instead we will attach these operations
to a dax device and add a lookup mechanism to go from block device path
to a dax device. A dax capable driver like pmem or brd is responsible
for registering a dax device, alongside a block device, and then a dax
capable filesystem is responsible for retrieving the dax device by path
name if it wants to call dax_operations.
For now, we refactor the dax pseudo-fs to be a generic facility, rather
than an implementation detail, of the device-dax use case. Where a "dax
device" is just an inode + dax infrastructure, and "Device DAX" is a
mapping service layered on top of that base 'struct dax_device'.
"Filesystem DAX" is then a mapping service that layers a filesystem on
top of that same base device. Filesystem DAX is associated with a
block_device for now, but perhaps directly to a dax device in the
future, or for new pmem-only filesystems.
[1]: https://lkml.org/lkml/2017/1/19/880
Suggested-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Since the introduction of FAULT_FLAG_SIZE to the vm_fault flag, it has
been somewhat painful with getting the flags set and removed at the
correct locations. More than one kernel oops was introduced due to
difficulties of getting the placement correctly.
Remove the flag values and introduce an input parameter to huge_fault
that indicates the size of the page entry. This makes the code easier
to trace and should avoid the issues we see with the fault flags where
removal of the flag was necessary in the fallback paths.
Link: http://lkml.kernel.org/r/148615748258.43180.1690152053774975329.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "1G transparent hugepage support for device dax", v2.
The following series implements support for 1G trasparent hugepage on
x86 for device dax. The bulk of the code was written by Mathew Wilcox a
while back supporting transparent 1G hugepage for fs DAX. I have
forward ported the relevant bits to 4.10-rc. The current submission has
only the necessary code to support device DAX.
Comments from Dan Williams: So the motivation and intended user of this
functionality mirrors the motivation and users of 1GB page support in
hugetlbfs. Given expected capacities of persistent memory devices an
in-memory database may want to reduce tlb pressure beyond what they can
already achieve with 2MB mappings of a device-dax file. We have
customer feedback to that effect as Willy mentioned in his previous
version of these patches [1].
[1]: https://lkml.org/lkml/2016/1/31/52
Comments from Nilesh @ Oracle:
There are applications which have a process model; and if you assume
10,000 processes attempting to mmap all the 6TB memory available on a
server; we are looking at the following:
processes : 10,000
memory : 6TB
pte @ 4k page size: 8 bytes / 4K of memory * #processes = 6TB / 4k * 8 * 10000 = 1.5GB * 80000 = 120,000GB
pmd @ 2M page size: 120,000 / 512 = ~240GB
pud @ 1G page size: 240GB / 512 = ~480MB
As you can see with 2M pages, this system will use up an exorbitant
amount of DRAM to hold the page tables; but the 1G pages finally brings
it down to a reasonable level. Memory sizes will keep increasing; so
this number will keep increasing.
An argument can be made to convert the applications from process model
to thread model, but in the real world that may not be always practical.
Hopefully this helps explain the use case where this is valuable.
This patch (of 3):
In preparation for adding the ability to handle PUD pages, convert
vm_operations_struct.pmd_fault to vm_operations_struct.huge_fault. The
vm_fault structure is extended to include a union of the different page
table pointers that may be needed, and three flag bits are reserved to
indicate which type of pointer is in the union.
[ross.zwisler@linux.intel.com: remove unused function ext4_dax_huge_fault()]
Link: http://lkml.kernel.org/r/1485813172-7284-1-git-send-email-ross.zwisler@linux.intel.com
[dave.jiang@intel.com: clear PMD or PUD size flags when in fall through path]
Link: http://lkml.kernel.org/r/148589842696.5820.16078080610311444794.stgit@djiang5-desk3.ch.intel.com
Link: http://lkml.kernel.org/r/148545058784.17912.6353162518188733642.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jan Kara <jack@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
->fault(), ->page_mkwrite(), and ->pfn_mkwrite() calls do not need to
take a vma and vmf parameter when the vma already resides in vmf.
Remove the vma parameter to simplify things.
[arnd@arndb.de: fix ARM build]
Link: http://lkml.kernel.org/r/20170125223558.1451224-1-arnd@arndb.de
Link: http://lkml.kernel.org/r/148521301778.19116.10840599906674778980.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jan Kara <jack@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge updates from Andrew Morton:
"142 patches:
- DAX updates
- various misc bits
- OCFS2 updates
- most of MM"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (142 commits)
mm/z3fold.c: limit first_num to the actual range of possible buddy indexes
mm: fix <linux/pagemap.h> stray kernel-doc notation
zram: remove obsolete sysfs attrs
mm/memblock.c: remove unnecessary log and clean up
oom-reaper: use madvise_dontneed() logic to decide if unmap the VMA
mm: drop unused argument of zap_page_range()
mm: drop zap_details::check_swap_entries
mm: drop zap_details::ignore_dirty
mm, page_alloc: warn_alloc nodemask is NULL when cpusets are disabled
mm: help __GFP_NOFAIL allocations which do not trigger OOM killer
mm, oom: do not enforce OOM killer for __GFP_NOFAIL automatically
mm: consolidate GFP_NOFAIL checks in the allocator slowpath
lib/show_mem.c: teach show_mem to work with the given nodemask
arch, mm: remove arch specific show_mem
mm, page_alloc: warn_alloc print nodemask
mm, page_alloc: do not report all nodes in show_mem
Revert "mm: bail out in shrink_inactive_list()"
mm, vmscan: consider eligible zones in get_scan_count
mm, vmscan: cleanup lru size claculations
mm, vmscan: do not count freed pages as PGDEACTIVATE
...
pmd_fault() and related functions really only need the vmf parameter since
the additional parameters are all included in the vmf struct. Remove the
additional parameter and simplify pmd_fault() and friends.
Link: http://lkml.kernel.org/r/1484085142-2297-8-git-send-email-ross.zwisler@linux.intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of passing in multiple parameters in the pmd_fault() handler,
a vmf can be passed in just like a fault() handler. This will simplify
code and remove the need for the actual pmd fault handlers to allocate a
vmf. Related functions are also modified to do the same.
[dave.jiang@intel.com: fix issue with xfs_tests stall when DAX option is off]
Link: http://lkml.kernel.org/r/148469861071.195597.3619476895250028518.stgit@djiang5-desk3.ch.intel.com
Link: http://lkml.kernel.org/r/1484085142-2297-7-git-send-email-ross.zwisler@linux.intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Currently invalidate_inode_pages2_range() and invalidate_mapping_pages()
just delete all exceptional radix tree entries they find. For DAX this
is not desirable as we track cache dirtiness in these entries and when
they are evicted, we may not flush caches although it is necessary. This
can for example manifest when we write to the same block both via mmap
and via write(2) (to different offsets) and fsync(2) then does not
properly flush CPU caches when modification via write(2) was the last
one.
Create appropriate DAX functions to handle invalidation of DAX entries
for invalidate_inode_pages2_range() and invalidate_mapping_pages() and
wire them up into the corresponding mm functions.
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Move final handling of COW faults from generic code into DAX fault
handler. That way generic code doesn't have to be aware of
peculiarities of DAX locking so remove that knowledge and make locking
functions private to fs/dax.c.
Link: http://lkml.kernel.org/r/1479460644-25076-11-git-send-email-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
No one uses functions using the get_block callback anymore. Rip them
out and update documentation.
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
DAX PMDs have been disabled since Jan Kara introduced DAX radix tree based
locking. This patch allows DAX PMDs to participate in the DAX radix tree
based locking scheme so that they can be re-enabled using the new struct
iomap based fault handlers.
There are currently three types of DAX 4k entries: 4k zero pages, 4k DAX
mappings that have an associated block allocation, and 4k DAX empty
entries. The empty entries exist to provide locking for the duration of a
given page fault.
This patch adds three equivalent 2MiB DAX entries: Huge Zero Page (HZP)
entries, PMD DAX entries that have associated block allocations, and 2 MiB
DAX empty entries.
Unlike the 4k case where we insert a struct page* into the radix tree for
4k zero pages, for HZP we insert a DAX exceptional entry with the new
RADIX_DAX_HZP flag set. This is because we use a single 2 MiB zero page in
every 2MiB hole mapping, and it doesn't make sense to have that same struct
page* with multiple entries in multiple trees. This would cause contention
on the single page lock for the one Huge Zero Page, and it would break the
page->index and page->mapping associations that are assumed to be valid in
many other places in the kernel.
One difficult use case is when one thread is trying to use 4k entries in
radix tree for a given offset, and another thread is using 2 MiB entries
for that same offset. The current code handles this by making the 2 MiB
user fall back to 4k entries for most cases. This was done because it is
the simplest solution, and because the use of 2MiB pages is already
opportunistic.
If we were to try to upgrade from 4k pages to 2MiB pages for a given range,
we run into the problem of how we lock out 4k page faults for the entire
2MiB range while we clean out the radix tree so we can insert the 2MiB
entry. We can solve this problem if we need to, but I think that the cases
where both 2MiB entries and 4K entries are being used for the same range
will be rare enough and the gain small enough that it probably won't be
worth the complexity.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The RADIX_DAX_* defines currently mostly live in fs/dax.c, with just
RADIX_DAX_ENTRY_LOCK being in include/linux/dax.h so it can be used in
mm/filemap.c. When we add PMD support, though, mm/filemap.c will also need
access to the RADIX_DAX_PTE type so it can properly construct a 4k sized
empty entry.
Instead of shifting the defines between dax.c and dax.h as they are
individually used in other code, just move them wholesale to dax.h so
they'll be available when we need them.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The recently added DAX functions that use the new struct iomap data
structure were named iomap_dax_rw(), iomap_dax_fault() and
iomap_dax_actor(). These are actually defined in fs/dax.c, though, so
should be part of the "dax" namespace and not the "iomap" namespace.
Rename them to dax_iomap_rw(), dax_iomap_fault() and dax_iomap_actor()
respectively.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Suggested-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dave Chinner <david@fromorbit.com>
dax_pmd_fault() is the old struct buffer_head + get_block_t based 2 MiB DAX
fault handler. This fault handler has been disabled for several kernel
releases, and support for PMDs will be reintroduced using the struct iomap
interface instead.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dave Chinner <david@fromorbit.com>
DAX radix tree locking currently locks entries based on the unique
combination of the 'mapping' pointer and the pgoff_t 'index' for the entry.
This works for PTEs, but as we move to PMDs we will need to have all the
offsets within the range covered by the PMD to map to the same bit lock.
To accomplish this, for ranges covered by a PMD entry we will instead lock
based on the page offset of the beginning of the PMD entry. The 'mapping'
pointer is still used in the same way.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Very similar to the existing dax_fault function, but instead of using
the get_block callback we rely on the iomap_ops vector from iomap.c.
That also avoids having to do two calls into the file system for write
faults.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This is a much simpler implementation of the DAX read/write path
that makes use of the iomap infrastructure. It does not try to
mirror the direct I/O calling conventions and thus doesn't have to
deal with i_dio_count or the end_io handler, but instead leaves
locking and filesystem-specific I/O completion to the caller.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Remove the unused wrappers dax_fault() and dax_pmd_fault(). After this
removal, rename __dax_fault() and __dax_pmd_fault() to dax_fault() and
dax_pmd_fault() respectively, and update all callers.
The dax_fault() and dax_pmd_fault() wrappers were initially intended to
capture some filesystem independent functionality around page faults
(calling sb_start_pagefault() & sb_end_pagefault(), updating file mtime
and ctime).
However, the following commits:
5726b27b09 ("ext2: Add locking for DAX faults")
ea3d7209ca ("ext4: fix races between page faults and hole punching")
added locking to the ext2 and ext4 filesystems after these common
operations but before __dax_fault() and __dax_pmd_fault() were called.
This means that these wrappers are no longer used, and are unlikely to
be used in the future.
XFS has had locking analogous to what was recently added to ext2 and
ext4 since DAX support was initially introduced by:
6b698edeee ("xfs: add DAX file operations support")
Link: http://lkml.kernel.org/r/20160714214049.20075-2-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- We use a bit in an exceptional radix tree entry as a lock bit and use it
similarly to how page lock is used for normal faults. This fixes races
between hole instantiation and read faults of the same index.
- Filesystem DAX PMD faults are disabled, and will be re-enabled when PMD
locking is implemented.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJXRKwLAAoJEJ/BjXdf9fLB+BkP/3HBm05KlAKDklvnBIPFDMUK
hA7g2K6vuvaEDZXZQ1ioc1Ajf1sCpVip7shXJsojZqwWmRz0/4nneF7ytluW9AjS
dBX+0qCgKGH1fnwyGFF+MN7fuj7kGrSDz34lG0OObRN6/oKiVNb2svXiYKkT6J6C
AgsWlWRUpMy9jrn1u/FduMjDhk92Z3ojarexuicr0i8NUlBClCIrdCEmUMi4orSB
DuiIjestLOc7+mERBUwrXkzoh9v8Z0FpIgnDLWwpeEkAvJwWkGe5eXrBJwF+hEbi
RYfTrOYc7bBQLo22LRb8pdighjrx3OW9EpNCfEmLDOjM3cYBbMK/d2i/ww52H6IK
Mw6iS5rXdGgJtQIGL8N96HLFk+cDyZ8J8xNUCwbYYBJqgpMzxzVkL3vTm72tyFnl
InWhih+miCMbBPytQSRd6+1wZG2piJTv6SsFTd5K1OaiRmJhBJZG47t2QTBRBu7Y
5A4FGPtlraV+iDJvD6VLO1Tp8twxdLluOJ2BwdGeiKXiGh6LP+FGGFF3aFa5N4Ro
xSslCTX7Q1G66zXQwD4+IMWLwS1FDNymPkUSsF6RQo6qfAnl9SrmYTc4xJ4QXy92
sUdrWEz2OBTfxKNqbGyc/KrXKZT3RnEkJNft8snB2h6WTCdOPaNYs/yETUwiwkSc
CXpuQFrxm69QYwNsqVu1
=Pkd0
-----END PGP SIGNATURE-----
Merge tag 'dax-locking-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull DAX locking updates from Ross Zwisler:
"Filesystem DAX locking for 4.7
- We use a bit in an exceptional radix tree entry as a lock bit and
use it similarly to how page lock is used for normal faults. This
fixes races between hole instantiation and read faults of the same
index.
- Filesystem DAX PMD faults are disabled, and will be re-enabled when
PMD locking is implemented"
* tag 'dax-locking-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
dax: Remove i_mmap_lock protection
dax: Use radix tree entry lock to protect cow faults
dax: New fault locking
dax: Allow DAX code to replace exceptional entries
dax: Define DAX lock bit for radix tree exceptional entry
dax: Make huge page handling depend of CONFIG_BROKEN
dax: Fix condition for filling of PMD holes
- Until now, dax has been disabled if media errors were found on
any device. This enables the use of DAX in the presence of these
errors by making all sector-aligned zeroing go through the driver.
- The driver (already) has the ability to clear errors on writes that
are sent through the block layer using 'DSMs' defined in ACPI 6.1.
Other misc changes:
- When mounting DAX filesystems, check to make sure the partition
is page aligned. This is a requirement for DAX, and previously, we
allowed such unaligned mounts to succeed, but subsequent reads/writes
would fail.
- Misc/cleanup fixes from Jan that remove unused code from DAX related to
zeroing, writeback, and some size checks.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJXQ4GKAAoJEHr6Yb6juE3/zowP/iclIhgXXXMQJRUHJlePMXC8
15sGZ32JS1ak9g7vrsmNVEDNynfNtiMYdBxtUyRuj6xqgwdZvFk3F55KOCPtaeA1
+yADkgeRkTAcwzmHw9WQVEzBCqyzSisdrwtEfH817qdq9FJdH66x2Kos6i+HeAVr
5Q/e4gs7lKrjf384/QBl+wxNZOndJaQAPd2VRHQqx2A9F33v0ljdwRaUG1r4fjK2
dtmhcZCqdQyuAGXW3piTnZc5ZFc3DPqO4FkEfqkEK3lFOflK0fd8wMsAZRp/Jd0j
GJsgnVSWSqG0Dz476djlG0w8t2p5Jv1g9cKChV+ZZEdFLKWHCOUFqXNj8uI8I4k5
cOEKCHyJ3IwfSHhNQqktEWrQN4T8ZXhWtuc9GuV4UZYuqJqHci6EdR/YsWsJjV+L
lm/qvK4ipDS1pivxOy8KX/iN0z7Io8J9GXpStDx3g8iWjLlh4YYlbJLWeeRepo/z
aPlV/QAKcHiGY6jzLExrZIyCWkzwo6O+0p1Kxerv9/7K/32HWbOodZ+tC8eD+N25
pV69nCGf+u50T2TtIx1+iann4NC1r7zg5yqnT9AgpyZpiwR5joCDzI5sXW+D0rcS
vPtfM84Ccdeq/e6mvfIpZgR0/npQapKnrmUest0J7P2BFPHiFPji1KzZ7M+1aFOo
9R6JdrAj0Sc+FBa+cGzH
=v6Of
-----END PGP SIGNATURE-----
Merge tag 'dax-misc-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull misc DAX updates from Vishal Verma:
"DAX error handling for 4.7
- Until now, dax has been disabled if media errors were found on any
device. This enables the use of DAX in the presence of these
errors by making all sector-aligned zeroing go through the driver.
- The driver (already) has the ability to clear errors on writes that
are sent through the block layer using 'DSMs' defined in ACPI 6.1.
Other misc changes:
- When mounting DAX filesystems, check to make sure the partition is
page aligned. This is a requirement for DAX, and previously, we
allowed such unaligned mounts to succeed, but subsequent
reads/writes would fail.
- Misc/cleanup fixes from Jan that remove unused code from DAX
related to zeroing, writeback, and some size checks"
* tag 'dax-misc-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
dax: fix a comment in dax_zero_page_range and dax_truncate_page
dax: for truncate/hole-punch, do zeroing through the driver if possible
dax: export a low-level __dax_zero_page_range helper
dax: use sb_issue_zerout instead of calling dax_clear_sectors
dax: enable dax in the presence of known media errors (badblocks)
dax: fallback from pmd to pte on error
block: Update blkdev_dax_capable() for consistency
xfs: Add alignment check for DAX mount
ext2: Add alignment check for DAX mount
ext4: Add alignment check for DAX mount
block: Add bdev_dax_supported() for dax mount checks
block: Add vfs_msg() interface
dax: Remove redundant inode size checks
dax: Remove pointless writeback from dax_do_io()
dax: Remove zeroing from dax_io()
dax: Remove dead zeroing code from fault handlers
ext2: Avoid DAX zeroing to corrupt data
ext2: Fix block zeroing in ext2_get_blocks() for DAX
dax: Remove complete_unwritten argument
DAX: move RADIX_DAX_ definitions to dax.c
When doing cow faults, we cannot directly fill in PTE as we do for other
faults as we rely on generic code to do proper accounting of the cowed page.
We also have no page to lock to protect against races with truncate as
other faults have and we need the protection to extend until the moment
generic code inserts cowed page into PTE thus at that point we have no
protection of fs-specific i_mmap_sem. So far we relied on using
i_mmap_lock for the protection however that is completely special to cow
faults. To make fault locking more uniform use DAX entry lock instead.
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Currently DAX page fault locking is racy.
CPU0 (write fault) CPU1 (read fault)
__dax_fault() __dax_fault()
get_block(inode, block, &bh, 0) -> not mapped
get_block(inode, block, &bh, 0)
-> not mapped
if (!buffer_mapped(&bh))
if (vmf->flags & FAULT_FLAG_WRITE)
get_block(inode, block, &bh, 1) -> allocates blocks
if (page) -> no
if (!buffer_mapped(&bh))
if (vmf->flags & FAULT_FLAG_WRITE) {
} else {
dax_load_hole();
}
dax_insert_mapping()
And we are in a situation where we fail in dax_radix_entry() with -EIO.
Another problem with the current DAX page fault locking is that there is
no race-free way to clear dirty tag in the radix tree. We can always
end up with clean radix tree and dirty data in CPU cache.
We fix the first problem by introducing locking of exceptional radix
tree entries in DAX mappings acting very similarly to page lock and thus
synchronizing properly faults against the same mapping index. The same
lock can later be used to avoid races when clearing radix tree dirty
tag.
Reviewed-by: NeilBrown <neilb@suse.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Currently we forbid page_cache_tree_insert() to replace exceptional radix
tree entries for DAX inodes. However to make DAX faults race free we will
lock radix tree entries and when hole is created, we need to replace
such locked radix tree entry with a hole page. So modify
page_cache_tree_insert() to allow that.
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
We will use lowest available bit in the radix tree exceptional entry for
locking of the entry. Define it. Also clean up definitions of DAX entry
type bits in DAX exceptional entries to use defined constants instead of
hardcoding numbers and cleanup checking of these bits to not rely on how
other bits in the entry are set.
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Currently the handling of huge pages for DAX is racy. For example the
following can happen:
CPU0 (THP write fault) CPU1 (normal read fault)
__dax_pmd_fault() __dax_fault()
get_block(inode, block, &bh, 0) -> not mapped
get_block(inode, block, &bh, 0)
-> not mapped
if (!buffer_mapped(&bh) && write)
get_block(inode, block, &bh, 1) -> allocates blocks
truncate_pagecache_range(inode, lstart, lend);
dax_load_hole();
This results in data corruption since process on CPU1 won't see changes
into the file done by CPU0.
The race can happen even if two normal faults race however with THP the
situation is even worse because the two faults don't operate on the same
entries in the radix tree and we want to use these entries for
serialization. So make THP support in DAX code depend on CONFIG_BROKEN
for now.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
This allows XFS to perform zeroing using the iomap infrastructure and
avoid buffer heads.
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Christoph Hellwig <hch@lst.de>
[vishal: fix conflicts with dax-error-handling]
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
dax_clear_sectors() cannot handle poisoned blocks. These must be
zeroed using the BIO interface instead. Convert ext2 and XFS to use
only sb_issue_zerout().
Reviewed-by: Jeff Moyer <jmoyer@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
[vishal: Also remove the dax_clear_sectors function entirely]
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Fault handlers currently take complete_unwritten argument to convert
unwritten extents after PTEs are updated. However no filesystem uses
this anymore as the code is racy. Remove the unused argument.
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Including blkdev_direct_IO and dax_do_io. It has to be ki_pos to actually
work, so eliminate the superflous argument.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Previously calls to dax_writeback_mapping_range() for all DAX filesystems
(ext2, ext4 & xfs) were centralized in filemap_write_and_wait_range().
dax_writeback_mapping_range() needs a struct block_device, and it used
to get that from inode->i_sb->s_bdev. This is correct for normal inodes
mounted on ext2, ext4 and XFS filesystems, but is incorrect for DAX raw
block devices and for XFS real-time files.
Instead, call dax_writeback_mapping_range() directly from the filesystem
->writepages function so that it can supply us with a valid block
device. This also fixes DAX code to properly flush caches in response
to sync(2).
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Cc: Al Viro <viro@ftp.linux.org.uk>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
dax_clear_blocks() needs a valid struct block_device and previously it
was using inode->i_sb->s_bdev in all cases. This is correct for normal
inodes on mounted ext2, ext4 and XFS filesystems, but is incorrect for
DAX raw block devices and for XFS real-time devices.
Instead, rename dax_clear_blocks() to dax_clear_sectors(), and change
its arguments to take a bdev and a sector instead of an inode and a
block. This better reflects what the function does, and it allows the
filesystem and raw block device code to pass in an appropriate struct
block_device.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Suggested-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Al Viro <viro@ftp.linux.org.uk>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>