This patch implements the skeleton of the TCP chronograph
instrumentation on sender side limits:
1) idle (unspec)
2) busy sending data other than 3-4 below
3) rwnd-limited
4) sndbuf-limited
The limits are enumerated 'tcp_chrono'. Since a connection in
theory can idle forever, we do not track the actual length of this
uninteresting idle period. For the rest we track how long the sender
spends in each limit. At any point during the life time of a
connection, the sender must be in one of the four states.
If there are multiple conditions worthy of tracking in a chronograph
then the highest priority enum takes precedence over
the other conditions. So that if something "more interesting"
starts happening, stop the previous chrono and start a new one.
The time unit is jiffy(u32) in order to save space in tcp_sock.
This implies application must sample the stats no longer than every
49 days of 1ms jiffy.
Signed-off-by: Francis Yan <francisyyan@gmail.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The undo_cwnd fallback in the stack doubles cwnd based on ssthresh,
which un-does reno halving behaviour.
It seems more appropriate to let congctl algorithms pair .ssthresh
and .undo_cwnd properly. Add a 'tcp_reno_undo_cwnd' function and wire it
up for all congestion algorithms that used to rely on the fallback.
Cc: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
With syzkaller help, Marco Grassi found a bug in TCP stack,
crashing in tcp_collapse()
Root cause is that sk_filter() can truncate the incoming skb,
but TCP stack was not really expecting this to happen.
It probably was expecting a simple DROP or ACCEPT behavior.
We first need to make sure no part of TCP header could be removed.
Then we need to adjust TCP_SKB_CB(skb)->end_seq
Many thanks to syzkaller team and Marco for giving us a reproducer.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Marco Grassi <marco.gra@gmail.com>
Reported-by: Vladis Dronov <vdronov@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently, socket lookups for l3mdev (vrf) use cases can match a socket
that is bound to a port but not a device (ie., a global socket). If the
sysctl tcp_l3mdev_accept is not set this leads to ack packets going out
based on the main table even though the packet came in from an L3 domain.
The end result is that the connection does not establish creating
confusion for users since the service is running and a socket shows in
ss output. Fix by requiring an exact dif to sk_bound_dev_if match if the
skb came through an interface enslaved to an l3mdev device and the
tcp_l3mdev_accept is not set.
skb's through an l3mdev interface are marked by setting a flag in
inet{6}_skb_parm. The IPv6 variant is already set; this patch adds the
flag for IPv4. Using an skb flag avoids a device lookup on the dif. The
flag is set in the VRF driver using the IP{6}CB macros. For IPv4, the
inet_skb_parm struct is moved in the cb per commit 971f10eca1, so the
match function in the TCP stack needs to use TCP_SKB_CB. For IPv6, the
move is done after the socket lookup, so IP6CB is used.
The flags field in inet_skb_parm struct needs to be increased to add
another flag. There is currently a 1-byte hole following the flags,
so it can be expanded to u16 without increasing the size of the struct.
Fixes: 193125dbd8 ("net: Introduce VRF device driver")
Signed-off-by: David Ahern <dsa@cumulusnetworks.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This commit introduces an optional new "omnipotent" hook,
cong_control(), for congestion control modules. The cong_control()
function is called at the end of processing an ACK (i.e., after
updating sequence numbers, the SACK scoreboard, and loss
detection). At that moment we have precise delivery rate information
the congestion control module can use to control the sending behavior
(using cwnd, TSO skb size, and pacing rate) in any CA state.
This function can also be used by a congestion control that prefers
not to use the default cwnd reduction approach (i.e., the PRR
algorithm) during CA_Recovery to control the cwnd and sending rate
during loss recovery.
We take advantage of the fact that recent changes defer the
retransmission or transmission of new data (e.g. by F-RTO) in recovery
until the new tcp_cong_control() function is run.
With this commit, we only run tcp_update_pacing_rate() if the
congestion control is not using this new API. New congestion controls
which use the new API do not want the TCP stack to run the default
pacing rate calculation and overwrite whatever pacing rate they have
chosen at initialization time.
Signed-off-by: Van Jacobson <vanj@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Nandita Dukkipati <nanditad@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently the TCP send buffer expands to twice cwnd, in order to allow
limited transmits in the CA_Recovery state. This assumes that cwnd
does not increase in the CA_Recovery.
For some congestion control algorithms, like the upcoming BBR module,
if the losses in recovery do not indicate congestion then we may
continue to raise cwnd multiplicatively in recovery. In such cases the
current multiplier will falsely limit the sending rate, much as if it
were limited by the application.
This commit adds an optional congestion control callback to use a
different multiplier to expand the TCP send buffer. For congestion
control modules that do not specificy this callback, TCP continues to
use the previous default of 2.
Signed-off-by: Van Jacobson <vanj@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Nandita Dukkipati <nanditad@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Stephen Hemminger <stephen@networkplumber.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
To allow congestion control modules to use the default TSO auto-sizing
algorithm as one of the ingredients in their own decision about TSO sizing:
1) Export tcp_tso_autosize() so that CC modules can use it.
2) Change tcp_tso_autosize() to allow callers to specify a minimum
number of segments per TSO skb, in case the congestion control
module has a different notion of the best floor for TSO skbs for
the connection right now. For very low-rate paths or policed
connections it can be appropriate to use smaller TSO skbs.
Signed-off-by: Van Jacobson <vanj@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Nandita Dukkipati <nanditad@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add the tso_segs_goal() function in tcp_congestion_ops to allow the
congestion control module to specify the number of segments that
should be in a TSO skb sent by tcp_write_xmit() and
tcp_xmit_retransmit_queue(). The congestion control module can either
request a particular number of segments in TSO skb that we transmit,
or return 0 if it doesn't care.
This allows the upcoming BBR congestion control module to select small
TSO skb sizes if the module detects that the bottleneck bandwidth is
very low, or that the connection is policed to a low rate.
Signed-off-by: Van Jacobson <vanj@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Nandita Dukkipati <nanditad@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This commit adds code to track whether the delivery rate represented
by each rate_sample was limited by the application.
Upon each transmit, we store in the is_app_limited field in the skb a
boolean bit indicating whether there is a known "bubble in the pipe":
a point in the rate sample interval where the sender was
application-limited, and did not transmit even though the cwnd and
pacing rate allowed it.
This logic marks the flow app-limited on a write if *all* of the
following are true:
1) There is less than 1 MSS of unsent data in the write queue
available to transmit.
2) There is no packet in the sender's queues (e.g. in fq or the NIC
tx queue).
3) The connection is not limited by cwnd.
4) There are no lost packets to retransmit.
The tcp_rate_check_app_limited() code in tcp_rate.c determines whether
the connection is application-limited at the moment. If the flow is
application-limited, it sets the tp->app_limited field. If the flow is
application-limited then that means there is effectively a "bubble" of
silence in the pipe now, and this silence will be reflected in a lower
bandwidth sample for any rate samples from now until we get an ACK
indicating this bubble has exited the pipe: specifically, until we get
an ACK for the next packet we transmit.
When we send every skb we record in scb->tx.is_app_limited whether the
resulting rate sample will be application-limited.
The code in tcp_rate_gen() checks to see when it is safe to mark all
known application-limited bubbles of silence as having exited the
pipe. It does this by checking to see when the delivered count moves
past the tp->app_limited marker. At this point it zeroes the
tp->app_limited marker, as all known bubbles are out of the pipe.
We make room for the tx.is_app_limited bit in the skb by borrowing a
bit from the in_flight field used by NV to record the number of bytes
in flight. The receive window in the TCP header is 16 bits, and the
max receive window scaling shift factor is 14 (RFC 1323). So the max
receive window offered by the TCP protocol is 2^(16+14) = 2^30. So we
only need 30 bits for the tx.in_flight used by NV.
Signed-off-by: Van Jacobson <vanj@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Nandita Dukkipati <nanditad@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch generates data delivery rate (throughput) samples on a
per-ACK basis. These rate samples can be used by congestion control
modules, and specifically will be used by TCP BBR in later patches in
this series.
Key state:
tp->delivered: Tracks the total number of data packets (original or not)
delivered so far. This is an already-existing field.
tp->delivered_mstamp: the last time tp->delivered was updated.
Algorithm:
A rate sample is calculated as (d1 - d0)/(t1 - t0) on a per-ACK basis:
d1: the current tp->delivered after processing the ACK
t1: the current time after processing the ACK
d0: the prior tp->delivered when the acked skb was transmitted
t0: the prior tp->delivered_mstamp when the acked skb was transmitted
When an skb is transmitted, we snapshot d0 and t0 in its control
block in tcp_rate_skb_sent().
When an ACK arrives, it may SACK and ACK some skbs. For each SACKed
or ACKed skb, tcp_rate_skb_delivered() updates the rate_sample struct
to reflect the latest (d0, t0).
Finally, tcp_rate_gen() generates a rate sample by storing
(d1 - d0) in rs->delivered and (t1 - t0) in rs->interval_us.
One caveat: if an skb was sent with no packets in flight, then
tp->delivered_mstamp may be either invalid (if the connection is
starting) or outdated (if the connection was idle). In that case,
we'll re-stamp tp->delivered_mstamp.
At first glance it seems t0 should always be the time when an skb was
transmitted, but actually this could over-estimate the rate due to
phase mismatch between transmit and ACK events. To track the delivery
rate, we ensure that if packets are in flight then t0 and and t1 are
times at which packets were marked delivered.
If the initial and final RTTs are different then one may be corrupted
by some sort of noise. The noise we see most often is sending gaps
caused by delayed, compressed, or stretched acks. This either affects
both RTTs equally or artificially reduces the final RTT. We approach
this by recording the info we need to compute the initial RTT
(duration of the "send phase" of the window) when we recorded the
associated inflight. Then, for a filter to avoid bandwidth
overestimates, we generalize the per-sample bandwidth computation
from:
bw = delivered / ack_phase_rtt
to the following:
bw = delivered / max(send_phase_rtt, ack_phase_rtt)
In large-scale experiments, this filtering approach incorporating
send_phase_rtt is effective at avoiding bandwidth overestimates due to
ACK compression or stretched ACKs.
Signed-off-by: Van Jacobson <vanj@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Nandita Dukkipati <nanditad@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Refactor the TCP min_rtt code to reuse the new win_minmax library in
lib/win_minmax.c to simplify the TCP code.
This is a pure refactor: the functionality is exactly the same. We
just moved the windowed min code to make TCP easier to read and
maintain, and to allow other parts of the kernel to use the windowed
min/max filter code.
Signed-off-by: Van Jacobson <vanj@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Nandita Dukkipati <nanditad@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Over the years, TCP BDP has increased by several orders of magnitude,
and some people are considering to reach the 2 Gbytes limit.
Even with current window scale limit of 14, ~1 Gbytes maps to ~740,000
MSS.
In presence of packet losses (or reorders), TCP stores incoming packets
into an out of order queue, and number of skbs sitting there waiting for
the missing packets to be received can be in the 10^5 range.
Most packets are appended to the tail of this queue, and when
packets can finally be transferred to receive queue, we scan the queue
from its head.
However, in presence of heavy losses, we might have to find an arbitrary
point in this queue, involving a linear scan for every incoming packet,
throwing away cpu caches.
This patch converts it to a RB tree, to get bounded latencies.
Yaogong wrote a preliminary patch about 2 years ago.
Eric did the rebase, added ofo_last_skb cache, polishing and tests.
Tested with network dropping between 1 and 10 % packets, with good
success (about 30 % increase of throughput in stress tests)
Next step would be to also use an RB tree for the write queue at sender
side ;)
Signed-off-by: Yaogong Wang <wygivan@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Cc: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Acked-By: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
When TCP operates in lossy environments (between 1 and 10 % packet
losses), many SACK blocks can be exchanged, and I noticed we could
drop them on busy senders, if these SACK blocks have to be queued
into the socket backlog.
While the main cause is the poor performance of RACK/SACK processing,
we can try to avoid these drops of valuable information that can lead to
spurious timeouts and retransmits.
Cause of the drops is the skb->truesize overestimation caused by :
- drivers allocating ~2048 (or more) bytes as a fragment to hold an
Ethernet frame.
- various pskb_may_pull() calls bringing the headers into skb->head
might have pulled all the frame content, but skb->truesize could
not be lowered, as the stack has no idea of each fragment truesize.
The backlog drops are also more visible on bidirectional flows, since
their sk_rmem_alloc can be quite big.
Let's add some room for the backlog, as only the socket owner
can selectively take action to lower memory needs, like collapsing
receive queues or partial ofo pruning.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In inet_stream_ops we set read_sock to tcp_read_sock and peek_len to
tcp_peek_len (which is just a stub function that calls tcp_inq).
Signed-off-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add new function in proto_ops structure. This includes moving the
typedef got sk_read_actor into net.h and removing the definition from
tcp.h.
Signed-off-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
TFO_SERVER_WO_SOCKOPT2 was intended for debugging purposes during
Fast Open development. Remove this config option and also
update/clean-up the documentation of the Fast Open sysctl.
Reported-by: Piotr Jurkiewicz <piotr.jerzy.jurkiewicz@gmail.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When tcp_sendmsg() allocates a fresh and empty skb, it puts it at the
tail of the write queue using tcp_add_write_queue_tail()
Then it attempts to copy user data into this fresh skb.
If the copy fails, we undo the work and remove the fresh skb.
Unfortunately, this undo lacks the change done to tp->highest_sack and
we can leave a dangling pointer (to a freed skb)
Later, tcp_xmit_retransmit_queue() can dereference this pointer and
access freed memory. For regular kernels where memory is not unmapped,
this might cause SACK bugs because tcp_highest_sack_seq() is buggy,
returning garbage instead of tp->snd_nxt, but with various debug
features like CONFIG_DEBUG_PAGEALLOC, this can crash the kernel.
This bug was found by Marco Grassi thanks to syzkaller.
Fixes: 6859d49475 ("[TCP]: Abstract tp->highest_sack accessing & point to next skb")
Reported-by: Marco Grassi <marco.gra@gmail.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Reviewed-by: Cong Wang <xiyou.wangcong@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Some arches have virtually mapped kernel stacks, or will soon have.
tcp_md5_hash_header() uses an automatic variable to copy tcp header
before mangling th->check and calling crypto function, which might
be problematic on such arches.
David says that using percpu storage is also problematic on non SMP
builds.
Just use kmalloc() to allocate scratch areas.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
In previous commit 01f83d6984
the following comments were added:
"When peer uses tiny windows, there is no use in packetizing to sub-MSS
pieces for the sake of SWS or making sure there are enough packets in
the pipe for fast recovery."
The test should be > TCP_MSS_DEFAULT not >= 512. This allows low end
devices that send an MSS of 536 (TCP_MSS_DEFAULT) to see better network
performance by sending it 536 bytes of data at a time instead of bounding
to half window size (268). Other network stacks work this way, e.g. HP-UX.
Signed-off-by: Shane Seymour <shane.seymour@hpe.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add in_flight (bytes in flight when packet was sent) field
to tx component of tcp_skb_cb and make it available to
congestion modules' pkts_acked() function through the
ack_sample function argument.
Signed-off-by: Lawrence Brakmo <brakmo@fb.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently the VRF driver uses the rx_handler to switch the skb device
to the VRF device. Switching the dev prior to the ip / ipv6 layer
means the VRF driver has to duplicate IP/IPv6 processing which adds
overhead and makes features such as retaining the ingress device index
more complicated than necessary.
This patch moves the hook to the L3 layer just after the first NF_HOOK
for PRE_ROUTING. This location makes exposing the original ingress device
trivial (next patch) and allows adding other NF_HOOKs to the VRF driver
in the future.
dev_queue_xmit_nit is exported so that the VRF driver can cycle the skb
with the switched device through the packet taps to maintain current
behavior (tcpdump can be used on either the vrf device or the enslaved
devices).
Signed-off-by: David Ahern <dsa@cumulusnetworks.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Replace 2 arguments (cnt and rtt) in the congestion control modules'
pkts_acked() function with a struct. This will allow adding more
information without having to modify existing congestion control
modules (tcp_nv in particular needs bytes in flight when packet
was sent).
As proposed by Neal Cardwell in his comments to the tcp_nv patch.
Signed-off-by: Lawrence Brakmo <brakmo@fb.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Refactor tcp_skb_cb to create two overlaping areas to store
state for incoming or outgoing skbs based on comments by
Neal Cardwell to tcp_nv patch:
AFAICT this patch would not require an increase in the size of
sk_buff cb[] if it were to take advantage of the fact that the
tcp_skb_cb header.h4 and header.h6 fields are only used in the packet
reception code path, and this in_flight field is only used on the
transmit side.
Signed-off-by: Lawrence Brakmo <brakmo@fb.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch adds an eor bit to the TCP_SKB_CB. When MSG_EOR
is passed to tcp_sendmsg, the eor bit will be set at the skb
containing the last byte of the userland's msg. The eor bit
will prevent data from appending to that skb in the future.
The change in do_tcp_sendpages is to honor the eor set
during the previous tcp_sendmsg(MSG_EOR) call.
This patch handles the tcp_sendmsg case. The followup patches
will handle other skb coalescing and fragment cases.
One potential use case is to use MSG_EOR with
SOF_TIMESTAMPING_TX_ACK to get a more accurate
TCP ack timestamping on application protocol with
multiple outgoing response messages (e.g. HTTP2).
Packetdrill script for testing:
~~~~~~
+0 `sysctl -q -w net.ipv4.tcp_min_tso_segs=10`
+0 `sysctl -q -w net.ipv4.tcp_no_metrics_save=1`
+0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3
+0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0
+0 bind(3, ..., ...) = 0
+0 listen(3, 1) = 0
0.100 < S 0:0(0) win 32792 <mss 1460,sackOK,nop,nop,nop,wscale 7>
0.100 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 7>
0.200 < . 1:1(0) ack 1 win 257
0.200 accept(3, ..., ...) = 4
+0 setsockopt(4, SOL_TCP, TCP_NODELAY, [1], 4) = 0
0.200 write(4, ..., 14600) = 14600
0.200 sendto(4, ..., 730, MSG_EOR, ..., ...) = 730
0.200 sendto(4, ..., 730, MSG_EOR, ..., ...) = 730
0.200 > . 1:7301(7300) ack 1
0.200 > P. 7301:14601(7300) ack 1
0.300 < . 1:1(0) ack 14601 win 257
0.300 > P. 14601:15331(730) ack 1
0.300 > P. 15331:16061(730) ack 1
0.400 < . 1:1(0) ack 16061 win 257
0.400 close(4) = 0
0.400 > F. 16061:16061(0) ack 1
0.400 < F. 1:1(0) ack 16062 win 257
0.400 > . 16062:16062(0) ack 2
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Cc: Soheil Hassas Yeganeh <soheil@google.com>
Cc: Willem de Bruijn <willemb@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Suggested-by: Eric Dumazet <edumazet@google.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
There is nothing related to BH in SNMP counters anymore,
since linux-3.0.
Rename helpers to use __ prefix instead of _BH prefix,
for contexts where preemption is disabled.
This more closely matches convention used to update
percpu variables.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Rename NET_INC_STATS_BH() to __NET_INC_STATS()
and NET_ADD_STATS_BH() to __NET_ADD_STATS()
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In the old days (before linux-3.0), SNMP counters were duplicated,
one for user context, and one for BH context.
After commit 8f0ea0fe3a ("snmp: reduce percpu needs by 50%")
we have a single copy, and what really matters is preemption being
enabled or disabled, since we use this_cpu_inc() or __this_cpu_inc()
respectively.
We therefore kill SNMP_INC_STATS_USER(), SNMP_ADD_STATS_USER(),
NET_INC_STATS_USER(), NET_ADD_STATS_USER(), SCTP_INC_STATS_USER(),
SNMP_INC_STATS64_USER(), SNMP_ADD_STATS64_USER(), TCP_ADD_STATS_USER(),
UDP_INC_STATS_USER(), UDP6_INC_STATS_USER(), and XFRM_INC_STATS_USER()
Following patches will rename __BH helpers to make clear their
usage is not tied to BH being disabled.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Linux TCP stack painfully segments all TSO/GSO packets before retransmits.
This was fine back in the days when TSO/GSO were emerging, with their
bugs, but we believe the dark age is over.
Keeping big packets in write queues, but also in stack traversal
has a lot of benefits.
- Less memory overhead, because write queues have less skbs
- Less cpu overhead at ACK processing.
- Better SACK processing, as lot of studies mentioned how
awful linux was at this ;)
- Less cpu overhead to send the rtx packets
(IP stack traversal, netfilter traversal, drivers...)
- Better latencies in presence of losses.
- Smaller spikes in fq like packet schedulers, as retransmits
are not constrained by TCP Small Queues.
1 % packet losses are common today, and at 100Gbit speeds, this
translates to ~80,000 losses per second.
Losses are often correlated, and we see many retransmit events
leading to 1-MSS train of packets, at the time hosts are already
under stress.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Conflicts were two cases of simple overlapping changes,
nothing serious.
In the UDP case, we need to add a hlist_add_tail_rcu()
to linux/rculist.h, because we've moved UDP socket handling
away from using nulls lists.
Signed-off-by: David S. Miller <davem@davemloft.net>
When removing sk_refcnt manipulation on synflood, I missed that
using skb_set_owner_w() was racy, if sk->sk_wmem_alloc had already
transitioned to 0.
We should hold sk_refcnt instead, but this is a big deal under attack.
(Doing so increase performance from 3.2 Mpps to 3.8 Mpps only)
In this patch, I chose to not attach a socket to syncookies skb.
Performance is now 5 Mpps instead of 3.2 Mpps.
Following patch will remove last known false sharing in
tcp_rcv_state_process()
Fixes: 3b24d854cb ("tcp/dccp: do not touch listener sk_refcnt under synflood")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Goal: packets dropped by a listener are accounted for.
This adds tcp_listendrop() helper, and clears sk_drops in sk_clone_lock()
so that children do not inherit their parent drop count.
Note that we no longer increment LINUX_MIB_LISTENDROPS counter when
sending a SYNCOOKIE, since the SYN packet generated a SYNACK.
We already have a separate LINUX_MIB_SYNCOOKIESSENT
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently, to avoid a cache line miss for accessing skb_shinfo,
tcp_ack_tstamp skips socket that do not have
SOF_TIMESTAMPING_TX_ACK bit set in sk_tsflags. This is
implemented based on an implicit assumption that the
SOF_TIMESTAMPING_TX_ACK is set via socket options for the
duration that ACK timestamps are needed.
To implement per-write timestamps, this check should be
removed and replaced with a per-packet alternative that
quickly skips packets missing ACK timestamps marks without
a cache-line miss.
To enable per-packet marking without a cache line miss, use
one bit in TCP_SKB_CB to mark a whether a SKB might need a
ack tx timestamp or not. Further checks in tcp_ack_tstamp are not
modified and work as before.
Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Willem de Bruijn <willemb@google.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
For non-SACK connections, cwnd is lowered to inflight plus 3 packets
when the recovery ends. This is an optional feature in the NewReno
RFC 2582 to reduce the potential burst when cwnd is "re-opened"
after recovery and inflight is low.
This feature is questionably effective because of PRR: when
the recovery ends (i.e., snd_una == high_seq) NewReno holds the
CA_Recovery state for another round trip to prevent false fast
retransmits. But if the inflight is low, PRR will overwrite the
moderated cwnd in tcp_cwnd_reduction() later regardlessly. So if a
receiver responds bogus ACKs (i.e., acking future data) to speed up
transfer after recovery, it can only induce a burst up to a window
worth of data packets by acking up to SND.NXT. A restart from (short)
idle or receiving streched ACKs can both cause such bursts as well.
On the other hand, if the recovery ends because the sender
detects the losses were spurious (e.g., reordering). This feature
unconditionally lowers a reverted cwnd even though nothing
was lost.
By principle loss recovery module should not update cwnd. Further
pacing is much more effective to reduce burst. Hence this patch
removes the cwnd moderation feature.
v2 changes: revised commit message on bogus ACKs and burst, and
missing signature
Signed-off-by: Matt Mathis <mattmathis@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Pull networking updates from David Miller:
"Highlights:
1) Support more Realtek wireless chips, from Jes Sorenson.
2) New BPF types for per-cpu hash and arrap maps, from Alexei
Starovoitov.
3) Make several TCP sysctls per-namespace, from Nikolay Borisov.
4) Allow the use of SO_REUSEPORT in order to do per-thread processing
of incoming TCP/UDP connections. The muxing can be done using a
BPF program which hashes the incoming packet. From Craig Gallek.
5) Add a multiplexer for TCP streams, to provide a messaged based
interface. BPF programs can be used to determine the message
boundaries. From Tom Herbert.
6) Add 802.1AE MACSEC support, from Sabrina Dubroca.
7) Avoid factorial complexity when taking down an inetdev interface
with lots of configured addresses. We were doing things like
traversing the entire address less for each address removed, and
flushing the entire netfilter conntrack table for every address as
well.
8) Add and use SKB bulk free infrastructure, from Jesper Brouer.
9) Allow offloading u32 classifiers to hardware, and implement for
ixgbe, from John Fastabend.
10) Allow configuring IRQ coalescing parameters on a per-queue basis,
from Kan Liang.
11) Extend ethtool so that larger link mode masks can be supported.
From David Decotigny.
12) Introduce devlink, which can be used to configure port link types
(ethernet vs Infiniband, etc.), port splitting, and switch device
level attributes as a whole. From Jiri Pirko.
13) Hardware offload support for flower classifiers, from Amir Vadai.
14) Add "Local Checksum Offload". Basically, for a tunneled packet
the checksum of the outer header is 'constant' (because with the
checksum field filled into the inner protocol header, the payload
of the outer frame checksums to 'zero'), and we can take advantage
of that in various ways. From Edward Cree"
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1548 commits)
bonding: fix bond_get_stats()
net: bcmgenet: fix dma api length mismatch
net/mlx4_core: Fix backward compatibility on VFs
phy: mdio-thunder: Fix some Kconfig typos
lan78xx: add ndo_get_stats64
lan78xx: handle statistics counter rollover
RDS: TCP: Remove unused constant
RDS: TCP: Add sysctl tunables for sndbuf/rcvbuf on rds-tcp socket
net: smc911x: convert pxa dma to dmaengine
team: remove duplicate set of flag IFF_MULTICAST
bonding: remove duplicate set of flag IFF_MULTICAST
net: fix a comment typo
ethernet: micrel: fix some error codes
ip_tunnels, bpf: define IP_TUNNEL_OPTS_MAX and use it
bpf, dst: add and use dst_tclassid helper
bpf: make skb->tc_classid also readable
net: mvneta: bm: clarify dependencies
cls_bpf: reset class and reuse major in da
ldmvsw: Checkpatch sunvnet.c and sunvnet_common.c
ldmvsw: Add ldmvsw.c driver code
...
Pull crypto update from Herbert Xu:
"Here is the crypto update for 4.6:
API:
- Convert remaining crypto_hash users to shash or ahash, also convert
blkcipher/ablkcipher users to skcipher.
- Remove crypto_hash interface.
- Remove crypto_pcomp interface.
- Add crypto engine for async cipher drivers.
- Add akcipher documentation.
- Add skcipher documentation.
Algorithms:
- Rename crypto/crc32 to avoid name clash with lib/crc32.
- Fix bug in keywrap where we zero the wrong pointer.
Drivers:
- Support T5/M5, T7/M7 SPARC CPUs in n2 hwrng driver.
- Add PIC32 hwrng driver.
- Support BCM6368 in bcm63xx hwrng driver.
- Pack structs for 32-bit compat users in qat.
- Use crypto engine in omap-aes.
- Add support for sama5d2x SoCs in atmel-sha.
- Make atmel-sha available again.
- Make sahara hashing available again.
- Make ccp hashing available again.
- Make sha1-mb available again.
- Add support for multiple devices in ccp.
- Improve DMA performance in caam.
- Add hashing support to rockchip"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (116 commits)
crypto: qat - remove redundant arbiter configuration
crypto: ux500 - fix checks of error code returned by devm_ioremap_resource()
crypto: atmel - fix checks of error code returned by devm_ioremap_resource()
crypto: qat - Change the definition of icp_qat_uof_regtype
hwrng: exynos - use __maybe_unused to hide pm functions
crypto: ccp - Add abstraction for device-specific calls
crypto: ccp - CCP versioning support
crypto: ccp - Support for multiple CCPs
crypto: ccp - Remove check for x86 family and model
crypto: ccp - memset request context to zero during import
lib/mpi: use "static inline" instead of "extern inline"
lib/mpi: avoid assembler warning
hwrng: bcm63xx - fix non device tree compatibility
crypto: testmgr - allow rfc3686 aes-ctr variants in fips mode.
crypto: qat - The AE id should be less than the maximal AE number
lib/mpi: Endianness fix
crypto: rockchip - add hash support for crypto engine in rk3288
crypto: xts - fix compile errors
crypto: doc - add skcipher API documentation
crypto: doc - update AEAD AD handling
...
Per RFC4898, they count segments sent/received
containing a positive length data segment (that includes
retransmission segments carrying data). Unlike
tcpi_segs_out/in, tcpi_data_segs_out/in excludes segments
carrying no data (e.g. pure ack).
The patch also updates the segs_in in tcp_fastopen_add_skb()
so that segs_in >= data_segs_in property is kept.
Together with retransmission data, tcpi_data_segs_out
gives a better signal on the rxmit rate.
v6: Rebase on the latest net-next
v5: Eric pointed out that checking skb->len is still needed in
tcp_fastopen_add_skb() because skb can carry a FIN without data.
Hence, instead of open coding segs_in and data_segs_in, tcp_segs_in()
helper is used. Comment is added to the fastopen case to explain why
segs_in has to be reset and tcp_segs_in() has to be called before
__skb_pull().
v4: Add comment to the changes in tcp_fastopen_add_skb()
and also add remark on this case in the commit message.
v3: Add const modifier to the skb parameter in tcp_segs_in()
v2: Rework based on recent fix by Eric:
commit a9d99ce28e ("tcp: fix tcpi_segs_in after connection establishment")
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Cc: Chris Rapier <rapier@psc.edu>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Marcelo Ricardo Leitner <mleitner@redhat.com>
Cc: Neal Cardwell <ncardwell@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Create a common kernel function to get the number of bytes available
on a TCP socket. This is based on code in INQ getsockopt and we now call
the function for that getsockopt.
Signed-off-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Conflicts:
drivers/net/phy/bcm7xxx.c
drivers/net/phy/marvell.c
drivers/net/vxlan.c
All three conflicts were cases of simple overlapping changes.
Signed-off-by: David S. Miller <davem@davemloft.net>
Petr Novopashenniy reported that ICMP redirects on SYN_RECV sockets
were leading to RST.
This is of course incorrect.
A specific list of ICMP messages should be able to drop a SYN_RECV.
For instance, a REDIRECT on SYN_RECV shall be ignored, as we do
not hold a dst per SYN_RECV pseudo request.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=111751
Fixes: 079096f103 ("tcp/dccp: install syn_recv requests into ehash table")
Reported-by: Petr Novopashenniy <pety@rusnet.ru>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>