Currently testmgr has separate encryption and decryption test vectors
for symmetric ciphers. That's massively redundant, since with few
exceptions (mostly mistakes, apparently), all decryption tests are
identical to the encryption tests, just with the input/result flipped.
Therefore, eliminate the redundancy by removing the decryption test
vectors and updating testmgr to test both encryption and decryption
using what used to be the encryption test vectors. Naming is adjusted
accordingly: each cipher_testvec now has a 'ptext' (plaintext), 'ctext'
(ciphertext), and 'len' instead of an 'input', 'result', 'ilen', and
'rlen'. Note that it was always the case that 'ilen == rlen'.
AES keywrap ("kw(aes)") is special because its IV is generated by the
encryption. Previously this was handled by specifying 'iv_out' for
encryption and 'iv' for decryption. To make it work cleanly with only
one set of test vectors, put the IV in 'iv', remove 'iv_out', and add a
boolean that indicates that the IV is generated by the encryption.
In total, this removes over 10000 lines from testmgr.h, with no
reduction in test coverage since prior patches already copied the few
unique decryption test vectors into the encryption test vectors.
This covers all algorithms that used 'struct cipher_testvec', e.g. any
block cipher in the ECB, CBC, CTR, XTS, LRW, CTS-CBC, PCBC, OFB, or
keywrap modes, and Salsa20 and ChaCha20. No change is made to AEAD
tests, though we probably can eliminate a similar redundancy there too.
The testmgr.h portion of this patch was automatically generated using
the following awk script, with some slight manual fixups on top (updated
'struct cipher_testvec' definition, updated a few comments, and fixed up
the AES keywrap test vectors):
BEGIN { OTHER = 0; ENCVEC = 1; DECVEC = 2; DECVEC_TAIL = 3; mode = OTHER }
/^static const struct cipher_testvec.*_enc_/ { sub("_enc", ""); mode = ENCVEC }
/^static const struct cipher_testvec.*_dec_/ { mode = DECVEC }
mode == ENCVEC && !/\.ilen[[:space:]]*=/ {
sub(/\.input[[:space:]]*=$/, ".ptext =")
sub(/\.input[[:space:]]*=/, ".ptext\t=")
sub(/\.result[[:space:]]*=$/, ".ctext =")
sub(/\.result[[:space:]]*=/, ".ctext\t=")
sub(/\.rlen[[:space:]]*=/, ".len\t=")
print
}
mode == DECVEC_TAIL && /[^[:space:]]/ { mode = OTHER }
mode == OTHER { print }
mode == ENCVEC && /^};/ { mode = OTHER }
mode == DECVEC && /^};/ { mode = DECVEC_TAIL }
Note that git's default diff algorithm gets confused by the testmgr.h
portion of this patch, and reports too many lines added and removed.
It's better viewed with 'git diff --minimal' (or 'git show --minimal'),
which reports "2 files changed, 919 insertions(+), 11723 deletions(-)".
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
One "kw(aes)" decryption test vector doesn't exactly match an encryption
test vector with input and result swapped. In preparation for removing
the decryption test vectors, add this test vector to the encryption test
vectors, so we don't lose any test coverage.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
None of the four "ecb(tnepres)" decryption test vectors exactly match an
encryption test vector with input and result swapped. In preparation
for removing the decryption test vectors, add these to the encryption
test vectors, so we don't lose any test coverage.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
One "cbc(des)" decryption test vector doesn't exactly match an
encryption test vector with input and result swapped. It's *almost* the
same as one, but the decryption version is "chunked" while the
encryption version is "unchunked". In preparation for removing the
decryption test vectors, make the encryption one both chunked and
unchunked, so we don't lose any test coverage.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Two "ecb(des)" decryption test vectors don't exactly match any of the
encryption test vectors with input and result swapped. In preparation
for removing the decryption test vectors, add these to the encryption
test vectors, so we don't lose any test coverage.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
crc32c has an unkeyed test vector but crc32 did not. Add the crc32c one
(which uses an empty input) to crc32 too, and also add a new one to both
that uses a nonempty input. These test vectors verify that crc32 and
crc32c implementations use the correct default initial state.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The Blackfin CRC driver was removed by commit 9678a8dc53 ("crypto:
bfin_crc - remove blackfin CRC driver"), but it was forgotten to remove
the corresponding "hmac(crc32)" test vectors. I see no point in keeping
them since nothing else appears to implement or use "hmac(crc32)", which
isn't an algorithm that makes sense anyway because HMAC is meant to be
used with a cryptographically secure hash function, which CRC's are not.
Thus, remove the unneeded test vectors.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds test vectors for MORUS-640 and MORUS-1280. The test
vectors were generated using the reference implementation from
SUPERCOP (see code comments for more details).
Signed-off-by: Ondrej Mosnacek <omosnacek@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds test vectors for the AEGIS family of AEAD algorithms
(AEGIS-128, AEGIS-128L, and AEGIS-256). The test vectors were
generated using the reference implementation from SUPERCOP (see code
comments for more details).
Signed-off-by: Ondrej Mosnacek <omosnacek@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Adds zstd support to crypto and scompress. Only supports the default
level.
Previously we held off on this patch, since there weren't any users.
Now zram is ready for zstd support, but depends on CONFIG_CRYPTO_ZSTD,
which isn't defined until this patch is in. I also see a patch adding
zstd to pstore [0], which depends on crypto zstd.
[0] lkml.kernel.org/r/9c9416b2dff19f05fb4c35879aaa83d11ff72c92.1521626182.git.geliangtang@gmail.com
Signed-off-by: Nick Terrell <terrelln@fb.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
In order to be able to test yield support under preempt, add a test
vector for CRC-T10DIF that is long enough to take multiple iterations
(and thus possible preemption between them) of the primary loop of the
accelerated x86 and arm64 implementations.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add test vectors for Speck64-XTS, generated in userspace using C code.
The inputs were borrowed from the AES-XTS test vectors, with key lengths
adjusted.
xts-speck64-neon passes these tests. However, they aren't currently
applicable for the generic XTS template, as that only supports a 128-bit
block size.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add test vectors for Speck128-XTS, generated in userspace using C code.
The inputs were borrowed from the AES-XTS test vectors.
Both xts(speck128-generic) and xts-speck128-neon pass these tests.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add a generic implementation of Speck, including the Speck128 and
Speck64 variants. Speck is a lightweight block cipher that can be much
faster than AES on processors that don't have AES instructions.
We are planning to offer Speck-XTS (probably Speck128/256-XTS) as an
option for dm-crypt and fscrypt on Android, for low-end mobile devices
with older CPUs such as ARMv7 which don't have the Cryptography
Extensions. Currently, such devices are unencrypted because AES is not
fast enough, even when the NEON bit-sliced implementation of AES is
used. Other AES alternatives such as Twofish, Threefish, Camellia,
CAST6, and Serpent aren't fast enough either; it seems that only a
modern ARX cipher can provide sufficient performance on these devices.
This is a replacement for our original proposal
(https://patchwork.kernel.org/patch/10101451/) which was to offer
ChaCha20 for these devices. However, the use of a stream cipher for
disk/file encryption with no space to store nonces would have been much
more insecure than we thought initially, given that it would be used on
top of flash storage as well as potentially on top of F2FS, neither of
which is guaranteed to overwrite data in-place.
Speck has been somewhat controversial due to its origin. Nevertheless,
it has a straightforward design (it's an ARX cipher), and it appears to
be the leading software-optimized lightweight block cipher currently,
with the most cryptanalysis. It's also easy to implement without side
channels, unlike AES. Moreover, we only intend Speck to be used when
the status quo is no encryption, due to AES not being fast enough.
We've also considered a novel length-preserving encryption mode based on
ChaCha20 and Poly1305. While theoretically attractive, such a mode
would be a brand new crypto construction and would be more complicated
and difficult to implement efficiently in comparison to Speck-XTS.
There is confusion about the byte and word orders of Speck, since the
original paper doesn't specify them. But we have implemented it using
the orders the authors recommended in a correspondence with them. The
test vectors are taken from the original paper but were mapped to byte
arrays using the recommended byte and word orders.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The RSA private key for the first form should have
version, prime1, prime2, exponent1, exponent2, coefficient
values 0.
With non-zero values for prime1,2, exponent 1,2 and coefficient
the Intel QAT driver will assume that values are provided for the
private key second form. This will result in signature verification
failures for modules where QAT device is present and the modules
are signed with rsa,sha256.
Cc: <stable@vger.kernel.org>
Signed-off-by: Giovanni Cabiddu <giovanni.cabiddu@intel.com>
Signed-off-by: Conor McLoughlin <conor.mcloughlin@intel.com>
Reviewed-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
All current SHA3 test cases are smaller than the SHA3 block size, which
means not all code paths are being exercised. So add a new test case to
each variant, and make one of the existing test cases chunked.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add testmgr and tcrypt tests and vectors for SM3 secure hash.
Signed-off-by: Gilad Ben-Yossef <gilad@benyossef.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
We failed to catch a bug in the chacha20 code after porting it to the
skcipher API. We would have caught it if any chunked tests had been
defined, so define some now so we will catch future regressions.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The PKCS#1 RSA implementation is provided with a self test with RSA 2048
and SHA-256. This self test implicitly covers other RSA keys and other
hashes. Also, this self test implies that the pkcs1pad(rsa) is FIPS
140-2 compliant.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The test considers a party that already has a private-public
key pair and a party that provides a NULL key. The kernel will
generate the private-public key pair for the latter, computes
the shared secret on both ends and verifies if it's the same.
The explicit private-public key pair was copied from
the previous test vector.
Signed-off-by: Tudor Ambarus <tudor.ambarus@microchip.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add scomp backend for zlib-deflate compression algorithm.
This backend outputs data using the format defined in rfc1950
(raw deflate surrounded by zlib header and footer).
Signed-off-by: Giovanni Cabiddu <giovanni.cabiddu@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Cryptographic test vectors should never be modified, so constify them to
enforce this at both compile-time and run-time. This moves a significant
amount of data from .data to .rodata when the crypto tests are enabled.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Pull crypto fixes from Herbert Xu:
- vmalloc stack regression in CCM
- Build problem in CRC32 on ARM
- Memory leak in cavium
- Missing Kconfig dependencies in atmel and mediatek
- XTS Regression on some platforms (s390 and ppc)
- Memory overrun in CCM test vector
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6:
crypto: vmx - Use skcipher for xts fallback
crypto: vmx - Use skcipher for cbc fallback
crypto: testmgr - Pad aes_ccm_enc_tv_template vector
crypto: arm/crc32 - add build time test for CRC instruction support
crypto: arm/crc32 - fix build error with outdated binutils
crypto: ccm - move cbcmac input off the stack
crypto: xts - Propagate NEED_FALLBACK bit
crypto: api - Add crypto_requires_off helper
crypto: atmel - CRYPTO_DEV_MEDIATEK should depend on HAS_DMA
crypto: atmel - CRYPTO_DEV_ATMEL_TDES and CRYPTO_DEV_ATMEL_SHA should depend on HAS_DMA
crypto: cavium - fix leak on curr if curr->head fails to be allocated
crypto: cavium - Fix couple of static checker errors
Running with KASAN and crypto tests currently gives
BUG: KASAN: global-out-of-bounds in __test_aead+0x9d9/0x2200 at addr ffffffff8212fca0
Read of size 16 by task cryptomgr_test/1107
Address belongs to variable 0xffffffff8212fca0
CPU: 0 PID: 1107 Comm: cryptomgr_test Not tainted 4.10.0+ #45
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.9.1-1.fc24 04/01/2014
Call Trace:
dump_stack+0x63/0x8a
kasan_report.part.1+0x4a7/0x4e0
? __test_aead+0x9d9/0x2200
? crypto_ccm_init_crypt+0x218/0x3c0 [ccm]
kasan_report+0x20/0x30
check_memory_region+0x13c/0x1a0
memcpy+0x23/0x50
__test_aead+0x9d9/0x2200
? kasan_unpoison_shadow+0x35/0x50
? alg_test_akcipher+0xf0/0xf0
? crypto_skcipher_init_tfm+0x2e3/0x310
? crypto_spawn_tfm2+0x37/0x60
? crypto_ccm_init_tfm+0xa9/0xd0 [ccm]
? crypto_aead_init_tfm+0x7b/0x90
? crypto_alloc_tfm+0xc4/0x190
test_aead+0x28/0xc0
alg_test_aead+0x54/0xd0
alg_test+0x1eb/0x3d0
? alg_find_test+0x90/0x90
? __sched_text_start+0x8/0x8
? __wake_up_common+0x70/0xb0
cryptomgr_test+0x4d/0x60
kthread+0x173/0x1c0
? crypto_acomp_scomp_free_ctx+0x60/0x60
? kthread_create_on_node+0xa0/0xa0
ret_from_fork+0x2c/0x40
Memory state around the buggy address:
ffffffff8212fb80: 00 00 00 00 01 fa fa fa fa fa fa fa 00 00 00 00
ffffffff8212fc00: 00 01 fa fa fa fa fa fa 00 00 00 00 01 fa fa fa
>ffffffff8212fc80: fa fa fa fa 00 05 fa fa fa fa fa fa 00 00 00 00
^
ffffffff8212fd00: 01 fa fa fa fa fa fa fa 00 00 00 00 01 fa fa fa
ffffffff8212fd80: fa fa fa fa 00 00 00 00 00 05 fa fa fa fa fa fa
This always happens on the same IV which is less than 16 bytes.
Per Ard,
"CCM IVs are 16 bytes, but due to the way they are constructed
internally, the final couple of bytes of input IV are dont-cares.
Apparently, we do read all 16 bytes, which triggers the KASAN errors."
Fix this by padding the IV with null bytes to be at least 16 bytes.
Cc: stable@vger.kernel.org
Fixes: 0bc5a6c5c7 ("crypto: testmgr - Disable rfc4309 test and convert
test vectors")
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Update the crypto modules using LZ4 compression as well as the test
cases in testmgr.h to work with the new LZ4 module version.
Link: http://lkml.kernel.org/r/1486321748-19085-4-git-send-email-4sschmid@informatik.uni-hamburg.de
Signed-off-by: Sven Schmidt <4sschmid@informatik.uni-hamburg.de>
Cc: Bongkyu Kim <bongkyu.kim@lge.com>
Cc: Rui Salvaterra <rsalvaterra@gmail.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: David S. Miller <davem@davemloft.net>
Cc: Anton Vorontsov <anton@enomsg.org>
Cc: Colin Cross <ccross@android.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In preparation of splitting off the CBC-MAC transform in the CCM
driver into a separate algorithm, define some test cases for the
AES incarnation of cbcmac.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
When working on AES in CCM mode for ARM, my code passed the internal
tcrypt test before I had even bothered to implement the AES-192 and
AES-256 code paths, which is strange because the tcrypt does contain
AES-192 and AES-256 test vectors for CCM.
As it turned out, the define AES_CCM_ENC_TEST_VECTORS was out of sync
with the actual number of test vectors, causing only the AES-128 ones
to be executed.
So get rid of the defines, and wrap the test vector references in a
macro that calculates the number of vectors automatically.
The following test vector counts were out of sync with the respective
defines:
BF_CTR_ENC_TEST_VECTORS 2 -> 3
BF_CTR_DEC_TEST_VECTORS 2 -> 3
TF_CTR_ENC_TEST_VECTORS 2 -> 3
TF_CTR_DEC_TEST_VECTORS 2 -> 3
SERPENT_CTR_ENC_TEST_VECTORS 2 -> 3
SERPENT_CTR_DEC_TEST_VECTORS 2 -> 3
AES_CCM_ENC_TEST_VECTORS 8 -> 14
AES_CCM_DEC_TEST_VECTORS 7 -> 17
AES_CCM_4309_ENC_TEST_VECTORS 7 -> 23
AES_CCM_4309_DEC_TEST_VECTORS 10 -> 23
CAMELLIA_CTR_ENC_TEST_VECTORS 2 -> 3
CAMELLIA_CTR_DEC_TEST_VECTORS 2 -> 3
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The existing test cases only exercise a small slice of the various
possible code paths through the x86 SSE/PCLMULQDQ implementation,
and the upcoming ports of it for arm64. So add one that exceeds 256
bytes in size, and convert another to a chunked test.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
In FIPS mode, additional restrictions may apply. If these restrictions
are violated, the kernel will panic(). This patch allows test vectors
for symmetric ciphers to be marked as to be skipped in FIPS mode.
Together with the patch, the XTS test vectors where the AES key is
identical to the tweak key is disabled in FIPS mode. This test vector
violates the FIPS requirement that both keys must be different.
Reported-by: Tapas Sarangi <TSarangi@trustwave.com>
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Key generated with openssl. It also contains all fields required
for testing CRT mode
Signed-off-by: Salvatore Benedetto <salvatore.benedetto@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds HMAC-SHA3 test modes in tcrypt module
and related test vectors.
Signed-off-by: Raveendra Padasalagi <raveendra.padasalagi@broadcom.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* Implement ECDH under kpp API
* Provide ECC software support for curve P-192 and
P-256.
* Add kpp test for ECDH with data generated by OpenSSL
Signed-off-by: Salvatore Benedetto <salvatore.benedetto@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* Implement MPI based Diffie-Hellman under kpp API
* Test provided uses data generad by OpenSSL
Signed-off-by: Salvatore Benedetto <salvatore.benedetto@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Added support for SHA-3 algorithm test's
in tcrypt module and related test vectors.
Signed-off-by: Raveendra Padasalagi <raveendra.padasalagi@broadcom.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The testmanager code for symmetric ciphers is extended to allow
verification of the IV after a cipher operation.
In addition, test vectors for kw(aes) for encryption and decryption are
added.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The crypto drivers are supposed to update the IV passed to the crypto
request before calling the completion callback.
Test for the IV value before considering the test as successful.
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Setkey function has been split into set_priv_key and set_pub_key.
Akcipher requests takes sgl for src and dst instead of void *.
Users of the API i.e. two existing RSA implementation and
test mgr code have been updated accordingly.
Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch disables the authenc tests while the conversion to the
new IV calling convention takes place. It also replaces the authenc
test vectors with ones that will work with the new IV convention.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The AVX2 variant of ChaCha20 is used only for messages with >= 512 bytes
length. With the existing test vectors, the implementation could not be
tested. Due that lack of such a long official test vector, this one is
self-generated using chacha20-generic.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch converts rfc7539 and rfc7539esp to the new AEAD interface.
The test vectors for rfc7539esp have also been updated to include
the IV.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Tested-by: Martin Willi <martin@strongswan.org>
This patch disables the rfc4309 test while the conversion to the
new seqiv calling convention takes place. It also replaces the
rfc4309 test vectors with ones that will work with the new IV
convention.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch disables the rfc4106 test while the conversion to the
new seqiv calling convention takes place. It also converts the
rfc4106 test vectors to the new format.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
All tests for cbc(aes) use only blocks of data with a multiple of 4.
This test adds a test with some odd SG size.
Signed-off-by: LABBE Corentin <clabbe.montjoie@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The Poly1305 authenticator requires a unique key for each generated tag. This
implies that we can't set the key per tfm, as multiple users set individual
keys. Instead we pass a desc specific key as the first two blocks of the
message to authenticate in update().
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch updates the rfc4543 test vectors to the new format
where the IV is part of the AD. For now these vectors are still
unused. They will be reactivated once all rfc4543 implementations
have migrated.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>