This is in preparation for enabling this functionality through io_uring.
Add a helper that is just exporting what sys_madvise() does, and have the
system call use it.
No functional changes in this patch.
Reviewed-by: Pavel Begunkov <asml.silence@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
page_size() is supported after the commit a50b854e07 ("mm: introduce
page_size()").
Use page_size() in madvise_inject_error() for readability.
[akpm@linux-foundation.org: use ulong for `size', per David]
Link: http://lkml.kernel.org/r/29dce60c-38d6-0220-f292-e298f0c78c4d@huawei.com
Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Hu Shiyuan <hushiyuan@huawei.com>
Cc: Feilong Lin <linfeilong@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently soft_offline_page() receives struct page, and its sibling
memory_failure() receives pfn. This discrepancy looks weird and makes
precheck on pfn validity tricky. So let's align them.
Link: http://lkml.kernel.org/r/20191016234706.GA5493@www9186uo.sakura.ne.jp
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Recently, I hit the following issue when running upstream.
kernel BUG at mm/vmscan.c:1521!
invalid opcode: 0000 [#1] SMP KASAN PTI
CPU: 0 PID: 23385 Comm: syz-executor.6 Not tainted 5.4.0-rc4+ #1
RIP: 0010:shrink_page_list+0x12b6/0x3530 mm/vmscan.c:1521
Call Trace:
reclaim_pages+0x499/0x800 mm/vmscan.c:2188
madvise_cold_or_pageout_pte_range+0x58a/0x710 mm/madvise.c:453
walk_pmd_range mm/pagewalk.c:53 [inline]
walk_pud_range mm/pagewalk.c:112 [inline]
walk_p4d_range mm/pagewalk.c:139 [inline]
walk_pgd_range mm/pagewalk.c:166 [inline]
__walk_page_range+0x45a/0xc20 mm/pagewalk.c:261
walk_page_range+0x179/0x310 mm/pagewalk.c:349
madvise_pageout_page_range mm/madvise.c:506 [inline]
madvise_pageout+0x1f0/0x330 mm/madvise.c:542
madvise_vma mm/madvise.c:931 [inline]
__do_sys_madvise+0x7d2/0x1600 mm/madvise.c:1113
do_syscall_64+0x9f/0x4c0 arch/x86/entry/common.c:290
entry_SYSCALL_64_after_hwframe+0x49/0xbe
madvise_pageout() accesses the specified range of the vma and isolates
them, then runs shrink_page_list() to reclaim its memory. But it also
isolates the unevictable pages to reclaim. Hence, we can catch the
cases in shrink_page_list().
The root cause is that we scan the page tables instead of specific LRU
list. and so we need to filter out the unevictable lru pages from our
end.
Link: http://lkml.kernel.org/r/1572616245-18946-1-git-send-email-zhongjiang@huawei.com
Fixes: 1a4e58cce8 ("mm: introduce MADV_PAGEOUT")
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are many common parts between MADV_COLD and MADV_PAGEOUT.
This patch factor them out to save code duplication.
Link: http://lkml.kernel.org/r/20190726023435.214162-6-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Daniel Colascione <dancol@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: kbuild test robot <lkp@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Oleksandr Natalenko <oleksandr@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Sonny Rao <sonnyrao@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tim Murray <timmurray@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a process expects no accesses to a certain memory range for a long
time, it could hint kernel that the pages can be reclaimed instantly but
data should be preserved for future use. This could reduce workingset
eviction so it ends up increasing performance.
This patch introduces the new MADV_PAGEOUT hint to madvise(2) syscall.
MADV_PAGEOUT can be used by a process to mark a memory range as not
expected to be used for a long time so that kernel reclaims *any LRU*
pages instantly. The hint can help kernel in deciding which pages to
evict proactively.
A note: It doesn't apply SWAP_CLUSTER_MAX LRU page isolation limit
intentionally because it's automatically bounded by PMD size. If PMD
size(e.g., 256) makes some trouble, we could fix it later by limit it to
SWAP_CLUSTER_MAX[1].
- man-page material
MADV_PAGEOUT (since Linux x.x)
Do not expect access in the near future so pages in the specified
regions could be reclaimed instantly regardless of memory pressure.
Thus, access in the range after successful operation could cause
major page fault but never lose the up-to-date contents unlike
MADV_DONTNEED. Pages belonging to a shared mapping are only processed
if a write access is allowed for the calling process.
MADV_PAGEOUT cannot be applied to locked pages, Huge TLB pages, or
VM_PFNMAP pages.
[1] https://lore.kernel.org/lkml/20190710194719.GS29695@dhcp22.suse.cz/
[minchan@kernel.org: clear PG_active on MADV_PAGEOUT]
Link: http://lkml.kernel.org/r/20190802200643.GA181880@google.com
[akpm@linux-foundation.org: resolve conflicts with hmm.git]
Link: http://lkml.kernel.org/r/20190726023435.214162-5-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reported-by: kbuild test robot <lkp@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Chris Zankel <chris@zankel.net>
Cc: Daniel Colascione <dancol@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Oleksandr Natalenko <oleksandr@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Sonny Rao <sonnyrao@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tim Murray <timmurray@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Introduce MADV_COLD and MADV_PAGEOUT", v7.
- Background
The Android terminology used for forking a new process and starting an app
from scratch is a cold start, while resuming an existing app is a hot
start. While we continually try to improve the performance of cold
starts, hot starts will always be significantly less power hungry as well
as faster so we are trying to make hot start more likely than cold start.
To increase hot start, Android userspace manages the order that apps
should be killed in a process called ActivityManagerService.
ActivityManagerService tracks every Android app or service that the user
could be interacting with at any time and translates that into a ranked
list for lmkd(low memory killer daemon). They are likely to be killed by
lmkd if the system has to reclaim memory. In that sense they are similar
to entries in any other cache. Those apps are kept alive for
opportunistic performance improvements but those performance improvements
will vary based on the memory requirements of individual workloads.
- Problem
Naturally, cached apps were dominant consumers of memory on the system.
However, they were not significant consumers of swap even though they are
good candidate for swap. Under investigation, swapping out only begins
once the low zone watermark is hit and kswapd wakes up, but the overall
allocation rate in the system might trip lmkd thresholds and cause a
cached process to be killed(we measured performance swapping out vs.
zapping the memory by killing a process. Unsurprisingly, zapping is 10x
times faster even though we use zram which is much faster than real
storage) so kill from lmkd will often satisfy the high zone watermark,
resulting in very few pages actually being moved to swap.
- Approach
The approach we chose was to use a new interface to allow userspace to
proactively reclaim entire processes by leveraging platform information.
This allowed us to bypass the inaccuracy of the kernel’s LRUs for pages
that are known to be cold from userspace and to avoid races with lmkd by
reclaiming apps as soon as they entered the cached state. Additionally,
it could provide many chances for platform to use much information to
optimize memory efficiency.
To achieve the goal, the patchset introduce two new options for madvise.
One is MADV_COLD which will deactivate activated pages and the other is
MADV_PAGEOUT which will reclaim private pages instantly. These new
options complement MADV_DONTNEED and MADV_FREE by adding non-destructive
ways to gain some free memory space. MADV_PAGEOUT is similar to
MADV_DONTNEED in a way that it hints the kernel that memory region is not
currently needed and should be reclaimed immediately; MADV_COLD is similar
to MADV_FREE in a way that it hints the kernel that memory region is not
currently needed and should be reclaimed when memory pressure rises.
This patch (of 5):
When a process expects no accesses to a certain memory range, it could
give a hint to kernel that the pages can be reclaimed when memory pressure
happens but data should be preserved for future use. This could reduce
workingset eviction so it ends up increasing performance.
This patch introduces the new MADV_COLD hint to madvise(2) syscall.
MADV_COLD can be used by a process to mark a memory range as not expected
to be used in the near future. The hint can help kernel in deciding which
pages to evict early during memory pressure.
It works for every LRU pages like MADV_[DONTNEED|FREE]. IOW, It moves
active file page -> inactive file LRU
active anon page -> inacdtive anon LRU
Unlike MADV_FREE, it doesn't move active anonymous pages to inactive file
LRU's head because MADV_COLD is a little bit different symantic.
MADV_FREE means it's okay to discard when the memory pressure because the
content of the page is *garbage* so freeing such pages is almost zero
overhead since we don't need to swap out and access afterward causes just
minor fault. Thus, it would make sense to put those freeable pages in
inactive file LRU to compete other used-once pages. It makes sense for
implmentaion point of view, too because it's not swapbacked memory any
longer until it would be re-dirtied. Even, it could give a bonus to make
them be reclaimed on swapless system. However, MADV_COLD doesn't mean
garbage so reclaiming them requires swap-out/in in the end so it's bigger
cost. Since we have designed VM LRU aging based on cost-model, anonymous
cold pages would be better to position inactive anon's LRU list, not file
LRU. Furthermore, it would help to avoid unnecessary scanning if system
doesn't have a swap device. Let's start simpler way without adding
complexity at this moment. However, keep in mind, too that it's a caveat
that workloads with a lot of pages cache are likely to ignore MADV_COLD on
anonymous memory because we rarely age anonymous LRU lists.
* man-page material
MADV_COLD (since Linux x.x)
Pages in the specified regions will be treated as less-recently-accessed
compared to pages in the system with similar access frequencies. In
contrast to MADV_FREE, the contents of the region are preserved regardless
of subsequent writes to pages.
MADV_COLD cannot be applied to locked pages, Huge TLB pages, or VM_PFNMAP
pages.
[akpm@linux-foundation.org: resolve conflicts with hmm.git]
Link: http://lkml.kernel.org/r/20190726023435.214162-2-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reported-by: kbuild test robot <lkp@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Chris Zankel <chris@zankel.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Daniel Colascione <dancol@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Oleksandr Natalenko <oleksandr@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Sonny Rao <sonnyrao@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tim Murray <timmurray@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch is a part of a series that extends kernel ABI to allow to pass
tagged user pointers (with the top byte set to something else other than
0x00) as syscall arguments.
This patch allows tagged pointers to be passed to the following memory
syscalls: get_mempolicy, madvise, mbind, mincore, mlock, mlock2, mprotect,
mremap, msync, munlock, move_pages.
The mmap and mremap syscalls do not currently accept tagged addresses.
Architectures may interpret the tag as a background colour for the
corresponding vma.
Link: http://lkml.kernel.org/r/aaf0c0969d46b2feb9017f3e1b3ef3970b633d91.1563904656.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Eric Auger <eric.auger@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jens Wiklander <jens.wiklander@linaro.org>
Cc: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
madvise_behavior() converts -ENOMEM to -EAGAIN in several places using
identical code.
Move that code to a common error handling path.
No functional changes.
Link: http://lkml.kernel.org/r/1564640896-1210-1-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Pankaj Gupta <pagupta@redhat.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is more cleanup and consolidation of the hmm APIs and the very
strongly related mmu_notifier interfaces. Many places across the tree
using these interfaces are touched in the process. Beyond that a cleanup
to the page walker API and a few memremap related changes round out the
series:
- General improvement of hmm_range_fault() and related APIs, more
documentation, bug fixes from testing, API simplification &
consolidation, and unused API removal
- Simplify the hmm related kconfigs to HMM_MIRROR and DEVICE_PRIVATE, and
make them internal kconfig selects
- Hoist a lot of code related to mmu notifier attachment out of drivers by
using a refcount get/put attachment idiom and remove the convoluted
mmu_notifier_unregister_no_release() and related APIs.
- General API improvement for the migrate_vma API and revision of its only
user in nouveau
- Annotate mmu_notifiers with lockdep and sleeping region debugging
Two series unrelated to HMM or mmu_notifiers came along due to
dependencies:
- Allow pagemap's memremap_pages family of APIs to work without providing
a struct device
- Make walk_page_range() and related use a constant structure for function
pointers
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEfB7FMLh+8QxL+6i3OG33FX4gmxoFAl1/nnkACgkQOG33FX4g
mxqaRg//c6FqowV1pQlLutvAOAgMdpzfZ9eaaDKngy9RVQxz+k/MmJrdRH/p/mMA
Pq93A1XfwtraGKErHegFXGEDk4XhOustVAVFwvjyXO41dTUdoFVUkti6ftbrl/rS
6CT+X90jlvrwdRY7QBeuo7lxx7z8Qkqbk1O1kc1IOracjKfNJS+y6LTamy6weM3g
tIMHI65PkxpRzN36DV9uCN5dMwFzJ73DWHp1b0acnDIigkl6u5zp6orAJVWRjyQX
nmEd3/IOvdxaubAoAvboNS5CyVb4yS9xshWWMbH6AulKJv3Glca1Aa7QuSpBoN8v
wy4c9+umzqRgzgUJUe1xwN9P49oBNhJpgBSu8MUlgBA4IOc3rDl/Tw0b5KCFVfkH
yHkp8n6MP8VsRrzXTC6Kx0vdjIkAO8SUeylVJczAcVSyHIo6/JUJCVDeFLSTVymh
EGWJ7zX2iRhUbssJ6/izQTTQyCH3YIyZ5QtqByWuX2U7ZrfkqS3/EnBW1Q+j+gPF
Z2yW8iT6k0iENw6s8psE9czexuywa/Lttz94IyNlOQ8rJTiQqB9wLaAvg9hvUk7a
kuspL+JGIZkrL3ouCeO/VA6xnaP+Q7nR8geWBRb8zKGHmtWrb5Gwmt6t+vTnCC2l
olIDebrnnxwfBQhEJ5219W+M1pBpjiTpqK/UdBd92A4+sOOhOD0=
=FRGg
-----END PGP SIGNATURE-----
Merge tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
Pull hmm updates from Jason Gunthorpe:
"This is more cleanup and consolidation of the hmm APIs and the very
strongly related mmu_notifier interfaces. Many places across the tree
using these interfaces are touched in the process. Beyond that a
cleanup to the page walker API and a few memremap related changes
round out the series:
- General improvement of hmm_range_fault() and related APIs, more
documentation, bug fixes from testing, API simplification &
consolidation, and unused API removal
- Simplify the hmm related kconfigs to HMM_MIRROR and DEVICE_PRIVATE,
and make them internal kconfig selects
- Hoist a lot of code related to mmu notifier attachment out of
drivers by using a refcount get/put attachment idiom and remove the
convoluted mmu_notifier_unregister_no_release() and related APIs.
- General API improvement for the migrate_vma API and revision of its
only user in nouveau
- Annotate mmu_notifiers with lockdep and sleeping region debugging
Two series unrelated to HMM or mmu_notifiers came along due to
dependencies:
- Allow pagemap's memremap_pages family of APIs to work without
providing a struct device
- Make walk_page_range() and related use a constant structure for
function pointers"
* tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma: (75 commits)
libnvdimm: Enable unit test infrastructure compile checks
mm, notifier: Catch sleeping/blocking for !blockable
kernel.h: Add non_block_start/end()
drm/radeon: guard against calling an unpaired radeon_mn_unregister()
csky: add missing brackets in a macro for tlb.h
pagewalk: use lockdep_assert_held for locking validation
pagewalk: separate function pointers from iterator data
mm: split out a new pagewalk.h header from mm.h
mm/mmu_notifiers: annotate with might_sleep()
mm/mmu_notifiers: prime lockdep
mm/mmu_notifiers: add a lockdep map for invalidate_range_start/end
mm/mmu_notifiers: remove the __mmu_notifier_invalidate_range_start/end exports
mm/hmm: hmm_range_fault() infinite loop
mm/hmm: hmm_range_fault() NULL pointer bug
mm/hmm: fix hmm_range_fault()'s handling of swapped out pages
mm/mmu_notifiers: remove unregister_no_release
RDMA/odp: remove ib_ucontext from ib_umem
RDMA/odp: use mmu_notifier_get/put for 'struct ib_ucontext_per_mm'
RDMA/mlx5: Use odp instead of mr->umem in pagefault_mr
RDMA/mlx5: Use ib_umem_start instead of umem.address
...
The mm_walk structure currently mixed data and code. Split out the
operations vectors into a new mm_walk_ops structure, and while we are
changing the API also declare the mm_walk structure inside the
walk_page_range and walk_page_vma functions.
Based on patch from Linus Torvalds.
Link: https://lore.kernel.org/r/20190828141955.22210-3-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Thomas Hellstrom <thellstrom@vmware.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
Add a new header for the two handful of users of the walk_page_range /
walk_page_vma interface instead of polluting all users of mm.h with it.
Link: https://lore.kernel.org/r/20190828141955.22210-2-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Thomas Hellstrom <thellstrom@vmware.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
Currently handling of MADV_WILLNEED hint calls directly into readahead
code. Handle it by calling vfs_fadvise() instead so that filesystem can
use its ->fadvise() callback to acquire necessary locks or otherwise
prepare for the request.
Suggested-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Boaz Harrosh <boazh@netapp.com>
CC: stable@vger.kernel.org
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The code hasn't been used since it was added to the tree, and doesn't
appear to actually be usable.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
This updates each existing invalidation to use the correct mmu notifier
event that represent what is happening to the CPU page table. See the
patch which introduced the events to see the rational behind this.
Link: http://lkml.kernel.org/r/20190326164747.24405-7-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Christian Koenig <christian.koenig@amd.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
CPU page table update can happens for many reasons, not only as a result
of a syscall (munmap(), mprotect(), mremap(), madvise(), ...) but also as
a result of kernel activities (memory compression, reclaim, migration,
...).
Users of mmu notifier API track changes to the CPU page table and take
specific action for them. While current API only provide range of virtual
address affected by the change, not why the changes is happening.
This patchset do the initial mechanical convertion of all the places that
calls mmu_notifier_range_init to also provide the default MMU_NOTIFY_UNMAP
event as well as the vma if it is know (most invalidation happens against
a given vma). Passing down the vma allows the users of mmu notifier to
inspect the new vma page protection.
The MMU_NOTIFY_UNMAP is always the safe default as users of mmu notifier
should assume that every for the range is going away when that event
happens. A latter patch do convert mm call path to use a more appropriate
events for each call.
This is done as 2 patches so that no call site is forgotten especialy
as it uses this following coccinelle patch:
%<----------------------------------------------------------------------
@@
identifier I1, I2, I3, I4;
@@
static inline void mmu_notifier_range_init(struct mmu_notifier_range *I1,
+enum mmu_notifier_event event,
+unsigned flags,
+struct vm_area_struct *vma,
struct mm_struct *I2, unsigned long I3, unsigned long I4) { ... }
@@
@@
-#define mmu_notifier_range_init(range, mm, start, end)
+#define mmu_notifier_range_init(range, event, flags, vma, mm, start, end)
@@
expression E1, E3, E4;
identifier I1;
@@
<...
mmu_notifier_range_init(E1,
+MMU_NOTIFY_UNMAP, 0, I1,
I1->vm_mm, E3, E4)
...>
@@
expression E1, E2, E3, E4;
identifier FN, VMA;
@@
FN(..., struct vm_area_struct *VMA, ...) {
<...
mmu_notifier_range_init(E1,
+MMU_NOTIFY_UNMAP, 0, VMA,
E2, E3, E4)
...> }
@@
expression E1, E2, E3, E4;
identifier FN, VMA;
@@
FN(...) {
struct vm_area_struct *VMA;
<...
mmu_notifier_range_init(E1,
+MMU_NOTIFY_UNMAP, 0, VMA,
E2, E3, E4)
...> }
@@
expression E1, E2, E3, E4;
identifier FN;
@@
FN(...) {
<...
mmu_notifier_range_init(E1,
+MMU_NOTIFY_UNMAP, 0, NULL,
E2, E3, E4)
...> }
---------------------------------------------------------------------->%
Applied with:
spatch --all-includes --sp-file mmu-notifier.spatch fs/proc/task_mmu.c --in-place
spatch --sp-file mmu-notifier.spatch --dir kernel/events/ --in-place
spatch --sp-file mmu-notifier.spatch --dir mm --in-place
Link: http://lkml.kernel.org/r/20190326164747.24405-6-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Christian Koenig <christian.koenig@amd.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move the mmu_gather::page_size things into the generic code instead of
PowerPC specific bits.
No change in behavior intended.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nick Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
To avoid having to change many call sites everytime we want to add a
parameter use a structure to group all parameters for the mmu_notifier
invalidate_range_start/end cakks. No functional changes with this patch.
[akpm@linux-foundation.org: coding style fixes]
Link: http://lkml.kernel.org/r/20181205053628.3210-3-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Acked-by: Christian König <christian.koenig@amd.com>
Acked-by: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Felix Kuehling <felix.kuehling@amd.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
From: Jérôme Glisse <jglisse@redhat.com>
Subject: mm/mmu_notifier: use structure for invalidate_range_start/end calls v3
fix build warning in migrate.c when CONFIG_MMU_NOTIFIER=n
Link: http://lkml.kernel.org/r/20181213171330.8489-3-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull XArray conversion from Matthew Wilcox:
"The XArray provides an improved interface to the radix tree data
structure, providing locking as part of the API, specifying GFP flags
at allocation time, eliminating preloading, less re-walking the tree,
more efficient iterations and not exposing RCU-protected pointers to
its users.
This patch set
1. Introduces the XArray implementation
2. Converts the pagecache to use it
3. Converts memremap to use it
The page cache is the most complex and important user of the radix
tree, so converting it was most important. Converting the memremap
code removes the only other user of the multiorder code, which allows
us to remove the radix tree code that supported it.
I have 40+ followup patches to convert many other users of the radix
tree over to the XArray, but I'd like to get this part in first. The
other conversions haven't been in linux-next and aren't suitable for
applying yet, but you can see them in the xarray-conv branch if you're
interested"
* 'xarray' of git://git.infradead.org/users/willy/linux-dax: (90 commits)
radix tree: Remove multiorder support
radix tree test: Convert multiorder tests to XArray
radix tree tests: Convert item_delete_rcu to XArray
radix tree tests: Convert item_kill_tree to XArray
radix tree tests: Move item_insert_order
radix tree test suite: Remove multiorder benchmarking
radix tree test suite: Remove __item_insert
memremap: Convert to XArray
xarray: Add range store functionality
xarray: Move multiorder_check to in-kernel tests
xarray: Move multiorder_shrink to kernel tests
xarray: Move multiorder account test in-kernel
radix tree test suite: Convert iteration test to XArray
radix tree test suite: Convert tag_tagged_items to XArray
radix tree: Remove radix_tree_clear_tags
radix tree: Remove radix_tree_maybe_preload_order
radix tree: Remove split/join code
radix tree: Remove radix_tree_update_node_t
page cache: Finish XArray conversion
dax: Convert page fault handlers to XArray
...
Reproducer, assuming 2M of hugetlbfs available:
Hugetlbfs mounted, size=2M and option user=testuser
# mount | grep ^hugetlbfs
hugetlbfs on /dev/hugepages type hugetlbfs (rw,pagesize=2M,user=dan)
# sysctl vm.nr_hugepages=1
vm.nr_hugepages = 1
# grep Huge /proc/meminfo
AnonHugePages: 0 kB
ShmemHugePages: 0 kB
HugePages_Total: 1
HugePages_Free: 1
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
Hugetlb: 2048 kB
Code:
#include <sys/mman.h>
#include <stddef.h>
#define SIZE 2*1024*1024
int main()
{
void *ptr;
ptr = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_HUGETLB | MAP_ANONYMOUS, -1, 0);
madvise(ptr, SIZE, MADV_DONTDUMP);
madvise(ptr, SIZE, MADV_DODUMP);
}
Compile and strace:
mmap(NULL, 2097152, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB, -1, 0) = 0x7ff7c9200000
madvise(0x7ff7c9200000, 2097152, MADV_DONTDUMP) = 0
madvise(0x7ff7c9200000, 2097152, MADV_DODUMP) = -1 EINVAL (Invalid argument)
hugetlbfs pages have VM_DONTEXPAND in the VmFlags driver pages based on
author testing with analysis from Florian Weimer[1].
The inclusion of VM_DONTEXPAND into the VM_SPECIAL defination was a
consequence of the large useage of VM_DONTEXPAND in device drivers.
A consequence of [2] is that VM_DONTEXPAND marked pages are unable to be
marked DODUMP.
A user could quite legitimately madvise(MADV_DONTDUMP) their hugetlbfs
memory for a while and later request that madvise(MADV_DODUMP) on the same
memory. We correct this omission by allowing madvice(MADV_DODUMP) on
hugetlbfs pages.
[1] https://stackoverflow.com/questions/52548260/madvisedodump-on-the-same-ptr-size-as-a-successful-madvisedontdump-fails-wit
[2] commit 0103bd16fb ("mm: prepare VM_DONTDUMP for using in drivers")
Link: http://lkml.kernel.org/r/20180930054629.29150-1-daniel@linux.ibm.com
Link: https://lists.launchpad.net/maria-discuss/msg05245.html
Fixes: 0103bd16fb ("mm: prepare VM_DONTDUMP for using in drivers")
Reported-by: Kenneth Penza <kpenza@gmail.com>
Signed-off-by: Daniel Black <daniel@linux.ibm.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Konstantin Khlebnikov <khlebnikov@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Introduce xarray value entries and tagged pointers to replace radix
tree exceptional entries. This is a slight change in encoding to allow
the use of an extra bit (we can now store BITS_PER_LONG - 1 bits in a
value entry). It is also a change in emphasis; exceptional entries are
intimidating and different. As the comment explains, you can choose
to store values or pointers in the xarray and they are both first-class
citizens.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
The madvise_inject_error() routine uses get_user_pages() to lookup the
pfn and other information for injected error, but it does not release
that pin. The assumption is that failed pages should be taken out of
circulation.
However, for dax mappings it is not possible to take pages out of
circulation since they are 1:1 physically mapped as filesystem blocks,
or device-dax capacity. They also typically represent persistent memory
which has an error clearing capability.
In preparation for adding a special handler for dax mappings, shift the
responsibility of taking the page reference to memory_failure(). I.e.
drop the page reference and do not specify MF_COUNT_INCREASED to
memory_failure().
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Today 4 architectures set ARCH_SUPPORTS_MEMORY_FAILURE (arm64, parisc,
powerpc, and x86), while 4 other architectures set __ARCH_SI_TRAPNO
(alpha, metag, sparc, and tile). These two sets of architectures do
not interesect so remove the trapno paramater to remove confusion.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
MADVISE_WILLNEED has always been a noop for DAX (formerly XIP) mappings.
Unfortunately madvise_willneed() doesn't communicate this information
properly to the generic madvise syscall implementation. The calling
convention is quite subtle there. madvise_vma() is supposed to either
return an error or update &prev otherwise the main loop will never
advance to the next vma and it will keep looping for ever without a way
to get out of the kernel.
It seems this has been broken since introduction. Nobody has noticed
because nobody seems to be using MADVISE_WILLNEED on these DAX mappings.
[mhocko@suse.com: rewrite changelog]
Link: http://lkml.kernel.org/r/20171127115318.911-1-guoxuenan@huawei.com
Fixes: fe77ba6f4f ("[PATCH] xip: madvice/fadvice: execute in place")
Signed-off-by: chenjie <chenjie6@huawei.com>
Signed-off-by: guoxuenan <guoxuenan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: zhangyi (F) <yi.zhang@huawei.com>
Cc: Miao Xie <miaoxie@huawei.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Shaohua Li <shli@fb.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Carsten Otte <cotte@de.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
mm/madvise.c has a brief description about all MADV_ flags. Add a
description for the newly added MADV_WIPEONFORK and MADV_KEEPONFORK.
Although man page has the similar information, but it'd better to keep
the consistent with other flags.
Link: http://lkml.kernel.org/r/1506117328-88228-1-git-send-email-yang.s@alibaba-inc.com
Signed-off-by: Yang Shi <yang.s@alibaba-inc.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This fixes a bug in madvise() where if you'd try to soft offline a
hugepage via madvise(), while walking the address range you'd end up,
using the wrong page offset due to attempting to get the compound order
of a former but presently not compound page, due to dissolving the huge
page (since commit c3114a84f7f9: "mm: hugetlb: soft-offline: dissolve
source hugepage after successful migration").
As a result I ended up with all my free pages except one being offlined.
Link: http://lkml.kernel.org/r/20170912204306.GA12053@gmail.com
Fixes: c3114a84f7 ("mm: hugetlb: soft-offline: dissolve source hugepage after successful migration")
Signed-off-by: Alexandru Moise <00moses.alexander00@gmail.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Shaohua Li <shli@fb.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Platform with advance system bus (like CAPI or CCIX) allow device memory
to be accessible from CPU in a cache coherent fashion. Add a new type of
ZONE_DEVICE to represent such memory. The use case are the same as for
the un-addressable device memory but without all the corners cases.
Link: http://lkml.kernel.org/r/20170817000548.32038-19-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: David Nellans <dnellans@nvidia.com>
Cc: Evgeny Baskakov <ebaskakov@nvidia.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mark Hairgrove <mhairgrove@nvidia.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sherry Cheung <SCheung@nvidia.com>
Cc: Subhash Gutti <sgutti@nvidia.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Bob Liu <liubo95@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce MADV_WIPEONFORK semantics, which result in a VMA being empty
in the child process after fork. This differs from MADV_DONTFORK in one
important way.
If a child process accesses memory that was MADV_WIPEONFORK, it will get
zeroes. The address ranges are still valid, they are just empty.
If a child process accesses memory that was MADV_DONTFORK, it will get a
segmentation fault, since those address ranges are no longer valid in
the child after fork.
Since MADV_DONTFORK also seems to be used to allow very large programs
to fork in systems with strict memory overcommit restrictions, changing
the semantics of MADV_DONTFORK might break existing programs.
MADV_WIPEONFORK only works on private, anonymous VMAs.
The use case is libraries that store or cache information, and want to
know that they need to regenerate it in the child process after fork.
Examples of this would be:
- systemd/pulseaudio API checks (fail after fork) (replacing a getpid
check, which is too slow without a PID cache)
- PKCS#11 API reinitialization check (mandated by specification)
- glibc's upcoming PRNG (reseed after fork)
- OpenSSL PRNG (reseed after fork)
The security benefits of a forking server having a re-inialized PRNG in
every child process are pretty obvious. However, due to libraries
having all kinds of internal state, and programs getting compiled with
many different versions of each library, it is unreasonable to expect
calling programs to re-initialize everything manually after fork.
A further complication is the proliferation of clone flags, programs
bypassing glibc's functions to call clone directly, and programs calling
unshare, causing the glibc pthread_atfork hook to not get called.
It would be better to have the kernel take care of this automatically.
The patch also adds MADV_KEEPONFORK, to undo the effects of a prior
MADV_WIPEONFORK.
This is similar to the OpenBSD minherit syscall with MAP_INHERIT_ZERO:
https://man.openbsd.org/minherit.2
[akpm@linux-foundation.org: numerically order arch/parisc/include/uapi/asm/mman.h #defines]
Link: http://lkml.kernel.org/r/20170811212829.29186-3-riel@redhat.com
Signed-off-by: Rik van Riel <riel@redhat.com>
Reported-by: Florian Weimer <fweimer@redhat.com>
Reported-by: Colm MacCártaigh <colm@allcosts.net>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Drewry <wad@chromium.org>
Cc: <linux-api@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Wendy Wang reported off-list that a RAS HWPOISON-SOFT test case failed
and bisected it to the commit 479f854a20 ("mm, page_alloc: defer
debugging checks of pages allocated from the PCP").
The problem is that a page that was poisoned with madvise() is reused.
The commit removed a check that would trigger if DEBUG_VM was enabled
but re-enabling the check only fixes the problem as a side-effect by
printing a bad_page warning and recovering.
The root of the problem is that an madvise() can leave a poisoned page
on the per-cpu list. This patch drains all per-cpu lists after pages
are poisoned so that they will not be reused. Wendy reports that the
test case in question passes with this patch applied. While this could
be done in a targeted fashion, it is over-complicated for such a rare
operation.
Link: http://lkml.kernel.org/r/20170828133414.7qro57jbepdcyz5x@techsingularity.net
Fixes: 479f854a20 ("mm, page_alloc: defer debugging checks of pages allocated from the PCP")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Wang, Wendy <wendy.wang@intel.com>
Tested-by: Wang, Wendy <wendy.wang@intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: "Hansen, Dave" <dave.hansen@intel.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Nadav Amit identified a theoritical race between page reclaim and
mprotect due to TLB flushes being batched outside of the PTL being held.
He described the race as follows:
CPU0 CPU1
---- ----
user accesses memory using RW PTE
[PTE now cached in TLB]
try_to_unmap_one()
==> ptep_get_and_clear()
==> set_tlb_ubc_flush_pending()
mprotect(addr, PROT_READ)
==> change_pte_range()
==> [ PTE non-present - no flush ]
user writes using cached RW PTE
...
try_to_unmap_flush()
The same type of race exists for reads when protecting for PROT_NONE and
also exists for operations that can leave an old TLB entry behind such
as munmap, mremap and madvise.
For some operations like mprotect, it's not necessarily a data integrity
issue but it is a correctness issue as there is a window where an
mprotect that limits access still allows access. For munmap, it's
potentially a data integrity issue although the race is massive as an
munmap, mmap and return to userspace must all complete between the
window when reclaim drops the PTL and flushes the TLB. However, it's
theoritically possible so handle this issue by flushing the mm if
reclaim is potentially currently batching TLB flushes.
Other instances where a flush is required for a present pte should be ok
as either the page lock is held preventing parallel reclaim or a page
reference count is elevated preventing a parallel free leading to
corruption. In the case of page_mkclean there isn't an obvious path
that userspace could take advantage of without using the operations that
are guarded by this patch. Other users such as gup as a race with
reclaim looks just at PTEs. huge page variants should be ok as they
don't race with reclaim. mincore only looks at PTEs. userfault also
should be ok as if a parallel reclaim takes place, it will either fault
the page back in or read some of the data before the flush occurs
triggering a fault.
Note that a variant of this patch was acked by Andy Lutomirski but this
was for the x86 parts on top of his PCID work which didn't make the 4.13
merge window as expected. His ack is dropped from this version and
there will be a follow-on patch on top of PCID that will include his
ack.
[akpm@linux-foundation.org: tweak comments]
[akpm@linux-foundation.org: fix spello]
Link: http://lkml.kernel.org/r/20170717155523.emckq2esjro6hf3z@suse.de
Reported-by: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: <stable@vger.kernel.org> [v4.4+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
MADV_FREE is identical to MADV_DONTNEED from the point of view of uffd
monitor. The monitor has to stop handling #PF events in the range being
freed. We are reusing userfaultfd_remove callback along with the logic
required to re-get and re-validate the VMA which may change or disappear
because userfaultfd_remove releases mmap_sem.
Link: http://lkml.kernel.org/r/1497876311-18615-1-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For fast flash disk, async IO could introduce overhead because of
context switch. block-mq now supports IO poll, which improves
performance and latency a lot. swapin is a good place to use this
technique, because the task is waiting for the swapin page to continue
execution.
In my virtual machine, directly read 4k data from a NVMe with iopoll is
about 60% better than that without poll. With iopoll support in swapin
patch, my microbenchmark (a task does random memory write) is about
10%~25% faster. CPU utilization increases a lot though, 2x and even 3x
CPU utilization. This will depend on disk speed.
While iopoll in swapin isn't intended for all usage cases, it's a win
for latency sensistive workloads with high speed swap disk. block layer
has knob to control poll in runtime. If poll isn't enabled in block
layer, there should be no noticeable change in swapin.
I got a chance to run the same test in a NVMe with DRAM as the media.
In simple fio IO test, blkpoll boosts 50% performance in single thread
test and ~20% in 8 threads test. So this is the base line. In above
swap test, blkpoll boosts ~27% performance in single thread test.
blkpoll uses 2x CPU time though.
If we enable hybid polling, the performance gain has very slight drop
but CPU time is only 50% worse than that without blkpoll. Also we can
adjust parameter of hybid poll, with it, the CPU time penality is
reduced further. In 8 threads test, blkpoll doesn't help though. The
performance is similar to that without blkpoll, but cpu utilization is
similar too. There is lock contention in swap path. The cpu time
spending on blkpoll isn't high. So overall, blkpoll swapin isn't worse
than that without it.
The swapin readahead might read several pages in in the same time and
form a big IO request. Since the IO will take longer time, it doesn't
make sense to do poll, so the patch only does iopoll for single page
swapin.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/070c3c3e40b711e7b1390002c991e86a-b5408f0@7511894063d3764ff01ea8111f5a004d7dd700ed078797c204a24e620ddb965c
Signed-off-by: Shaohua Li <shli@fb.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
madvise_behavior_valid() should be called before acting upon the
behavior parameter. Hence move up the function. This also includes
MADV_SOFT_OFFLINE and MADV_HWPOISON options as valid behavior parameter
for the system call madvise().
Link: http://lkml.kernel.org/r/20170418052844.24891-1-khandual@linux.vnet.ibm.com
Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This cleans up handling MADV_SOFT_OFFLINE and MADV_HWPOISON called
through madvise() system call.
* madvise_memory_failure() was misleading to accommodate handling of
both memory_failure() as well as soft_offline_page() functions.
Basically it handles memory error injection from user space which
can go either way as memory failure or soft offline. Renamed as
madvise_inject_error() instead.
* Renamed struct page pointer 'p' to 'page'.
* pr_info() was essentially printing PFN value but it said 'page'
which was misleading. Made the process virtual address explicit.
Before the patch:
Soft offlining page 0x15e3e at 0x3fff8c230000
Soft offlining page 0x1f3 at 0x3fffa0da0000
Soft offlining page 0x744 at 0x3fff7d200000
Soft offlining page 0x1634d at 0x3fff95e20000
Soft offlining page 0x16349 at 0x3fff95e30000
Soft offlining page 0x1d6 at 0x3fff9e8b0000
Soft offlining page 0x5f3 at 0x3fff91bd0000
Injecting memory failure for page 0x15c8b at 0x3fff83280000
Injecting memory failure for page 0x16190 at 0x3fff83290000
Injecting memory failure for page 0x740 at 0x3fff9a2e0000
Injecting memory failure for page 0x741 at 0x3fff9a2f0000
After the patch:
Soft offlining pfn 0x1484e at process virtual address 0x3fff883c0000
Soft offlining pfn 0x1484f at process virtual address 0x3fff883d0000
Soft offlining pfn 0x14850 at process virtual address 0x3fff883e0000
Soft offlining pfn 0x14851 at process virtual address 0x3fff883f0000
Soft offlining pfn 0x14852 at process virtual address 0x3fff88400000
Soft offlining pfn 0x14853 at process virtual address 0x3fff88410000
Soft offlining pfn 0x14854 at process virtual address 0x3fff88420000
Soft offlining pfn 0x1521c at process virtual address 0x3fff6bc70000
Injecting memory failure for pfn 0x10fcf at process virtual address 0x3fff86310000
Injecting memory failure for pfn 0x10fd0 at process virtual address 0x3fff86320000
Injecting memory failure for pfn 0x10fd1 at process virtual address 0x3fff86330000
Injecting memory failure for pfn 0x10fd2 at process virtual address 0x3fff86340000
Injecting memory failure for pfn 0x10fd3 at process virtual address 0x3fff86350000
Injecting memory failure for pfn 0x10fd4 at process virtual address 0x3fff86360000
Injecting memory failure for pfn 0x10fd5 at process virtual address 0x3fff86370000
Link: http://lkml.kernel.org/r/20170410084701.11248-1-khandual@linux.vnet.ibm.com
Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now MADV_FREE pages can be easily reclaimed even for swapless system.
We can safely enable MADV_FREE for all systems.
Link: http://lkml.kernel.org/r/155648585589300bfae1d45078e7aebb3d988b87.1487965799.git.shli@fb.com
Signed-off-by: Shaohua Li <shli@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When memory pressure is high, we free MADV_FREE pages. If the pages are
not dirty in pte, the pages could be freed immediately. Otherwise we
can't reclaim them. We put the pages back to anonumous LRU list (by
setting SwapBacked flag) and the pages will be reclaimed in normal
swapout way.
We use normal page reclaim policy. Since MADV_FREE pages are put into
inactive file list, such pages and inactive file pages are reclaimed
according to their age. This is expected, because we don't want to
reclaim too many MADV_FREE pages before used once pages.
Based on Minchan's original patch
[minchan@kernel.org: clean up lazyfree page handling]
Link: http://lkml.kernel.org/r/20170303025237.GB3503@bbox
Link: http://lkml.kernel.org/r/14b8eb1d3f6bf6cc492833f183ac8c304e560484.1487965799.git.shli@fb.com
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
madv()'s MADV_FREE indicate pages are 'lazyfree'. They are still
anonymous pages, but they can be freed without pageout. To distinguish
these from normal anonymous pages, we clear their SwapBacked flag.
MADV_FREE pages could be freed without pageout, so they pretty much like
used once file pages. For such pages, we'd like to reclaim them once
there is memory pressure. Also it might be unfair reclaiming MADV_FREE
pages always before used once file pages and we definitively want to
reclaim the pages before other anonymous and file pages.
To speed up MADV_FREE pages reclaim, we put the pages into
LRU_INACTIVE_FILE list. The rationale is LRU_INACTIVE_FILE list is tiny
nowadays and should be full of used once file pages. Reclaiming
MADV_FREE pages will not have much interfere of anonymous and active
file pages. And the inactive file pages and MADV_FREE pages will be
reclaimed according to their age, so we don't reclaim too many MADV_FREE
pages too. Putting the MADV_FREE pages into LRU_INACTIVE_FILE_LIST also
means we can reclaim the pages without swap support. This idea is
suggested by Johannes.
This patch doesn't move MADV_FREE pages to LRU_INACTIVE_FILE list yet to
avoid bisect failure, next patch will do it.
The patch is based on Minchan's original patch.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/2f87063c1e9354677b7618c647abde77b07561e5.1487965799.git.shli@fb.com
Signed-off-by: Shaohua Li <shli@fb.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
userfaultfd_remove() has to be execute before zapping the pagetables or
UFFDIO_COPY could keep filling pages after zap_page_range returned,
which would result in non zero data after a MADV_DONTNEED.
However userfaultfd_remove() may have to release the mmap_sem. This was
handled correctly in MADV_REMOVE, but MADV_DONTNEED accessed a
potentially stale vma (the very vma passed to zap_page_range(vma, ...)).
The fix consists in revalidating the vma in case userfaultfd_remove()
had to release the mmap_sem.
This also optimizes away an unnecessary down_read/up_read in the
MADV_REMOVE case if UFFD_EVENT_FORK had to be delivered.
It all remains zero runtime cost in case CONFIG_USERFAULTFD=n as
userfaultfd_remove() will be defined as "true" at build time.
Link: http://lkml.kernel.org/r/20170302173738.18994-3-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove the prototypes for shmem_mapping() and shmem_zero_setup() from
linux/mm.h, since they are already provided in linux/shmem_fs.h. But
shmem_fs.h must then provide the inline stub for shmem_mapping() when
CONFIG_SHMEM is not set, and a few more cfiles now need to #include it.
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1702081658250.1549@eggly.anvils
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If madvise(2) advice will result in the underlying vma being split and
the number of areas mapped by the process will exceed
/proc/sys/vm/max_map_count as a result, return ENOMEM instead of EAGAIN.
EAGAIN is returned by madvise(2) when a kernel resource, such as slab,
is temporarily unavailable. It indicates that userspace should retry
the advice in the near future. This is important for advice such as
MADV_DONTNEED which is often used by malloc implementations to free
memory back to the system: we really do want to free memory back when
madvise(2) returns EAGAIN because slab allocations (for vmas, anon_vmas,
or mempolicies) cannot be allocated.
Encountering /proc/sys/vm/max_map_count is not a temporary failure,
however, so return ENOMEM to indicate this is a more serious issue. A
followup patch to the man page will specify this behavior.
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701241431120.42507@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michael Kerrisk <mtk.manpages@googlemail.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a page is removed from a shared mapping, the uffd reader should be
notified, so that it won't attempt to handle #PF events for the removed
pages.
We can reuse the UFFD_EVENT_REMOVE because from the uffd monitor point
of view, the semantices of madvise(MADV_DONTNEED) and
madvise(MADV_REMOVE) is exactly the same.
Link: http://lkml.kernel.org/r/1484814154-1557-3-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Pavel Emelyanov <xemul@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "userfaultfd: non-cooperative: add madvise() event for
MADV_REMOVE request".
These patches add notification of madvise(MADV_REMOVE) event to
non-cooperative userfaultfd monitor.
The first pacth renames EVENT_MADVDONTNEED to EVENT_REMOVE along with
relevant functions and structures. Using _REMOVE instead of
_MADVDONTNEED describes the event semantics more clearly and I hope it's
not too late for such change in the ABI.
This patch (of 3):
The UFFD_EVENT_MADVDONTNEED purpose is to notify uffd monitor about
removal of certain range from address space tracked by userfaultfd.
Hence, UFFD_EVENT_REMOVE seems to better reflect the operation
semantics. Respectively, 'madv_dn' field of uffd_msg is renamed to
'remove' and the madvise_userfault_dontneed callback is renamed to
userfaultfd_remove.
Link: http://lkml.kernel.org/r/1484814154-1557-2-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Logic on whether we can reap pages from the VMA should match what we
have in madvise_dontneed(). In particular, we should skip, VM_PFNMAP
VMAs, but we don't now.
Let's just extract condition on which we can shoot down pagesi from a
VMA with MADV_DONTNEED into separate function and use it in both places.
Link: http://lkml.kernel.org/r/20170118122429.43661-4-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There's no users of zap_page_range() who wants non-NULL 'details'.
Let's drop it.
Link: http://lkml.kernel.org/r/20170118122429.43661-3-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
MADV_DONTNEED must be notified to userland before the pages are zapped.
This allows userland to immediately stop adding pages to the userfaultfd
ranges before the pages are actually zapped or there could be
non-zeropage leftovers as result of concurrent UFFDIO_COPY run in
between zap_page_range and madvise_userfault_dontneed (both
MADV_DONTNEED and UFFDIO_COPY runs under the mmap_sem for reading, so
they can run concurrently).
Link: http://lkml.kernel.org/r/20161216144821.5183-15-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Michael Rapoport <RAPOPORT@il.ibm.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the page is punched out of the address space the uffd reader should
know this and zeromap the respective area in case of the #PF event.
Link: http://lkml.kernel.org/r/20161216144821.5183-14-aarcange@redhat.com
Signed-off-by: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Michael Rapoport <RAPOPORT@il.ibm.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With commit e77b0852b5 ("mm/mmu_gather: track page size with mmu
gather and force flush if page size change") we added the ability to
force a tlb flush when the page size change in a mmu_gather loop. We
did that by checking for a page size change every time we added a page
to mmu_gather for lazy flush/remove. We can improve that by moving the
page size change check early and not doing it every time we add a page.
This also helps us to do tlb flush when invalidating a range covering
dax mapping. Wrt dax mapping we don't have a backing struct page and
hence we don't call tlb_remove_page, which earlier forced the tlb flush
on page size change. Moving the page size change check earlier means we
will do the same even for dax mapping.
We also avoid doing this check on architecture other than powerpc.
In a later patch we will remove page size check from tlb_remove_page().
Link: http://lkml.kernel.org/r/20161026084839.27299-5-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>