Commit Graph

320 Commits

Author SHA1 Message Date
Radim Krčmář 72875d8a4d KVM: add kvm_{test,clear}_request to replace {test,clear}_bit
Users were expected to use kvm_check_request() for testing and clearing,
but request have expanded their use since then and some users want to
only test or do a faster clear.

Make sure that requests are not directly accessed with bit operations.

Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-04-27 14:12:22 +02:00
Paolo Bonzini 3042255899 kvm: make KVM_CAP_COALESCED_MMIO architecture agnostic
Remove code from architecture files that can be moved to virt/kvm, since there
is already common code for coalesced MMIO.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
[Removed a pointless 'break' after 'return'.]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-04-07 16:49:00 +02:00
James Hogan dc44abd6aa KVM: MIPS/Emulate: Properly implement TLBR for T&E
Properly implement emulation of the TLBR instruction for Trap & Emulate.
This instruction reads the TLB entry pointed at by the CP0_Index
register into the other TLB registers, which may have the side effect of
changing the current ASID. Therefore abstract the CP0_EntryHi and ASID
changing code into a common function in the process.

A comment indicated that Linux doesn't use TLBR, which is true during
normal use, however dumping of the TLB does use it (for example with the
relatively recent 'x' magic sysrq key), as does a wired TLB entries test
case in my KVM tests.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-03-28 16:31:37 +01:00
James Hogan 1f48f9be4d KVM: MIPS/VZ: Handle Octeon III guest.PRid register
Octeon III implements a read-only guest CP0_PRid register, so add cases
to the KVM register access API for Octeon to ensure the correct value is
read and writes are ignored.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Daney <david.daney@cavium.com>
Cc: Andreas Herrmann <andreas.herrmann@caviumnetworks.com>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-03-28 15:36:20 +01:00
James Hogan 3ba731daf0 KVM: MIPS/VZ: Emulate hit CACHE ops for Octeon III
Octeon III doesn't implement the optional GuestCtl0.CG bit to allow
guest mode to execute virtual address based CACHE instructions, so
implement emulation of a few important ones specifically for Octeon III
in response to a GPSI exception.

Currently the main reason to perform these operations is for icache
synchronisation, so they are implemented as a simple icache flush with
local_flush_icache_range().

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Daney <david.daney@cavium.com>
Cc: Andreas Herrmann <andreas.herrmann@caviumnetworks.com>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-03-28 15:36:19 +01:00
James Hogan 824533ad16 KVM: MIPS/VZ: VZ hardware setup for Octeon III
Set up hardware virtualisation on Octeon III cores, configuring guest
interrupt routing and carving out half of the root TLB for guest use,
restoring it back again afterwards.

We need to be careful to inhibit TLB shutdown machine check exceptions
while invalidating guest TLB entries, since TLB invalidation is not
available so guest entries must be invalidated by setting them to unique
unmapped addresses, which could conflict with mappings set by the guest
or root if recently repartitioned.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Daney <david.daney@cavium.com>
Cc: Andreas Herrmann <andreas.herrmann@caviumnetworks.com>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-03-28 15:36:18 +01:00
James Hogan 867f4da752 KVM: MIPS/T&E: Report correct dcache line size
Octeon CPUs don't report the correct dcache line size in CP0_Config1.DL,
so encode the correct value for the guest CP0_Config1.DL based on
cpu_dcache_line_size().

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Daney <david.daney@cavium.com>
Cc: Andreas Herrmann <andreas.herrmann@caviumnetworks.com>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-03-28 15:36:18 +01:00
James Hogan 1c506c9c10 KVM: MIPS/TLB: Handle virtually tagged icaches
When TLB entries are invalidated in the presence of a virtually tagged
icache, such as that found on Octeon CPUs, flush the icache so that we
don't get a reserved instruction exception even though the TLB mapping
is removed.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Daney <david.daney@cavium.com>
Cc: Andreas Herrmann <andreas.herrmann@caviumnetworks.com>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-03-28 15:36:17 +01:00
James Hogan 4fa9de5a64 KVM: MIPS/Emulate: Adapt T&E CACHE emulation for Octeon
Cache management is implemented separately for Cavium Octeon CPUs, so
r4k_blast_[id]cache aren't available. Instead for Octeon perform a local
icache flush using local_flush_icache_range(), and for other platforms
which don't use c-r4k.c use __flush_cache_all() / flush_icache_all().

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Daney <david.daney@cavium.com>
Cc: Andreas Herrmann <andreas.herrmann@caviumnetworks.com>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-03-28 15:36:17 +01:00
James Hogan edec9d7bdc KVM: MIPS/VZ: Trace guest mode changes
Create a trace event for guest mode changes, and enable VZ's
GuestCtl0.MC bit after the trace event is enabled to trap all guest mode
changes.

The MC bit causes Guest Hardware Field Change (GHFC) exceptions whenever
a guest mode change occurs (such as an exception entry or return from
exception), so we need to handle this exception now. The MC bit is only
enabled when restoring register state, so enabling the trace event won't
take immediate effect.

Tracing guest mode changes can be particularly handy when trying to work
out what a guest OS gets up to before something goes wrong, especially
if the problem occurs as a result of some previous guest userland
exception which would otherwise be invisible in the trace.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-03-28 14:54:00 +01:00
James Hogan f4474d50c7 KVM: MIPS/VZ: Support hardware guest timer
Transfer timer state to the VZ guest context (CP0_GTOffset & guest
CP0_Count) when entering guest mode, enabling direct guest access to it,
and transfer back to soft timer when saving guest register state.

This usually allows guest code to directly read CP0_Count (via MFC0 and
RDHWR) and read/write CP0_Compare, without trapping to the hypervisor
for it to emulate the guest timer. Writing to CP0_Count or CP0_Cause.DC
is much less common and still triggers a hypervisor GPSI exception, in
which case the timer state is transferred back to an hrtimer before
emulating the write.

We are careful to prevent small amounts of drift from building up due to
undeterministic time intervals between reading of the ktime and reading
of CP0_Count. Some drift is expected however, since the system
clocksource may use a different timer to the local CP0_Count timer used
by VZ. This is permitted to prevent guest CP0_Count from appearing to go
backwards.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-03-28 14:53:59 +01:00
James Hogan d42a008f86 KVM: MIPS/VZ: Emulate MAARs when necessary
Add emulation of Memory Accessibility Attribute Registers (MAARs) when
necessary. We can't actually do anything with whatever the guest
provides, but it may not be possible to clear Guest.Config5.MRP so we
have to emulate at least a pair of MAARs.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Cc: linux-doc@vger.kernel.org
2017-03-28 14:53:58 +01:00
James Hogan 273819a6a5 KVM: MIPS/VZ: Support guest load-linked bit
When restoring guest state after another VCPU has run, be sure to clear
CP0_LLAddr.LLB in order to break any interrupted atomic critical
section. Without this SMP guest atomics don't work when LLB is present
as one guest can complete the atomic section started by another guest.

MIPS VZ guest read of CP0_LLAddr causes Guest Privileged Sensitive
Instruction (GPSI) exception due to the address being root physical.
Handle this by reporting only the LLB bit, which contains the bit for
whether a ll/sc atomic is in progress without any reason for failure.

Similarly on P5600 a guest write to CP0_LLAddr also causes a GPSI
exception. Handle this also by clearing the guest LLB bit from root
mode.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-03-28 14:53:58 +01:00
James Hogan 5a2f352f34 KVM: MIPS/VZ: Support guest hardware page table walker
Add support for VZ guest CP0_PWBase, CP0_PWField, CP0_PWSize, and
CP0_PWCtl registers for controlling the guest hardware page table walker
(HTW) present on P5600 and P6600 cores. These guest registers need
initialising on R6, context switching, and exposing via the KVM ioctl
API when they are present.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Cc: linux-doc@vger.kernel.org
2017-03-28 14:53:57 +01:00
James Hogan 4b7de028e6 KVM: MIPS/VZ: Support guest segmentation control
Add support for VZ guest CP0_SegCtl0, CP0_SegCtl1, and CP0_SegCtl2
registers, as found on P5600 and P6600 cores. These guest registers need
initialising, context switching, and exposing via the KVM ioctl API when
they are present.

They also require the GVA -> GPA translation code for handling a GVA
root exception to be updated to interpret the segmentation registers and
decode the faulting instruction enough to detect EVA memory access
instructions.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Cc: linux-doc@vger.kernel.org
2017-03-28 14:53:56 +01:00
James Hogan dffe042fd8 KVM: MIPS/VZ: Support guest CP0_[X]ContextConfig
Add support for VZ guest CP0_ContextConfig and CP0_XContextConfig
(MIPS64 only) registers, as found on P5600 and P6600 cores. These guest
registers need initialising, context switching, and exposing via the KVM
ioctl API when they are present.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Cc: linux-doc@vger.kernel.org
2017-03-28 14:53:56 +01:00
James Hogan edc89260d4 KVM: MIPS/VZ: Support guest CP0_BadInstr[P]
Add support for VZ guest CP0_BadInstr and CP0_BadInstrP registers, as
found on most VZ capable cores. These guest registers need context
switching, and exposing via the KVM ioctl API when they are present.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Cc: linux-doc@vger.kernel.org
2017-03-28 14:53:55 +01:00
James Hogan 56f7a44050 KVM: MIPS: Add VZ support to build system
Add support for the MIPS Virtualization (VZ) ASE to the MIPS KVM build
system. For now KVM can only be configured for T&E or VZ and not both,
but the design of the user facing APIs support the possibility of having
both available, so this could change in future.

Note that support for various optional guest features (some of which
can't be turned off) are implemented in immediately following commits,
so although it should now be possible to build VZ support, it may not
work yet on your hardware.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-03-28 14:53:54 +01:00
James Hogan c992a4f6a9 KVM: MIPS: Implement VZ support
Add the main support for the MIPS Virtualization ASE (A.K.A. VZ) to MIPS
KVM. The bulk of this work is in vz.c, with various new state and
definitions elsewhere.

Enough is implemented to be able to run on a minimal VZ core. Further
patches will fill out support for guest features which are optional or
can be disabled.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Cc: linux-doc@vger.kernel.org
2017-03-28 14:53:54 +01:00
James Hogan ea1bdbf683 KVM: MIPS: Update exit handler for VZ
The general guest exit handler needs a few tweaks for VZ compared to
trap & emulate, which for now are made directly depending on
CONFIG_KVM_MIPS_VZ:

- There is no need to re-enable the hardware page table walker (HTW), as
  it can be left enabled during guest mode operation with VZ.

- There is no need to perform a privilege check, as any guest privilege
  violations should have already been detected by the hardware and
  triggered the appropriate guest exception.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-03-28 14:53:53 +01:00
James Hogan 60c7aa3320 KVM: MIPS/Emulate: Drop CACHE emulation for VZ
Ifdef out the trap & emulate CACHE instruction emulation functions for
VZ. We will provide separate CACHE instruction emulation in vz.c, and we
need to avoid linker errors due to the use of T&E specific MMU helpers.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-03-28 14:53:53 +01:00
James Hogan 5dee99b24e KVM: MIPS/Emulate: Update CP0_Compare emulation for VZ
Update emulation of guest writes to CP0_Compare for VZ. There are two
main differences compared to trap & emulate:

 - Writing to CP0_Compare in the VZ hardware guest context acks any
   pending timer, clearing CP0_Cause.TI. If we don't want an ack to take
   place we must carefully restore the TI bit if it was previously set.

 - Even with guest timer access disabled in CP0_GuestCtl0.GT, if the
   guest CP0_Count reaches the guest CP0_Compare the timer interrupt
   will assert. To prevent this we must set CP0_GTOffset to move the
   guest CP0_Count out of the way of the new guest CP0_Compare, either
   before or after depending on whether it is a forwards or backwards
   change.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-03-28 14:53:52 +01:00
James Hogan 372582a6c6 KVM: MIPS/TLB: Add VZ TLB management
Add functions for MIPS VZ TLB management to tlb.c.

kvm_vz_host_tlb_inv() will be used for invalidating root TLB entries
after GPA page tables have been modified due to a KVM page fault. It
arranges for a root GPA mapping to be flushed from the TLB, using the
gpa_mm ASID or the current GuestID to do the probe.

kvm_vz_local_flush_roottlb_all_guests() and
kvm_vz_local_flush_guesttlb_all() flush all TLB entries in the
corresponding TLB for guest mappings (GPA->RPA for root TLB with
GuestID, and all entries for guest TLB). They will be used when starting
a new GuestID cycle, when VZ hardware is enabled/disabled, and also when
switching to a guest when the guest TLB contents may be stale or belong
to a different VM.

kvm_vz_guest_tlb_lookup() converts a guest virtual address to a guest
physical address using the guest TLB. This will be used to decode guest
virtual addresses which are sometimes provided by VZ hardware in
CP0_BadVAddr for certain exceptions when the guest physical address is
unavailable.

kvm_vz_save_guesttlb() and kvm_vz_load_guesttlb() will be used to
preserve wired guest VTLB entries while a guest isn't running.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-03-28 14:53:51 +01:00
James Hogan 1934a3ad09 KVM: MIPS/Entry: Update entry code to support VZ
Update MIPS KVM entry code to support VZ:

 - We need to set GuestCtl0.GM while in guest mode.

 - For cores supporting GuestID, we need to set the root GuestID to
   match the main GuestID while in guest mode so that the root TLB
   refill handler writes the correct GuestID into the TLB.

 - For cores without GuestID where the root ASID dealiases RVA/GPA
   mappings, we need to load that ASID from the gpa_mm rather than the
   per-VCPU guest_kernel_mm or guest_user_mm, since the root TLB maps
   guest physical addresses. We also need to restore the normal process
   ASID on exit.

 - The normal linux process pgd needs restoring on exit, as we can't
   leave the GPA mappings active for kernel code.

 - GuestCtl0 needs saving on exit for the GExcCode field, as it may be
   clobbered if a preemption occurs.

We also need to move the TLB refill handler to the XTLB vector at offset
0x80 on 64-bit VZ kernels, as hardware will use Root.Status.KX to
determine whether a TLB refill or XTLB Refill exception is to be taken
on a root TLB miss from guest mode, and KX needs to be set for kernel
code to be able to access the 64-bit segments.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-03-28 14:53:51 +01:00
James Hogan a27660f3e4 KVM: MIPS: Abstract guest CP0 register access for VZ
Abstract the MIPS KVM guest CP0 register access macros into inline
functions which are generated by macros. This allows them to be
generated differently for VZ, where they will usually need to access the
hardware guest CP0 context rather than the saved values in RAM.

Accessors for each individual register are generated using these macros:

 - __BUILD_KVM_*_SW() for registers which are not present in the VZ
   hardware guest context, so kvm_{read,write}_c0_guest_##name() will
   access the saved value in RAM regardless of whether VZ is enabled.

 - __BUILD_KVM_*_HW() for registers which are present in the VZ hardware
   guest context, so kvm_{read,write}_c0_guest_##name() will access the
   hardware register when VZ is enabled.

These build the underlying accessors using further macros:

 - __BUILD_KVM_*_SAVED() builds e.g. kvm_{read,write}_sw_gc0_##name()
   functions for accessing the saved versions of the registers in RAM.
   This is used for implementing the common
   kvm_{read,write}_c0_guest_##name() accessors with T&E where registers
   are always stored in RAM, but are also available with VZ HW registers
   to allow them to be accessed while saved.

 - __BUILD_KVM_*_VZ() builds e.g. kvm_{read,write}_vz_gc0_##name()
   functions for accessing the VZ hardware guest context registers
   directly. This is used for implementing the common
   kvm_{read,write}_c0_guest_##name() accessors with VZ.

 - __BUILD_KVM_*_WRAP() builds wrappers with different names, which
   allows the common kvm_{read,write}_c0_guest_##name() functions to be
   implemented using the VZ accessors while still having the SAVED
   accessors available too.

 - __BUILD_KVM_SAVE_VZ() builds functions for saving and restoring VZ
   hardware guest context register state to RAM, improving conciseness
   of VZ context saving and restoring.

Similar macros exist for generating modifiers (set, clear, change),
either with a normal unlocked read/modify/write, or using atomic LL/SC
sequences.

These changes change the types of 32-bit registers to u32 instead of
unsigned long, which requires some changes to printk() functions in MIPS
KVM.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-03-28 14:53:50 +01:00
James Hogan 28c1e762b0 KVM: MIPS: Add guest exit exception callback
Add a callback for MIPS KVM implementations to handle the VZ guest
exit exception. Currently the trap & emulate implementation contains a
stub which reports an internal error, but the callback will be used
properly by the VZ implementation.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-03-28 14:53:49 +01:00
James Hogan edab4fe1f6 KVM: MIPS: Add hardware_{enable,disable} callback
Add an implementation callback for the kvm_arch_hardware_enable() and
kvm_arch_hardware_disable() architecture functions, with simple stubs
for trap & emulate. This is in preparation for VZ which will make use of
them.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-03-28 14:53:49 +01:00
James Hogan 607ef2fdeb KVM: MIPS: Add callback to check extension
Add an implementation callback for checking presence of KVM extensions.
This allows implementation specific extensions to be provided without
ifdefs in mips.c.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-03-28 14:53:48 +01:00
James Hogan a517c1ad65 KVM: MIPS: Init timer frequency from callback
Currently the software emulated timer is initialised to a frequency of
100MHz by kvm_mips_init_count(), but this isn't suitable for VZ where
the frequency of the guest timer matches that of the host.

Add a count_hz argument so the caller can specify the default frequency,
and move the call from kvm_arch_vcpu_create() to the implementation
specific vcpu_setup() callback, so that VZ can specify a different
frequency.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-03-28 14:53:48 +01:00
James Hogan a8a3c42677 KVM: MIPS: Add VZ & TE capabilities
Add new KVM_CAP_MIPS_VZ and KVM_CAP_MIPS_TE capabilities, and in order
to allow MIPS KVM to support VZ without confusing old users (which
expect the trap & emulate implementation), define and start checking
KVM_CREATE_VM type codes.

The codes available are:

 - KVM_VM_MIPS_TE = 0

   This is the current value expected from the user, and will create a
   VM using trap & emulate in user mode, confined to the user mode
   address space. This may in future become unavailable if the kernel is
   only configured to support VZ, in which case the EINVAL error will be
   returned and KVM_CAP_MIPS_TE won't be available even though
   KVM_CAP_MIPS_VZ is.

 - KVM_VM_MIPS_VZ = 1

   This can be provided when the KVM_CAP_MIPS_VZ capability is available
   to create a VM using VZ, with a fully virtualized guest virtual
   address space. If VZ support is unavailable in the kernel, the EINVAL
   error will be returned (although old kernels without the
   KVM_CAP_MIPS_VZ capability may well succeed and create a trap &
   emulate VM).

This is designed to allow the desired implementation (T&E vs VZ) to be
potentially chosen at runtime rather than being fixed in the kernel
configuration.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Cc: linux-doc@vger.kernel.org
2017-03-28 14:53:47 +01:00
James Hogan a7244920d1 KVM: MIPS: Extend counters & events for VZ GExcCodes
Extend MIPS KVM stats counters and kvm_transition trace event codes to
cover hypervisor exceptions, which have their own GExcCode field in
CP0_GuestCtl0 with up to 32 hypervisor exception cause codes.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-03-28 14:53:46 +01:00
James Hogan c58cf74179 KVM: MIPS: Update kvm_lose_fpu() for VZ
Update the implementation of kvm_lose_fpu() for VZ, where there is no
need to enable the FPU/MSA in the root context if the FPU/MSA state is
loaded but disabled in the guest context.

The trap & emulate implementation needs to disable FPU/MSA in the root
context when the guest disables them in order to catch the COP1 unusable
or MSA disabled exception when they're used and pass it on to the guest.

For VZ however as long as the context is loaded and enabled in the root
context, the guest can enable and disable it in the guest context
without the hypervisor having to do much, and will take guest exceptions
without hypervisor intervention if used without being enabled in the
guest context.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-03-28 14:53:45 +01:00
James Hogan 59d7814ab2 KVM: MIPS/Emulate: Implement 64-bit MMIO emulation
Implement additional MMIO emulation for MIPS64, including 64-bit
loads/stores, and 32-bit unsigned loads. These are only exposed on
64-bit VZ hosts.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-03-28 14:53:45 +01:00
James Hogan 8b48d5b75d KVM: MIPS/Emulate: De-duplicate MMIO emulation
Refactor MIPS KVM MMIO load/store emulation to reduce code duplication.
Each duplicate differed slightly anyway, and it will simplify adding
64-bit MMIO support for VZ.

kvm_mips_emulate_store() and kvm_mips_emulate_load() can now return
EMULATE_DO_MMIO (as possibly originally intended). We therefore stop
calling either of these from kvm_mips_emulate_inst(), which is now only
used by kvm_trap_emul_handle_cop_unusable() which is picky about return
values.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-03-28 14:53:44 +01:00
James Hogan 955d8dc3ee KVM: MIPS: Implement HYPCALL emulation
Emulate the HYPCALL instruction added in the VZ ASE and used by the MIPS
paravirtualised guest support that is already merged. The new hypcall.c
handles arguments and the return value. No actual hypercalls are yet
supported, but this still allows us to safely step over hypercalls and
set an error code in the return value for forward compatibility.

Non-zero HYPCALL codes are not handled.

We also document the hypercall ABI which asm/kvm_para.h uses.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Andreas Herrmann <andreas.herrmann@caviumnetworks.com>
Cc: David Daney <david.daney@cavium.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Cc: linux-doc@vger.kernel.org
2017-03-28 14:53:33 +01:00
Ingo Molnar 174cd4b1e5 sched/headers: Prepare to move signal wakeup & sigpending methods from <linux/sched.h> into <linux/sched/signal.h>
Fix up affected files that include this signal functionality via sched.h.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:32 +01:00
Paolo Bonzini 460df4c1fc KVM: race-free exit from KVM_RUN without POSIX signals
The purpose of the KVM_SET_SIGNAL_MASK API is to let userspace "kick"
a VCPU out of KVM_RUN through a POSIX signal.  A signal is attached
to a dummy signal handler; by blocking the signal outside KVM_RUN and
unblocking it inside, this possible race is closed:

          VCPU thread                     service thread
   --------------------------------------------------------------
        check flag
                                          set flag
                                          raise signal
        (signal handler does nothing)
        KVM_RUN

However, one issue with KVM_SET_SIGNAL_MASK is that it has to take
tsk->sighand->siglock on every KVM_RUN.  This lock is often on a
remote NUMA node, because it is on the node of a thread's creator.
Taking this lock can be very expensive if there are many userspace
exits (as is the case for SMP Windows VMs without Hyper-V reference
time counter).

As an alternative, we can put the flag directly in kvm_run so that
KVM can see it:

          VCPU thread                     service thread
   --------------------------------------------------------------
                                          raise signal
        signal handler
          set run->immediate_exit
        KVM_RUN
          check run->immediate_exit

Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-02-17 12:27:37 +01:00
James Hogan 12ed1faece KVM: MIPS: Allow multiple VCPUs to be created
Increase the maximum number of MIPS KVM VCPUs to 8, and implement the
KVM_CAP_NR_VCPUS and KVM_CAP_MAX_CPUS capabilities which expose the
recommended and maximum number of VCPUs to userland. The previous
maximum of 1 didn't allow for any form of SMP guests.

We calculate the values similarly to ARM, recommending as many VCPUs as
there are CPUs online in the system. This will allow userland to know
how many VCPUs it is possible to create.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:21:34 +00:00
James Hogan ad58d4d4a2 KVM: MIPS/T&E: Expose read-only CP0_IntCtl register
Expose the CP0_IntCtl register through the KVM register access API,
which is a required register since MIPS32r2. It is currently read-only
since the VS field isn't implemented due to lack of Config3.VInt or
Config3.VEIC.

It is implemented in trap_emul.c so that a VZ implementation can allow
writes.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:21:33 +00:00
James Hogan 013044cc65 KVM: MIPS/T&E: Expose CP0_EntryLo0/1 registers
Expose the CP0_EntryLo0 and CP0_EntryLo1 registers through the KVM
register access API. This is fairly straightforward for trap & emulate
since we don't support the RI and XI bits. For the sake of future
proofing (particularly for VZ) it is explicitly specified that the API
always exposes the 64-bit version of these registers (i.e. with the RI
and XI bits in bit positions 63 and 62 respectively), and they are
implemented in trap_emul.c rather than mips.c to allow them to be
implemented differently for VZ.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:21:32 +00:00
James Hogan be67a0be94 KVM: MIPS/T&E: Default to reset vector
Set the default VCPU state closer to the architectural reset state, with
PC pointing at the reset vector (uncached PA 0x1fc00000, which for KVM
T&E is VA 0x5fc00000), and with CP0_Status.BEV and CP0_Status.ERL to 1.

Although QEMU at least will overwrite this state, it makes sense to do
this now that CP0_EBase is properly implemented to check BEV, and now
that we support a sparse GPA layout potentially with a boot ROM at GPA
0x1fc00000.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:21:31 +00:00
James Hogan 7801bbe1bd KVM: MIPS/T&E: Implement CP0_EBase register
The CP0_EBase register is a standard feature of MIPS32r2, so we should
always have been implementing it properly. However the register value
was ignored and wasn't exposed to userland.

Fix the emulation of exceptions and interrupts to use the value stored
in guest CP0_EBase, and fix the masks so that the top 3 bits (rather
than the standard 2) are fixed, so that it is always in the guest KSeg0
segment.

Also add CP0_EBASE to the KVM one_reg interface so it can be accessed by
userland, also allowing the CPU number field to be written (which isn't
permitted by the guest).

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:21:30 +00:00
James Hogan 654229a024 KVM: MIPS/T&E: Move CP0 register access into T&E
Access to various CP0 registers via the KVM register access API needs to
be implementation specific to allow restrictions to be made on changes,
for example when VZ guest registers aren't present, so move them all
into trap_emul.c in preparation for VZ.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:21:30 +00:00
James Hogan 230c57244c KVM: MIPS: Claim KVM_CAP_READONLY_MEM support
Now that load/store faults due to read only memory regions are treated
as MMIO accesses it is safe to claim support for read only memory
regions (KVM_CAP_READONLY_MEM).

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:21:29 +00:00
James Hogan 411740f542 KVM: MIPS/MMU: Implement KVM_CAP_SYNC_MMU
Implement the SYNC_MMU capability for KVM MIPS, allowing changes in the
underlying user host virtual address (HVA) mappings to be promptly
reflected in the corresponding guest physical address (GPA) mappings.

This allows for several features to work with guest RAM which require
mappings to be altered or protected, such as copy-on-write, KSM (Kernel
Samepage Merging), idle page tracking, memory swapping, and guest memory
ballooning.

There are two main aspects of this change, described below.

The KVM MMU notifier architecture callbacks are implemented so we can be
notified of changes in the HVA mappings. These arrange for the guest
physical address (GPA) page tables to be modified and possibly for
derived mappings (GVA page tables and TLBs) to be flushed.

 - kvm_unmap_hva[_range]() - These deal with HVA mappings being removed,
   for example before a copy-on-write takes place, which requires the
   corresponding GPA page table mappings to be removed too.

 - kvm_set_spte_hva() - These update a GPA page table entry to match the
   new HVA entry, but must be careful to respect KVM specific
   configuration such as not dirtying a clean guest page which is dirty
   to the host, and write protecting writable pages in read only
   memslots (which will soon be supported).

 - kvm[_test]_age_hva() - These update GPA page table entries to be old
   (invalid) so that access can be tracked, making them young again.

The GPA page fault handling (kvm_mips_map_page) is updated to use
gfn_to_pfn_prot() (which may provide read-only pages), to handle
asynchronous page table invalidation from MMU notifier callbacks, and to
handle more cases in the fast path.

 - mmu_notifier_seq is used to detect asynchronous page table
   invalidations while we're holding a pfn from gfn_to_pfn_prot()
   outside of kvm->mmu_lock, retrying if invalidations have taken place,
   e.g. a COW or a KSM page merge.

 - The fast path (_kvm_mips_map_page_fast) now handles marking old pages
   as young / accessed, and disallowing dirtying of clean pages that
   aren't actually writable (e.g. shared pages that should COW, and
   read-only memory regions when they are enabled in a future patch).

 - Due to the use of MMU notifications we no longer need to keep the
   page references after we've updated the GPA page tables.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:21:28 +00:00
James Hogan f9b11e51f8 KVM: MIPS/MMU: Pass GPA PTE bits to mapped GVA PTEs
Propagate the GPA PTE protection bits on to the GVA PTEs on a mapped
fault (except _PAGE_WRITE, and filtered by the guest TLB entry), rather
than always overriding the protection. This allows dirty page tracking
to work in mapped guest segments as a clear dirty bit in the GPA PTE
will propagate to the GVA PTEs even when the guest TLB has the dirty bit
set.

Since the filtering of protection bits is now abstracted, if the buddy
GVA PTE is also valid, we obtain the corresponding GPA PTE using a
simple non-allocating walk and load that into the GVA PTE similarly
(which may itself be invalid).

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:21:27 +00:00
James Hogan b584f460e6 KVM: MIPS/MMU: Pass GPA PTE bits to KSeg0 GVA PTEs
Propagate the GPA PTE protection bits on to the GVA PTEs on a KSeg0
fault (except _PAGE_WRITE), rather than always overriding the
protection. This allows dirty page tracking to work in KSeg0 as a clear
dirty bit in the GPA PTE will propagate to the GVA PTEs.

This makes it simpler to use a single kvm_mips_map_page() to obtain both
the main GPA PTE and its buddy (which may be invalid), which also allows
memory regions to be fully accessible when they don't start and end on a
2*PAGE_SIZE boundary.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:21:26 +00:00
James Hogan b5f1dd1ba4 KVM: MIPS/MMU: Handle dirty logging on GPA faults
Update kvm_mips_map_page() to handle logging of dirty guest physical
pages. Upcoming patches will propagate the dirty bit to the GVA page
tables.

A fast path is added for handling protection bits that can be resolved
without calling into KVM, currently just dirtying of clean pages being
written to.

The slow path marks the GPA page table entry writable only on writes,
and at the same time marks the page dirty in the dirty page logging
bitmask.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:21:25 +00:00
James Hogan a1ac9e17b7 KVM: MIPS: Clean & flush on dirty page logging enable
When an existing memory region has dirty page logging enabled, make the
entire slot clean (read only) so that writes will immediately start
logging dirty pages (once the dirty bit is transferred from GPA to GVA
page tables in an upcoming patch).

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:21:24 +00:00
James Hogan e88643ba1a KVM: MIPS/MMU: Use generic dirty log & protect helper
MIPS hasn't up to this point properly supported dirty page logging, as
pages in slots with dirty logging enabled aren't made clean, and tlbmod
exceptions from writes to clean pages have been assumed to be due to
guest TLB protection and unconditionally passed to the guest.

Use the generic dirty logging helper kvm_get_dirty_log_protect() to
properly implement kvm_vm_ioctl_get_dirty_log(), similar to how ARM
does. This uses xchg to clear the dirty bits when reading them, rather
than wiping them out afterwards with a memset, which would potentially
wipe recently set bits that weren't caught by kvm_get_dirty_log(). It
also makes the pages clean again using the
kvm_arch_mmu_enable_log_dirty_pt_masked() architecture callback so that
further writes after the shadow memslot is flushed will trigger tlbmod
exceptions and dirty handling.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:21:23 +00:00