Upon a taken interrupt/exception from User mode, HS hardware auto sets Z flag.
This helps shave a few instructions from EXCEPTION_PROLOGUE by eliding
re-reading ERSTATUS and some bit fiddling.
However TLB Miss Exception handler can clobber the CPU flags and still end
up in EXCEPTION_PROLOGUE in the slow path handling TLB handling case:
EV_TLBMissD
do_slow_path_pf
EV_TLBProtV (aliased to call_do_page_fault)
EXCEPTION_PROLOGUE
As a result, EXCEPTION_PROLOGUE need to "unclobber" the Z flag which this
patch changes. It is now pushed out to TLB Miss Exception handler.
The reasons beings:
- The flag restoration is only needed for slowpath TLB Miss Exception
handling, but currently being in EXCEPTION_PROLOGUE penalizes all
exceptions such as ProtV and syscall Trap, where Z flag is already
as expected.
- Pushing unclobber out to where it was clobbered is much cleaner and
also serves to document the fact.
- Makes EXCEPTION_PROLGUE similar to INTERRUPT_PROLOGUE so easier to
refactor the common parts which is what this series aims to do
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Based on 2 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation #
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 4122 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Enrico Weigelt <info@metux.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190604081206.933168790@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Due to a HW bug in NPS400 we get from time to time false TLB miss.
Workaround this by validating each miss.
Signed-off-by: Noam Camus <noamca@mellanox.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
ARCompact and ARCv2 only have ASL, while binutils used to support LSL as
a alias mnemonic.
Newer binutils (upstream) don't want to do that so replace it.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
This is the first working implementation of 40-bit physical address
extension on ARCv2.
Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP
support.
Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a
new bit "SZ" in TLB page desciptor to distinguish between them.
Super Page size is configurable in hardware (4K to 16M), but fixed once
RTL builds.
The exact THP size a Linx configuration will support is a function of:
- MMU page size (typical 8K, RTL fixed)
- software page walker address split between PGD:PTE:PFN (typical
11:8:13, but can be changed with 1 line)
So for above default, THP size supported is 8K * 256 = 2M
Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime
reduces to 1 level (as PTE is folded into PGD and canonically referred
to as PMD).
Thus thp PMD accessors are implemented in terms of PTE (just like sparc)
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
- CONFIG_ARC_UBOOT_SUPPORT to handle arguments passed in r0, r1, r2
- CONFIG_DEVTMPFS_MOUNT for mouting rootfs since it uses external cpio
for rootfs
Cc: Grant Likely <grant.likely@linaro.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: devicetree@vger.kernel.org
Signed-off-by: Ruud Derwig <rderwig@synopsys.com>
[vgupta: folded the Main baord DT files for smp/up into one]
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
With commit 9df62f0544 "arch: use ASM_NL instead of ';'" the generic
macros can handle the arch specific newline quirk. Hence we can get rid
of ARC asm macros and use the "C" style macros.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
switch the args (address, pt_regs) to match with all the other "C"
exception handlers.
This removes the awkwardness in EV_ProtV for page fault vs. unaligned
access.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
This helps remove asid-to-mm reverse map
While mm->context.id contains the ASID assigned to a process, our ASID
allocator also used asid_mm_map[] reverse map. In a new allocation
cycle (mm->ASID >= @asid_cache), the Round Robin ASID allocator used this
to check if new @asid_cache belonged to some mm2 (from prev cycle).
If so, it could locate that mm using the ASID reverse map, and mark that
mm as unallocated ASID, to force it to refresh at the time of switch_mm()
However, for SMP, the reverse map has to be maintained per CPU, so
becomes 2 dimensional, hence got rid of it.
With reverse map gone, it is NOT possible to reach out to current
assignee. So we track the ASID allocation generation/cycle and
on every switch_mm(), check if the current generation of CPU ASID is
same as mm's ASID; If not it is refreshed.
(Based loosely on arch/sh implementation)
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
-Asm code already has values of SW and HW ASID values, so they can be
passed to the printing routine.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
With previous commit freeing up PTE bits, reassign them so as to:
- Match the bit to H/w counterpart where possible
(e.g. MMUv2 GLOBAL/PRESENT, this avoids a shift in create_tlb())
- Avoid holes in _PAGE_xxx definitions
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
The current ARC VM code has 13 flags in Page Table entry: some software
(accesed/dirty/non-linear-maps) and rest hardware specific. With 8k MMU
page, we need 19 bits for addressing page frame so remaining 13 bits is
just about enough to accomodate the current flags.
In MMUv4 there are 2 additional flags, SZ (normal or super page) and WT
(cache access mode write-thru) - and additionally PFN is 20 bits (vs. 19
before for 8k). Thus these can't be held in current PTE w/o making each
entry 64bit wide.
It seems there is some scope of compressing the current PTE flags (and
freeing up a few bits). Currently PTE contains fully orthogonal distinct
access permissions for kernel and user mode (Kr, Kw, Kx; Ur, Uw, Ux)
which can be folded into one set (R, W, X). The translation of 3 PTE
bits into 6 TLB bits (when programming the MMU) can be done based on
following pre-requites/assumptions:
1. For kernel-mode-only translations (vmalloc: 0x7000_0000 to
0x7FFF_FFFF), PTE additionally has PAGE_GLOBAL flag set (and user
space entries can never be global). Thus such a PTE can translate
to Kr, Kw, Kx (as appropriate) and zero for User mode counterparts.
2. For non global entries, the PTE flags can be used to create mirrored
K and U TLB bits. This is true after commit a950549c67
"ARC: copy_(to|from)_user() to honor usermode-access permissions"
which ensured that user-space translations _MUST_ have same access
permissions for both U/K mode accesses so that copy_{to,from}_user()
play fair with fault based CoW break and such...
There is no such thing as free lunch - the cost is slightly infalted
TLB-Miss Handlers.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
* reduce editor lines taken by pt_regs
* ARCompact ISA specific part of TLB Miss handlers clubbed together
* cleanup some comments
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
After the recent cleanups, all the exception handlers now have same
boilerplate prologue code. Move that into common macro.
This reduces readability but helps greatly with sharing / duplicating
entry code with ARCv2 ISA where the handlers are pretty much the same,
just the entry prologue is different (due to hardware assist).
Also while at it, add the missing FAKE_RET_FROM_EXCPN calls in couple of
places to drop down to pure kernel mode (from exception mode) before
jumping off into "C" code.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
LOAD_FAULT_PTE macro is expected to set r2 with faulting vaddr.
However in case of CONFIG_ARC_DBG_TLB_MISS_COUNT, it was getting
clobbered with statistics collection code.
Fix latter by using a different register.
Note that only I-TLB Miss handler was potentially affected.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
* No need to check for READ access in I-TLB Miss handler
* Redundant PAGE_PRESENT update in PTE
Post TLB entry installation, in updating PTE for software accessed/dity
bits, no need to update PAGE_PRESENT since it will already be set.
Infact the entry won't have installed if !PAGE_PRESENT.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
With ECR now part of pt_regs
* No need to propagate from lowest asm handlers as arg
* No need to save it in tsk->thread.cause_code
* Avoid bit chopping to access the bit-fields
More code consolidation, cleanup
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
This can be ascertained within do_page_fault() since it gets the full
ECR (Exception Cause Register).
Further, for both the callers of do_page_fault(): Prot-V / D-TLB-Miss,
the cause sub-fields in ECR are same for same type of access, making the
code much more simpler.
D-TLB-Miss [LD] 0x00_21_01_00
Prot-V [LD] 0x00_23_01_00
^^
D-TLB-Miss [ST] 0x00_21_02_00
Prot-V [ST] 0x00_23_02_00
^^
D-TLB-Miss [EX] 0x00_21_03_00
Prot-V [EX] 0x00_23_03_00
^^
This helps code consolidation, which is even better when moving code from
assembler to "C".
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
* Move the various sub-system defines/types into relevant files/functions
(reduces compilation time)
* move CPU specific stuff out of asm/tlb.h into asm/mmu.h
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
This manifested as grep failing psuedo-randomly:
-------------->8---------------------
[ARCLinux]$ ip address show lo | grep inet
[ARCLinux]$ ip address show lo | grep inet
[ARCLinux]$ ip address show lo | grep inet
[ARCLinux]$
[ARCLinux]$ ip address show lo | grep inet
inet 127.0.0.1/8 scope host lo
-------------->8---------------------
ARC700 MMU provides fully orthogonal permission bits per page:
Ur, Uw, Ux, Kr, Kw, Kx
The user mode page permission templates used to have all Kernel mode
access bits enabled.
This caused a tricky race condition observed with uClibc buffered file
read and UNIX pipes.
1. Read access to an anon mapped page in libc .bss: write-protected
zero_page mapped: TLB Entry installed with Ur + K[rwx]
2. grep calls libc:getc() -> buffered read layer calls read(2) with the
internal read buffer in same .bss page.
The read() call is on STDIN which has been redirected to a pipe.
read(2) => sys_read() => pipe_read() => copy_to_user()
3. Since page has Kernel-write permission (despite being user-mode
write-protected), copy_to_user() suceeds w/o taking a MMU TLB-Miss
Exception (page-fault for ARC). core-MM is unaware that kernel
erroneously wrote to the reserved read-only zero-page (BUG #1)
4. Control returns to userspace which now does a write to same .bss page
Since Linux MM is not aware that page has been modified by kernel, it
simply reassigns a new writable zero-init page to mapping, loosing the
prior write by kernel - effectively zero'ing out the libc read buffer
under the hood - hence grep doesn't see right data (BUG #2)
The fix is to make all kernel-mode access permissions mirror the
user-mode ones. Note that the kernel still has full access to pages,
when accessed directly (w/o MMU) - this fix ensures that kernel-mode
access in copy_to_from() path uses the same faulting access model as for
pure user accesses to keep MM fully aware of page state.
The issue is peudo-random because it only shows up if the TLB entry
installed in #1 is present at the time of #3. If it is evicted out, due
to TLB pressure or some-such, then copy_to_user() does take a TLB Miss
Exception, with a routine write-to-anon COW processing installing a
fresh page for kernel writes and also usable as it is in userspace.
Further the issue was dormant for so long as it depends on where the
libc internal read buffer (in .bss) is mapped at runtime.
If it happens to reside in file-backed data mapping of libc (in the
page-aligned slack space trailing the file backed data), loader zero
padding the slack space, does the early cow page replacement, setting
things up at the very beginning itself.
With gcc 4.8 based builds, the libc buffer got pushed out to a real
anon mapping which triggers the issue.
Reported-by: Anton Kolesov <akolesov@synopsys.com>
Cc: <stable@vger.kernel.org> # 3.9
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
* Includes mapping of CCMs in address space
* Annotations to move arbitrary code/data into CCM
* Moving some of the critical code/data into CCM
* Runtime detection/reporting
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
ARC common code to enable a SMP system + ISS provided SMP extensions.
ARC700 natively lacks SMP support, hence some of the core features are
are only enabled if SoCs have the necessary h/w pixie-dust. This
includes:
-Inter Processor Interrupts (IPI)
-Cache coherency
-load-locked/store-conditional
...
The low level exception handling would be completely broken in SMP
because we don't have hardware assisted stack switching. Thus a fair bit
of this code is repurposing the MMU_SCRATCH reg for event handler
prologues to keep them re-entrant.
Many thanks to Rajeshwar Ranga for his initial "major" contributions to
SMP Port (back in 2008), and to Noam Camus and Gilad Ben-Yossef for help
with resurrecting that in 3.2 kernel (2012).
Note that this platform code is again singleton design pattern - so
multiple SMP platforms won't build at the moment - this deficiency is
addressed in subsequent patches within this series.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Rajeshwar Ranga <rajeshwar.ranga@gmail.com>
Cc: Noam Camus <noamc@ezchip.com>
Cc: Gilad Ben-Yossef <gilad@benyossef.com>