"Post-hooks" are hooks that are called right before returning from
sys_bind. At this time IP and port are already allocated and no further
changes to `struct sock` can happen before returning from sys_bind but
BPF program has a chance to inspect the socket and change sys_bind
result.
Specifically it can e.g. inspect what port was allocated and if it
doesn't satisfy some policy, BPF program can force sys_bind to fail and
return EPERM to user.
Another example of usage is recording the IP:port pair to some map to
use it in later calls to sys_connect. E.g. if some TCP server inside
cgroup was bound to some IP:port_n, it can be recorded to a map. And
later when some TCP client inside same cgroup is trying to connect to
127.0.0.1:port_n, BPF hook for sys_connect can override the destination
and connect application to IP:port_n instead of 127.0.0.1:port_n. That
helps forcing all applications inside a cgroup to use desired IP and not
break those applications if they e.g. use localhost to communicate
between each other.
== Implementation details ==
Post-hooks are implemented as two new attach types
`BPF_CGROUP_INET4_POST_BIND` and `BPF_CGROUP_INET6_POST_BIND` for
existing prog type `BPF_PROG_TYPE_CGROUP_SOCK`.
Separate attach types for IPv4 and IPv6 are introduced to avoid access
to IPv6 field in `struct sock` from `inet_bind()` and to IPv4 field from
`inet6_bind()` since those fields might not make sense in such cases.
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
== The problem ==
See description of the problem in the initial patch of this patch set.
== The solution ==
The patch provides much more reliable in-kernel solution for the 2nd
part of the problem: making outgoing connecttion from desired IP.
It adds new attach types `BPF_CGROUP_INET4_CONNECT` and
`BPF_CGROUP_INET6_CONNECT` for program type
`BPF_PROG_TYPE_CGROUP_SOCK_ADDR` that can be used to override both
source and destination of a connection at connect(2) time.
Local end of connection can be bound to desired IP using newly
introduced BPF-helper `bpf_bind()`. It allows to bind to only IP though,
and doesn't support binding to port, i.e. leverages
`IP_BIND_ADDRESS_NO_PORT` socket option. There are two reasons for this:
* looking for a free port is expensive and can affect performance
significantly;
* there is no use-case for port.
As for remote end (`struct sockaddr *` passed by user), both parts of it
can be overridden, remote IP and remote port. It's useful if an
application inside cgroup wants to connect to another application inside
same cgroup or to itself, but knows nothing about IP assigned to the
cgroup.
Support is added for IPv4 and IPv6, for TCP and UDP.
IPv4 and IPv6 have separate attach types for same reason as sys_bind
hooks, i.e. to prevent reading from / writing to e.g. user_ip6 fields
when user passes sockaddr_in since it'd be out-of-bound.
== Implementation notes ==
The patch introduces new field in `struct proto`: `pre_connect` that is
a pointer to a function with same signature as `connect` but is called
before it. The reason is in some cases BPF hooks should be called way
before control is passed to `sk->sk_prot->connect`. Specifically
`inet_dgram_connect` autobinds socket before calling
`sk->sk_prot->connect` and there is no way to call `bpf_bind()` from
hooks from e.g. `ip4_datagram_connect` or `ip6_datagram_connect` since
it'd cause double-bind. On the other hand `proto.pre_connect` provides a
flexible way to add BPF hooks for connect only for necessary `proto` and
call them at desired time before `connect`. Since `bpf_bind()` is
allowed to bind only to IP and autobind in `inet_dgram_connect` binds
only port there is no chance of double-bind.
bpf_bind() sets `force_bind_address_no_port` to bind to only IP despite
of value of `bind_address_no_port` socket field.
bpf_bind() sets `with_lock` to `false` when calling to __inet_bind()
and __inet6_bind() since all call-sites, where bpf_bind() is called,
already hold socket lock.
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
== The problem ==
There is a use-case when all processes inside a cgroup should use one
single IP address on a host that has multiple IP configured. Those
processes should use the IP for both ingress and egress, for TCP and UDP
traffic. So TCP/UDP servers should be bound to that IP to accept
incoming connections on it, and TCP/UDP clients should make outgoing
connections from that IP. It should not require changing application
code since it's often not possible.
Currently it's solved by intercepting glibc wrappers around syscalls
such as `bind(2)` and `connect(2)`. It's done by a shared library that
is preloaded for every process in a cgroup so that whenever TCP/UDP
server calls `bind(2)`, the library replaces IP in sockaddr before
passing arguments to syscall. When application calls `connect(2)` the
library transparently binds the local end of connection to that IP
(`bind(2)` with `IP_BIND_ADDRESS_NO_PORT` to avoid performance penalty).
Shared library approach is fragile though, e.g.:
* some applications clear env vars (incl. `LD_PRELOAD`);
* `/etc/ld.so.preload` doesn't help since some applications are linked
with option `-z nodefaultlib`;
* other applications don't use glibc and there is nothing to intercept.
== The solution ==
The patch provides much more reliable in-kernel solution for the 1st
part of the problem: binding TCP/UDP servers on desired IP. It does not
depend on application environment and implementation details (whether
glibc is used or not).
It adds new eBPF program type `BPF_PROG_TYPE_CGROUP_SOCK_ADDR` and
attach types `BPF_CGROUP_INET4_BIND` and `BPF_CGROUP_INET6_BIND`
(similar to already existing `BPF_CGROUP_INET_SOCK_CREATE`).
The new program type is intended to be used with sockets (`struct sock`)
in a cgroup and provided by user `struct sockaddr`. Pointers to both of
them are parts of the context passed to programs of newly added types.
The new attach types provides hooks in `bind(2)` system call for both
IPv4 and IPv6 so that one can write a program to override IP addresses
and ports user program tries to bind to and apply such a program for
whole cgroup.
== Implementation notes ==
[1]
Separate attach types for `AF_INET` and `AF_INET6` are added
intentionally to prevent reading/writing to offsets that don't make
sense for corresponding socket family. E.g. if user passes `sockaddr_in`
it doesn't make sense to read from / write to `user_ip6[]` context
fields.
[2]
The write access to `struct bpf_sock_addr_kern` is implemented using
special field as an additional "register".
There are just two registers in `sock_addr_convert_ctx_access`: `src`
with value to write and `dst` with pointer to context that can't be
changed not to break later instructions. But the fields, allowed to
write to, are not available directly and to access them address of
corresponding pointer has to be loaded first. To get additional register
the 1st not used by `src` and `dst` one is taken, its content is saved
to `bpf_sock_addr_kern.tmp_reg`, then the register is used to load
address of pointer field, and finally the register's content is restored
from the temporary field after writing `src` value.
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
== The problem ==
There are use-cases when a program of some type can be attached to
multiple attach points and those attach points must have different
permissions to access context or to call helpers.
E.g. context structure may have fields for both IPv4 and IPv6 but it
doesn't make sense to read from / write to IPv6 field when attach point
is somewhere in IPv4 stack.
Same applies to BPF-helpers: it may make sense to call some helper from
some attach point, but not from other for same prog type.
== The solution ==
Introduce `expected_attach_type` field in in `struct bpf_attr` for
`BPF_PROG_LOAD` command. If scenario described in "The problem" section
is the case for some prog type, the field will be checked twice:
1) At load time prog type is checked to see if attach type for it must
be known to validate program permissions correctly. Prog will be
rejected with EINVAL if it's the case and `expected_attach_type` is
not specified or has invalid value.
2) At attach time `attach_type` is compared with `expected_attach_type`,
if prog type requires to have one, and, if they differ, attach will
be rejected with EINVAL.
The `expected_attach_type` is now available as part of `struct bpf_prog`
in both `bpf_verifier_ops->is_valid_access()` and
`bpf_verifier_ops->get_func_proto()` () and can be used to check context
accesses and calls to helpers correspondingly.
Initially the idea was discussed by Alexei Starovoitov <ast@fb.com> and
Daniel Borkmann <daniel@iogearbox.net> here:
https://marc.info/?l=linux-netdev&m=152107378717201&w=2
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Introduce BPF_PROG_TYPE_RAW_TRACEPOINT bpf program type to access
kernel internal arguments of the tracepoints in their raw form.
>From bpf program point of view the access to the arguments look like:
struct bpf_raw_tracepoint_args {
__u64 args[0];
};
int bpf_prog(struct bpf_raw_tracepoint_args *ctx)
{
// program can read args[N] where N depends on tracepoint
// and statically verified at program load+attach time
}
kprobe+bpf infrastructure allows programs access function arguments.
This feature allows programs access raw tracepoint arguments.
Similar to proposed 'dynamic ftrace events' there are no abi guarantees
to what the tracepoints arguments are and what their meaning is.
The program needs to type cast args properly and use bpf_probe_read()
helper to access struct fields when argument is a pointer.
For every tracepoint __bpf_trace_##call function is prepared.
In assembler it looks like:
(gdb) disassemble __bpf_trace_xdp_exception
Dump of assembler code for function __bpf_trace_xdp_exception:
0xffffffff81132080 <+0>: mov %ecx,%ecx
0xffffffff81132082 <+2>: jmpq 0xffffffff811231f0 <bpf_trace_run3>
where
TRACE_EVENT(xdp_exception,
TP_PROTO(const struct net_device *dev,
const struct bpf_prog *xdp, u32 act),
The above assembler snippet is casting 32-bit 'act' field into 'u64'
to pass into bpf_trace_run3(), while 'dev' and 'xdp' args are passed as-is.
All of ~500 of __bpf_trace_*() functions are only 5-10 byte long
and in total this approach adds 7k bytes to .text.
This approach gives the lowest possible overhead
while calling trace_xdp_exception() from kernel C code and
transitioning into bpf land.
Since tracepoint+bpf are used at speeds of 1M+ events per second
this is valuable optimization.
The new BPF_RAW_TRACEPOINT_OPEN sys_bpf command is introduced
that returns anon_inode FD of 'bpf-raw-tracepoint' object.
The user space looks like:
// load bpf prog with BPF_PROG_TYPE_RAW_TRACEPOINT type
prog_fd = bpf_prog_load(...);
// receive anon_inode fd for given bpf_raw_tracepoint with prog attached
raw_tp_fd = bpf_raw_tracepoint_open("xdp_exception", prog_fd);
Ctrl-C of tracing daemon or cmdline tool that uses this feature
will automatically detach bpf program, unload it and
unregister tracepoint probe.
On the kernel side the __bpf_raw_tp_map section of pointers to
tracepoint definition and to __bpf_trace_*() probe function is used
to find a tracepoint with "xdp_exception" name and
corresponding __bpf_trace_xdp_exception() probe function
which are passed to tracepoint_probe_register() to connect probe
with tracepoint.
Addition of bpf_raw_tracepoint doesn't interfere with ftrace and perf
tracepoint mechanisms. perf_event_open() can be used in parallel
on the same tracepoint.
Multiple bpf_raw_tracepoint_open("xdp_exception", prog_fd) are permitted.
Each with its own bpf program. The kernel will execute
all tracepoint probes and all attached bpf programs.
In the future bpf_raw_tracepoints can be extended with
query/introspection logic.
__bpf_raw_tp_map section logic was contributed by Steven Rostedt
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Generally we do a preload before doing idr allocation. This also help
improve the allocation success rate in memory pressure.
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Fun set of conflict resolutions here...
For the mac80211 stuff, these were fortunately just parallel
adds. Trivially resolved.
In drivers/net/phy/phy.c we had a bug fix in 'net' that moved the
function phy_disable_interrupts() earlier in the file, whilst in
'net-next' the phy_error() call from this function was removed.
In net/ipv4/xfrm4_policy.c, David Ahern's changes to remove the
'rt_table_id' member of rtable collided with a bug fix in 'net' that
added a new struct member "rt_mtu_locked" which needs to be copied
over here.
The mlxsw driver conflict consisted of net-next separating
the span code and definitions into separate files, whilst
a 'net' bug fix made some changes to that moved code.
The mlx5 infiniband conflict resolution was quite non-trivial,
the RDMA tree's merge commit was used as a guide here, and
here are their notes:
====================
Due to bug fixes found by the syzkaller bot and taken into the for-rc
branch after development for the 4.17 merge window had already started
being taken into the for-next branch, there were fairly non-trivial
merge issues that would need to be resolved between the for-rc branch
and the for-next branch. This merge resolves those conflicts and
provides a unified base upon which ongoing development for 4.17 can
be based.
Conflicts:
drivers/infiniband/hw/mlx5/main.c - Commit 42cea83f95
(IB/mlx5: Fix cleanup order on unload) added to for-rc and
commit b5ca15ad7e (IB/mlx5: Add proper representors support)
add as part of the devel cycle both needed to modify the
init/de-init functions used by mlx5. To support the new
representors, the new functions added by the cleanup patch
needed to be made non-static, and the init/de-init list
added by the representors patch needed to be modified to
match the init/de-init list changes made by the cleanup
patch.
Updates:
drivers/infiniband/hw/mlx5/mlx5_ib.h - Update function
prototypes added by representors patch to reflect new function
names as changed by cleanup patch
drivers/infiniband/hw/mlx5/ib_rep.c - Update init/de-init
stage list to match new order from cleanup patch
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
The current check statement in BPF syscall will do a capability check
for CAP_SYS_ADMIN before checking sysctl_unprivileged_bpf_disabled. This
code path will trigger unnecessary security hooks on capability checking
and cause false alarms on unprivileged process trying to get CAP_SYS_ADMIN
access. This can be resolved by simply switch the order of the statement
and CAP_SYS_ADMIN is not required anyway if unprivileged bpf syscall is
allowed.
Signed-off-by: Chenbo Feng <fengc@google.com>
Acked-by: Lorenzo Colitti <lorenzo@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
This implements a BPF ULP layer to allow policy enforcement and
monitoring at the socket layer. In order to support this a new
program type BPF_PROG_TYPE_SK_MSG is used to run the policy at
the sendmsg/sendpage hook. To attach the policy to sockets a
sockmap is used with a new program attach type BPF_SK_MSG_VERDICT.
Similar to previous sockmap usages when a sock is added to a
sockmap, via a map update, if the map contains a BPF_SK_MSG_VERDICT
program type attached then the BPF ULP layer is created on the
socket and the attached BPF_PROG_TYPE_SK_MSG program is run for
every msg in sendmsg case and page/offset in sendpage case.
BPF_PROG_TYPE_SK_MSG Semantics/API:
BPF_PROG_TYPE_SK_MSG supports only two return codes SK_PASS and
SK_DROP. Returning SK_DROP free's the copied data in the sendmsg
case and in the sendpage case leaves the data untouched. Both cases
return -EACESS to the user. Returning SK_PASS will allow the msg to
be sent.
In the sendmsg case data is copied into kernel space buffers before
running the BPF program. The kernel space buffers are stored in a
scatterlist object where each element is a kernel memory buffer.
Some effort is made to coalesce data from the sendmsg call here.
For example a sendmsg call with many one byte iov entries will
likely be pushed into a single entry. The BPF program is run with
data pointers (start/end) pointing to the first sg element.
In the sendpage case data is not copied. We opt not to copy the
data by default here, because the BPF infrastructure does not
know what bytes will be needed nor when they will be needed. So
copying all bytes may be wasteful. Because of this the initial
start/end data pointers are (0,0). Meaning no data can be read or
written. This avoids reading data that may be modified by the
user. A new helper is added later in this series if reading and
writing the data is needed. The helper call will do a copy by
default so that the page is exclusively owned by the BPF call.
The verdict from the BPF_PROG_TYPE_SK_MSG applies to the entire msg
in the sendmsg() case and the entire page/offset in the sendpage case.
This avoids ambiguity on how to handle mixed return codes in the
sendmsg case. Again a helper is added later in the series if
a verdict needs to apply to multiple system calls and/or only
a subpart of the currently being processed message.
The helper msg_redirect_map() can be used to select the socket to
send the data on. This is used similar to existing redirect use
cases. This allows policy to redirect msgs.
Pseudo code simple example:
The basic logic to attach a program to a socket is as follows,
// load the programs
bpf_prog_load(SOCKMAP_TCP_MSG_PROG, BPF_PROG_TYPE_SK_MSG,
&obj, &msg_prog);
// lookup the sockmap
bpf_map_msg = bpf_object__find_map_by_name(obj, "my_sock_map");
// get fd for sockmap
map_fd_msg = bpf_map__fd(bpf_map_msg);
// attach program to sockmap
bpf_prog_attach(msg_prog, map_fd_msg, BPF_SK_MSG_VERDICT, 0);
Adding sockets to the map is done in the normal way,
// Add a socket 'fd' to sockmap at location 'i'
bpf_map_update_elem(map_fd_msg, &i, fd, BPF_ANY);
After the above any socket attached to "my_sock_map", in this case
'fd', will run the BPF msg verdict program (msg_prog) on every
sendmsg and sendpage system call.
For a complete example see BPF selftests or sockmap samples.
Implementation notes:
It seemed the simplest, to me at least, to use a refcnt to ensure
psock is not lost across the sendmsg copy into the sg, the bpf program
running on the data in sg_data, and the final pass to the TCP stack.
Some performance testing may show a better method to do this and avoid
the refcnt cost, but for now use the simpler method.
Another item that will come after basic support is in place is
supporting MSG_MORE flag. At the moment we call sendpages even if
the MSG_MORE flag is set. An enhancement would be to collect the
pages into a larger scatterlist and pass down the stack. Notice that
bpf_tcp_sendmsg() could support this with some additional state saved
across sendmsg calls. I built the code to support this without having
to do refactoring work. Other features TBD include ZEROCOPY and the
TCP_RECV_QUEUE/TCP_NO_QUEUE support. This will follow initial series
shortly.
Future work could improve size limits on the scatterlist rings used
here. Currently, we use MAX_SKB_FRAGS simply because this was being
used already in the TLS case. Future work could extend the kernel sk
APIs to tune this depending on workload. This is a trade-off
between memory usage and throughput performance.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tell user space about device on which the map was created.
Unfortunate reality of user ABI makes sharing this code
with program offload difficult but the information is the
same.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
in order to improve test coverage allow socket_filter program type
to be run via bpf_prog_test_run command.
Since such programs can be loaded by non-root tighten
permissions for bpf_prog_test_run to be root only
to avoid surprises.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
For host JIT, there are "jited_len"/"bpf_func" fields in struct bpf_prog
used by all host JIT targets to get jited image and it's length. While for
offload, targets are likely to have different offload mechanisms that these
info are kept in device private data fields.
Therefore, BPF_OBJ_GET_INFO_BY_FD syscall needs an unified way to get JIT
length and contents info for offload targets.
One way is to introduce new callback to parse device private data then fill
those fields in bpf_prog_info. This might be a little heavy, the other way
is to add generic fields which will be initialized by all offload targets.
This patch follow the second approach to introduce two new fields in
struct bpf_dev_offload and teach bpf_prog_get_info_by_fd about them to fill
correct jited_prog_len and jited_prog_insns in bpf_prog_info.
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
BPF map offload follow similar path to program offload. At creation
time users may specify ifindex of the device on which they want to
create the map. Map will be validated by the kernel's
.map_alloc_check callback and device driver will be called for the
actual allocation. Map will have an empty set of operations
associated with it (save for alloc and free callbacks). The real
device callbacks are kept in map->offload->dev_ops because they
have slightly different signatures. Map operations are called in
process context so the driver may communicate with HW freely,
msleep(), wait() etc.
Map alloc and free callbacks are muxed via existing .ndo_bpf, and
are always called with rtnl lock held. Maps and programs are
guaranteed to be destroyed before .ndo_uninit (i.e. before
unregister_netdev() returns). Map callbacks are invoked with
bpf_devs_lock *read* locked, drivers must take care of exclusive
locking if necessary.
All offload-specific branches are marked with unlikely() (through
bpf_map_is_dev_bound()), given that branch penalty will be
negligible compared to IO anyway, and we don't want to penalize
SW path unnecessarily.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
All map types reimplement the field-by-field copy of union bpf_attr
members into struct bpf_map. Add a helper to perform this operation.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
.map_alloc callbacks contain a number of checks validating user-
-provided map attributes against constraints of a particular map
type. For offloaded maps we will need to check map attributes
without actually allocating any memory on the host. Add a new
callback for validating attributes before any memory is allocated.
This callback can be selectively implemented by map types for
sharing code with offloads, or simply to separate the logical
steps of validation and allocation.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Descriptor table is a shared object; it's not a place where you can
stick temporary references to files, especially when we don't need
an opened file at all.
Cc: stable@vger.kernel.org # v4.14
Fixes: 98589a0998 ("netfilter: xt_bpf: Fix XT_BPF_MODE_FD_PINNED mode of 'xt_bpf_info_v1'")
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Report to the user ifindex and namespace information of offloaded
programs. If device has disappeared return -ENODEV. Specify the
namespace using dev/inode combination.
CC: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Bound programs are quite useless after their device disappears.
They are simply waiting for reference count to go to zero,
don't list them in BPF_PROG_GET_NEXT_ID by freeing their ID
early.
Note that orphaned offload programs will return -ENODEV on
BPF_OBJ_GET_INFO_BY_FD so user will never see ID 0.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
We currently use aux->offload to indicate that program is bound
to a specific device. This forces us to keep the offload structure
around even after the device is gone. Add a bool member to
struct bpf_prog_aux to indicate if offload was requested.
Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Right now kallsyms handling is not working with JITed subprogs.
The reason is that when in 1c2a088a66 ("bpf: x64: add JIT support
for multi-function programs") in jit_subprogs() they are passed
to bpf_prog_kallsyms_add(), then their prog type is 0, which BPF
core will think it's a cBPF program as only cBPF programs have a
0 type. Thus, they need to inherit the type from the main prog.
Once that is fixed, they are indeed added to the BPF kallsyms
infra, but their tag is 0. Therefore, since intention is to add
them as bpf_prog_F_<tag>, we need to pass them to bpf_prog_calc_tag()
first. And once this is resolved, there is a use-after-free on
prog cleanup: we remove the kallsyms entry from the main prog,
later walk all subprogs and call bpf_jit_free() on them. However,
the kallsyms linkage was never released on them. Thus, do that
for all subprogs right in __bpf_prog_put() when refcount hits 0.
Fixes: 1c2a088a66 ("bpf: x64: add JIT support for multi-function programs")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Typical JIT does several passes over bpf instructions to
compute total size and relative offsets of jumps and calls.
With multitple bpf functions calling each other all relative calls
will have invalid offsets intially therefore we need to additional
last pass over the program to emit calls with correct offsets.
For example in case of three bpf functions:
main:
call foo
call bpf_map_lookup
exit
foo:
call bar
exit
bar:
exit
We will call bpf_int_jit_compile() indepedently for main(), foo() and bar()
x64 JIT typically does 4-5 passes to converge.
After these initial passes the image for these 3 functions
will be good except call targets, since start addresses of
foo() and bar() are unknown when we were JITing main()
(note that call bpf_map_lookup will be resolved properly
during initial passes).
Once start addresses of 3 functions are known we patch
call_insn->imm to point to right functions and call
bpf_int_jit_compile() again which needs only one pass.
Additional safety checks are done to make sure this
last pass doesn't produce image that is larger or smaller
than previous pass.
When constant blinding is on it's applied to all functions
at the first pass, since doing it once again at the last
pass can change size of the JITed code.
Tested on x64 and arm64 hw with JIT on/off, blinding on/off.
x64 jits bpf-to-bpf calls correctly while arm64 falls back to interpreter.
All other JITs that support normal BPF_CALL will behave the same way
since bpf-to-bpf call is equivalent to bpf-to-kernel call from
JITs point of view.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
This reverts commit bd601b6ada ("bpf: report offload info to user
space"). The ifindex by itself is not sufficient, we should provide
information on which network namespace this ifindex belongs to.
After considering some options we concluded that it's best to just
remove this API for now, and rework it in -next.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
bpf_prog_get_type() is identical to bpf_prog_get_type_dev(),
with false passed as attach_drv. Instead of keeping it as
an exported symbol turn it into static inline wrapper.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
With TC shared block changes we can't depend on correct netdev
pointer being available in cls_bpf. Move the device validation
to the driver. Core will only make sure that offloaded programs
are always attached in the driver (or in HW by the driver). We
trust that drivers which implement offload callbacks will perform
necessary checks.
Moving the checks to the driver is generally a useful thing,
in practice the check should be against a switchdev instance,
not a netdev, given that most ASICs will probably allow using
the same program on many ports.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
bpf_target_prog seems long and clunky, rename it to prog_ifindex.
We don't want to call this field just ifindex, because maps
may need a similar field in the future and bpf_attr members for
programs and maps are unnamed.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cgroup v2 lacks the device controller, provided by cgroup v1.
This patch adds a new eBPF program type, which in combination
of previously added ability to attach multiple eBPF programs
to a cgroup, will provide a similar functionality, but with some
additional flexibility.
This patch introduces a BPF_PROG_TYPE_CGROUP_DEVICE program type.
A program takes major and minor device numbers, device type
(block/character) and access type (mknod/read/write) as parameters
and returns an integer which defines if the operation should be
allowed or terminated with -EPERM.
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
If TC program is loaded with skip_sw flag, we should allow
the device-specific programs to be accepted.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Simon Horman <simon.horman@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Pass the netdev pointer to bpf_prog_get_type(). This way
BPF code can decide whether the device matches what the
code was loaded/translated for.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Simon Horman <simon.horman@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Extend struct bpf_prog_info to contain information about program
being bound to a device. Since the netdev may get destroyed while
program still exists we need a flag to indicate the program is
loaded for a device, even if the device is gone.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Simon Horman <simon.horman@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The fact that we don't know which device the program is going
to be used on is quite limiting in current eBPF infrastructure.
We have to reverse or limit the changes which kernel makes to
the loaded bytecode if we want it to be offloaded to a networking
device. We also have to invent new APIs for debugging and
troubleshooting support.
Make it possible to load programs for a specific netdev. This
helps us to bring the debug information closer to the core
eBPF infrastructure (e.g. we will be able to reuse the verifer
log in device JIT). It allows device JITs to perform translation
on the original bytecode.
__bpf_prog_get() when called to get a reference for an attachment
point will now refuse to give it if program has a device assigned.
Following patches will add a version of that function which passes
the expected netdev in. @type argument in __bpf_prog_get() is
renamed to attach_type to make it clearer that it's only set on
attachment.
All calls to ndo_bpf are protected by rtnl, only verifier callbacks
are not. We need a wait queue to make sure netdev doesn't get
destroyed while verifier is still running and calling its driver.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Simon Horman <simon.horman@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Introduce a bpf object related check when sending and receiving files
through unix domain socket as well as binder. It checks if the receiving
process have privilege to read/write the bpf map or use the bpf program.
This check is necessary because the bpf maps and programs are using a
anonymous inode as their shared inode so the normal way of checking the
files and sockets when passing between processes cannot work properly on
eBPF object. This check only works when the BPF_SYSCALL is configured.
Signed-off-by: Chenbo Feng <fengc@google.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Reviewed-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Introduce several LSM hooks for the syscalls that will allow the
userspace to access to eBPF object such as eBPF programs and eBPF maps.
The security check is aimed to enforce a per object security protection
for eBPF object so only processes with the right priviliges can
read/write to a specific map or use a specific eBPF program. Besides
that, a general security hook is added before the multiplexer of bpf
syscall to check the cmd and the attribute used for the command. The
actual security module can decide which command need to be checked and
how the cmd should be checked.
Signed-off-by: Chenbo Feng <fengc@google.com>
Acked-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Introduce the map read/write flags to the eBPF syscalls that returns the
map fd. The flags is used to set up the file mode when construct a new
file descriptor for bpf maps. To not break the backward capability, the
f_flags is set to O_RDWR if the flag passed by syscall is 0. Otherwise
it should be O_RDONLY or O_WRONLY. When the userspace want to modify or
read the map content, it will check the file mode to see if it is
allowed to make the change.
Signed-off-by: Chenbo Feng <fengc@google.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Since the verifier ops don't have to be associated with
the program for its entire lifetime we can move it to
verifier's struct bpf_verifier_env.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
struct bpf_verifier_ops contains both verifier ops and operations
used later during program's lifetime (test_run). Split the runtime
ops into a different structure.
BPF_PROG_TYPE() will now append ## _prog_ops or ## _verifier_ops
to the names.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
The 'cpumap' is primarily used as a backend map for XDP BPF helper
call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
This patch implement the main part of the map. It is not connected to
the XDP redirect system yet, and no SKB allocation are done yet.
The main concern in this patch is to ensure the datapath can run
without any locking. This adds complexity to the setup and tear-down
procedure, which assumptions are extra carefully documented in the
code comments.
V2:
- make sure array isn't larger than NR_CPUS
- make sure CPUs added is a valid possible CPU
V3: fix nitpicks from Jakub Kicinski <kubakici@wp.pl>
V5:
- Restrict map allocation to root / CAP_SYS_ADMIN
- WARN_ON_ONCE if queue is not empty on tear-down
- Return -EPERM on memlock limit instead of -ENOMEM
- Error code in __cpu_map_entry_alloc() also handle ptr_ring_cleanup()
- Moved cpu_map_enqueue() to next patch
V6: all notice by Daniel Borkmann
- Fix err return code in cpu_map_alloc() introduced in V5
- Move cpu_possible() check after max_entries boundary check
- Forbid usage initially in check_map_func_compatibility()
V7:
- Fix alloc error path spotted by Daniel Borkmann
- Did stress test adding+removing CPUs from the map concurrently
- Fixed refcnt issue on cpu_map_entry, kthread started too soon
- Make sure packets are flushed during tear-down, involved use of
rcu_barrier() and kthread_run only exit after queue is empty
- Fix alloc error path in __cpu_map_entry_alloc() for ptr_ring
V8:
- Nitpicking comments and gramma by Edward Cree
- Fix missing semi-colon introduced in V7 due to rebasing
- Move struct bpf_cpu_map_entry members cpu+map_id to tracepoint patch
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
During get_info_by_fd, the prog/map name is memcpy-ed. It depends
on the prog->aux->name and map->name to be zero initialized.
bpf_prog_aux is easy to guarantee that aux->name is zero init.
The name in bpf_map may be harder to be guaranteed in the future when
new map type is added.
Hence, this patch makes bpf_obj_name_cpy() to always zero init
the prog/map name.
Suggested-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
introduce BPF_PROG_QUERY command to retrieve a set of either
attached programs to given cgroup or a set of effective programs
that will execute for events within a cgroup
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
for cgroup bits
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
introduce BPF_F_ALLOW_MULTI flag that can be used to attach multiple
bpf programs to a cgroup.
The difference between three possible flags for BPF_PROG_ATTACH command:
- NONE(default): No further bpf programs allowed in the subtree.
- BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program,
the program in this cgroup yields to sub-cgroup program.
- BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program,
that cgroup program gets run in addition to the program in this cgroup.
NONE and BPF_F_ALLOW_OVERRIDE existed before. This patch doesn't
change their behavior. It only clarifies the semantics in relation
to new flag.
Only one program is allowed to be attached to a cgroup with
NONE or BPF_F_ALLOW_OVERRIDE flag.
Multiple programs are allowed to be attached to a cgroup with
BPF_F_ALLOW_MULTI flag. They are executed in FIFO order
(those that were attached first, run first)
The programs of sub-cgroup are executed first, then programs of
this cgroup and then programs of parent cgroup.
All eligible programs are executed regardless of return code from
earlier programs.
To allow efficient execution of multiple programs attached to a cgroup
and to avoid penalizing cgroups without any programs attached
introduce 'struct bpf_prog_array' which is RCU protected array
of pointers to bpf programs.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
for cgroup bits
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch uses u64_to_user_ptr() to cast info.map_ids to a userspace ptr.
It also tags the user_map_ids with '__user' for sparse check.
Fixes: cb4d2b3f03 ("bpf: Add name, load_time, uid and map_ids to bpf_prog_info")
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch allows userspace to specify a name for a map
during BPF_MAP_CREATE.
The map's name can later be exported to user space
via BPF_OBJ_GET_INFO_BY_FD.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Alexei Starovoitov <ast@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
The patch adds name and load_time to struct bpf_prog_aux. They
are also exported to bpf_prog_info.
The bpf_prog's name is passed by userspace during BPF_PROG_LOAD.
The kernel only stores the first (BPF_PROG_NAME_LEN - 1) bytes
and the name stored in the kernel is always \0 terminated.
The kernel will reject name that contains characters other than
isalnum() and '_'. It will also reject name that is not null
terminated.
The existing 'user->uid' of the bpf_prog_aux is also exported to
the bpf_prog_info as created_by_uid.
The existing 'used_maps' of the bpf_prog_aux is exported to
the newly added members 'nr_map_ids' and 'map_ids' of
the bpf_prog_info. On the input, nr_map_ids tells how
big the userspace's map_ids buffer is. On the output,
nr_map_ids tells the exact user_map_cnt and it will only
copy up to the userspace's map_ids buffer is allowed.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Alexei Starovoitov <ast@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
The bpf map sockmap supports adding programs via attach commands. This
patch adds the detach command to keep the API symmetric and allow
users to remove previously added programs. Otherwise the user would
have to delete the map and re-add it to get in this state.
This also adds a series of additional tests to capture detach operation
and also attaching/detaching invalid prog types.
API note: socks will run (or not run) programs depending on the state
of the map at the time the sock is added. We do not for example walk
the map and remove programs from previously attached socks.
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
In the initial sockmap API we provided strparser and verdict programs
using a single attach command by extending the attach API with a the
attach_bpf_fd2 field.
However, if we add other programs in the future we will be adding a
field for every new possible type, attach_bpf_fd(3,4,..). This
seems a bit clumsy for an API. So lets push the programs using two
new type fields.
BPF_SK_SKB_STREAM_PARSER
BPF_SK_SKB_STREAM_VERDICT
This has the advantage of having a readable name and can easily be
extended in the future.
Updates to samples and sockmap included here also generalize tests
slightly to support upcoming patch for multiple map support.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Fixes: 174a79ff95 ("bpf: sockmap with sk redirect support")
Suggested-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current map creation API does not allow to provide the numa-node
preference. The memory usually comes from where the map-creation-process
is running. The performance is not ideal if the bpf_prog is known to
always run in a numa node different from the map-creation-process.
One of the use case is sharding on CPU to different LRU maps (i.e.
an array of LRU maps). Here is the test result of map_perf_test on
the INNER_LRU_HASH_PREALLOC test if we force the lru map used by
CPU0 to be allocated from a remote numa node:
[ The machine has 20 cores. CPU0-9 at node 0. CPU10-19 at node 1 ]
># taskset -c 10 ./map_perf_test 512 8 1260000 8000000
5:inner_lru_hash_map_perf pre-alloc 1628380 events per sec
4:inner_lru_hash_map_perf pre-alloc 1626396 events per sec
3:inner_lru_hash_map_perf pre-alloc 1626144 events per sec
6:inner_lru_hash_map_perf pre-alloc 1621657 events per sec
2:inner_lru_hash_map_perf pre-alloc 1621534 events per sec
1:inner_lru_hash_map_perf pre-alloc 1620292 events per sec
7:inner_lru_hash_map_perf pre-alloc 1613305 events per sec
0:inner_lru_hash_map_perf pre-alloc 1239150 events per sec #<<<
After specifying numa node:
># taskset -c 10 ./map_perf_test 512 8 1260000 8000000
5:inner_lru_hash_map_perf pre-alloc 1629627 events per sec
3:inner_lru_hash_map_perf pre-alloc 1628057 events per sec
1:inner_lru_hash_map_perf pre-alloc 1623054 events per sec
6:inner_lru_hash_map_perf pre-alloc 1616033 events per sec
2:inner_lru_hash_map_perf pre-alloc 1614630 events per sec
4:inner_lru_hash_map_perf pre-alloc 1612651 events per sec
7:inner_lru_hash_map_perf pre-alloc 1609337 events per sec
0:inner_lru_hash_map_perf pre-alloc 1619340 events per sec #<<<
This patch adds one field, numa_node, to the bpf_attr. Since numa node 0
is a valid node, a new flag BPF_F_NUMA_NODE is also added. The numa_node
field is honored if and only if the BPF_F_NUMA_NODE flag is set.
Numa node selection is not supported for percpu map.
This patch does not change all the kmalloc. F.e.
'htab = kzalloc()' is not changed since the object
is small enough to stay in the cache.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>