Btrfs: Add fsx-style randomized tree tester
Add debug-tree command to print the tree Add extent-tree.c to the repo Comment ctree.h Signed-off-by: Chris Mason <chris.mason@oracle.com>
This commit is contained in:
parent
97571fd0c9
commit
fec577fb7f
|
@ -6,11 +6,17 @@ objects = ctree.o disk-io.o radix-tree.o mkfs.o extent-tree.o print-tree.o
|
|||
#.c.o:
|
||||
# $(CC) $(CFLAGS) -c $<
|
||||
|
||||
ctree : $(objects)
|
||||
gcc $(CFLAGS) -o ctree $(objects)
|
||||
all: tester debug-tree
|
||||
|
||||
debug-tree: $(objects) debug-tree.o
|
||||
gcc $(CFLAGS) -o debug-tree $(objects) debug-tree.o
|
||||
|
||||
tester: $(objects) random-test.o
|
||||
gcc $(CFLAGS) -o tester $(objects) random-test.o
|
||||
|
||||
$(objects) : $(headers)
|
||||
|
||||
clean :
|
||||
rm ctree *.o
|
||||
|
||||
|
||||
|
|
|
@ -1047,14 +1047,14 @@ int next_leaf(struct ctree_root *root, struct ctree_path *path)
|
|||
return 0;
|
||||
}
|
||||
|
||||
/* some sample code to insert,search & delete items */
|
||||
#if 0
|
||||
/* for testing only */
|
||||
int next_key(int i, int max_key) {
|
||||
return rand() % max_key;
|
||||
//return i;
|
||||
}
|
||||
|
||||
int main() {
|
||||
struct ctree_root *root;
|
||||
struct key ins;
|
||||
struct key last = { (u64)-1, 0, 0};
|
||||
char *buf;
|
||||
|
@ -1066,6 +1066,7 @@ int main() {
|
|||
int tree_size = 0;
|
||||
struct ctree_path path;
|
||||
struct ctree_super_block super;
|
||||
struct ctree_root *root;
|
||||
|
||||
radix_tree_init();
|
||||
|
||||
|
@ -1207,3 +1208,4 @@ int main() {
|
|||
close_ctree(root);
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
|
|
@ -1,22 +1,36 @@
|
|||
#ifndef __CTREE__
|
||||
#define __CTREE__
|
||||
|
||||
#define CTREE_BLOCKSIZE 4096
|
||||
#define CTREE_BLOCKSIZE 1024
|
||||
|
||||
/*
|
||||
* the key defines the order in the tree, and so it also defines (optimal)
|
||||
* block layout. objectid corresonds to the inode number. The flags
|
||||
* tells us things about the object, and is a kind of stream selector.
|
||||
* so for a given inode, keys with flags of 1 might refer to the inode
|
||||
* data, flags of 2 may point to file data in the btree and flags == 3
|
||||
* may point to extents.
|
||||
*
|
||||
* offset is the starting byte offset for this key in the stream.
|
||||
*/
|
||||
struct key {
|
||||
u64 objectid;
|
||||
u32 flags;
|
||||
u64 offset;
|
||||
} __attribute__ ((__packed__));
|
||||
|
||||
/*
|
||||
* every tree block (leaf or node) starts with this header.
|
||||
*/
|
||||
struct header {
|
||||
u64 fsid[2]; /* FS specific uuid */
|
||||
u64 blocknr;
|
||||
u64 parentid;
|
||||
u64 blocknr; /* which block this node is supposed to live in */
|
||||
u64 parentid; /* objectid of the tree root */
|
||||
u32 csum;
|
||||
u32 ham;
|
||||
u16 nritems;
|
||||
u16 flags;
|
||||
/* generation flags to be added */
|
||||
} __attribute__ ((__packed__));
|
||||
|
||||
#define NODEPTRS_PER_BLOCK ((CTREE_BLOCKSIZE - sizeof(struct header)) / \
|
||||
|
@ -28,6 +42,11 @@ struct header {
|
|||
|
||||
struct tree_buffer;
|
||||
|
||||
/*
|
||||
* in ram representation of the tree. extent_root is used for all allocations
|
||||
* and for the extent tree extent_root root. current_insert is used
|
||||
* only for the extent tree.
|
||||
*/
|
||||
struct ctree_root {
|
||||
struct tree_buffer *node;
|
||||
struct ctree_root *extent_root;
|
||||
|
@ -36,27 +55,46 @@ struct ctree_root {
|
|||
struct radix_tree_root cache_radix;
|
||||
};
|
||||
|
||||
/*
|
||||
* describes a tree on disk
|
||||
*/
|
||||
struct ctree_root_info {
|
||||
u64 fsid[2]; /* FS specific uuid */
|
||||
u64 blocknr; /* blocknr of this block */
|
||||
u64 objectid; /* inode number of this root */
|
||||
u64 tree_root; /* the tree root */
|
||||
u64 tree_root; /* the tree root block */
|
||||
u32 csum;
|
||||
u32 ham;
|
||||
u64 snapuuid[2]; /* root specific uuid */
|
||||
} __attribute__ ((__packed__));
|
||||
|
||||
/*
|
||||
* the super block basically lists the main trees of the FS
|
||||
* it currently lacks any block count etc etc
|
||||
*/
|
||||
struct ctree_super_block {
|
||||
struct ctree_root_info root_info;
|
||||
struct ctree_root_info extent_info;
|
||||
} __attribute__ ((__packed__));
|
||||
|
||||
/*
|
||||
* A leaf is full of items. The exact type of item is defined by
|
||||
* the key flags parameter. offset and size tell us where to find
|
||||
* the item in the leaf (relative to the start of the data area)
|
||||
*/
|
||||
struct item {
|
||||
struct key key;
|
||||
u16 offset;
|
||||
u16 size;
|
||||
} __attribute__ ((__packed__));
|
||||
|
||||
/*
|
||||
* leaves have an item area and a data area:
|
||||
* [item0, item1....itemN] [free space] [dataN...data1, data0]
|
||||
*
|
||||
* The data is separate from the items to get the keys closer together
|
||||
* during searches.
|
||||
*/
|
||||
#define LEAF_DATA_SIZE (CTREE_BLOCKSIZE - sizeof(struct header))
|
||||
struct leaf {
|
||||
struct header header;
|
||||
|
@ -66,17 +104,33 @@ struct leaf {
|
|||
};
|
||||
} __attribute__ ((__packed__));
|
||||
|
||||
/*
|
||||
* all non-leaf blocks are nodes, they hold only keys and pointers to
|
||||
* other blocks
|
||||
*/
|
||||
struct node {
|
||||
struct header header;
|
||||
struct key keys[NODEPTRS_PER_BLOCK];
|
||||
u64 blockptrs[NODEPTRS_PER_BLOCK];
|
||||
} __attribute__ ((__packed__));
|
||||
|
||||
/*
|
||||
* items in the extent btree are used to record the objectid of the
|
||||
* owner of the block and the number of references
|
||||
*/
|
||||
struct extent_item {
|
||||
u32 refs;
|
||||
u64 owner;
|
||||
} __attribute__ ((__packed__));
|
||||
|
||||
/*
|
||||
* ctree_paths remember the path taken from the root down to the leaf.
|
||||
* level 0 is always the leaf, and nodes[1...MAX_LEVEL] will point
|
||||
* to any other levels that are present.
|
||||
*
|
||||
* The slots array records the index of the item or block pointer
|
||||
* used while walking the tree.
|
||||
*/
|
||||
struct ctree_path {
|
||||
struct tree_buffer *nodes[MAX_LEVEL];
|
||||
int slots[MAX_LEVEL];
|
||||
|
|
|
@ -0,0 +1,19 @@
|
|||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include "kerncompat.h"
|
||||
#include "radix-tree.h"
|
||||
#include "ctree.h"
|
||||
#include "disk-io.h"
|
||||
#include "print-tree.h"
|
||||
|
||||
int main() {
|
||||
struct ctree_super_block super;
|
||||
struct ctree_root *root;
|
||||
radix_tree_init();
|
||||
root = open_ctree("dbfile", &super);
|
||||
printf("root tree\n");
|
||||
print_tree(root, root->node);
|
||||
printf("map tree\n");
|
||||
print_tree(root->extent_root, root->extent_root->node);
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,296 @@
|
|||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include "kerncompat.h"
|
||||
#include "radix-tree.h"
|
||||
#include "ctree.h"
|
||||
#include "disk-io.h"
|
||||
#include "print-tree.h"
|
||||
|
||||
/*
|
||||
* pending extents are blocks that we're trying to allocate in the extent
|
||||
* map while trying to grow the map because of other allocations. To avoid
|
||||
* recursing, they are tagged in the radix tree and cleaned up after
|
||||
* other allocations are done. The pending tag is also used in the same
|
||||
* manner for deletes.
|
||||
*/
|
||||
#define CTREE_EXTENT_PENDING 0
|
||||
|
||||
/*
|
||||
* find all the blocks marked as pending in the radix tree and remove
|
||||
* them from the extent map
|
||||
*/
|
||||
static int del_pending_extents(struct ctree_root *extent_root)
|
||||
{
|
||||
int ret;
|
||||
struct key key;
|
||||
struct tree_buffer *gang[4];
|
||||
int i;
|
||||
struct ctree_path path;
|
||||
|
||||
while(1) {
|
||||
ret = radix_tree_gang_lookup_tag(&extent_root->cache_radix,
|
||||
(void **)gang, 0,
|
||||
ARRAY_SIZE(gang),
|
||||
CTREE_EXTENT_PENDING);
|
||||
if (!ret)
|
||||
break;
|
||||
for (i = 0; i < ret; i++) {
|
||||
key.objectid = gang[i]->blocknr;
|
||||
key.flags = 0;
|
||||
key.offset = 1;
|
||||
init_path(&path);
|
||||
ret = search_slot(extent_root, &key, &path, 0);
|
||||
if (ret) {
|
||||
print_tree(extent_root, extent_root->node);
|
||||
printf("unable to find %lu\n", key.objectid);
|
||||
BUG();
|
||||
// FIXME undo it and return sane
|
||||
return ret;
|
||||
}
|
||||
ret = del_item(extent_root, &path);
|
||||
if (ret) {
|
||||
BUG();
|
||||
return ret;
|
||||
}
|
||||
release_path(extent_root, &path);
|
||||
radix_tree_tag_clear(&extent_root->cache_radix,
|
||||
gang[i]->blocknr,
|
||||
CTREE_EXTENT_PENDING);
|
||||
tree_block_release(extent_root, gang[i]);
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* remove an extent from the root, returns 0 on success
|
||||
*/
|
||||
int free_extent(struct ctree_root *root, u64 blocknr, u64 num_blocks)
|
||||
{
|
||||
struct ctree_path path;
|
||||
struct key key;
|
||||
struct ctree_root *extent_root = root->extent_root;
|
||||
struct tree_buffer *t;
|
||||
int pending_ret;
|
||||
int ret;
|
||||
key.objectid = blocknr;
|
||||
key.flags = 0;
|
||||
key.offset = num_blocks;
|
||||
if (root == extent_root) {
|
||||
t = read_tree_block(root, key.objectid);
|
||||
radix_tree_tag_set(&root->cache_radix, key.objectid,
|
||||
CTREE_EXTENT_PENDING);
|
||||
return 0;
|
||||
}
|
||||
init_path(&path);
|
||||
ret = search_slot(extent_root, &key, &path, 0);
|
||||
if (ret) {
|
||||
print_tree(extent_root, extent_root->node);
|
||||
printf("failed to find %lu\n", key.objectid);
|
||||
BUG();
|
||||
}
|
||||
ret = del_item(extent_root, &path);
|
||||
if (ret)
|
||||
BUG();
|
||||
release_path(extent_root, &path);
|
||||
pending_ret = del_pending_extents(root->extent_root);
|
||||
return ret ? ret : pending_ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* walks the btree of allocated extents and find a hole of a given size.
|
||||
* The key ins is changed to record the hole:
|
||||
* ins->objectid == block start
|
||||
* ins->flags = 0
|
||||
* ins->offset == number of blocks
|
||||
* Any available blocks before search_start are skipped.
|
||||
*/
|
||||
int find_free_extent(struct ctree_root *orig_root, u64 num_blocks,
|
||||
u64 search_start, u64 search_end, struct key *ins)
|
||||
{
|
||||
struct ctree_path path;
|
||||
struct key *key;
|
||||
int ret;
|
||||
u64 hole_size = 0;
|
||||
int slot = 0;
|
||||
u64 last_block;
|
||||
int start_found;
|
||||
struct leaf *l;
|
||||
struct ctree_root * root = orig_root->extent_root;
|
||||
|
||||
check_failed:
|
||||
init_path(&path);
|
||||
ins->objectid = search_start;
|
||||
ins->offset = 0;
|
||||
ins->flags = 0;
|
||||
start_found = 0;
|
||||
ret = search_slot(root, ins, &path, 0);
|
||||
while (1) {
|
||||
l = &path.nodes[0]->leaf;
|
||||
slot = path.slots[0];
|
||||
if (slot >= l->header.nritems) {
|
||||
ret = next_leaf(root, &path);
|
||||
if (ret == 0)
|
||||
continue;
|
||||
if (!start_found) {
|
||||
ins->objectid = search_start;
|
||||
ins->offset = num_blocks;
|
||||
start_found = 1;
|
||||
goto check_pending;
|
||||
}
|
||||
ins->objectid = last_block > search_start ?
|
||||
last_block : search_start;
|
||||
ins->offset = num_blocks;
|
||||
goto check_pending;
|
||||
}
|
||||
key = &l->items[slot].key;
|
||||
if (key->objectid >= search_start) {
|
||||
if (start_found) {
|
||||
hole_size = key->objectid - last_block;
|
||||
if (hole_size > num_blocks) {
|
||||
ins->objectid = last_block;
|
||||
ins->offset = num_blocks;
|
||||
goto check_pending;
|
||||
}
|
||||
} else
|
||||
start_found = 1;
|
||||
last_block = key->objectid + key->offset;
|
||||
}
|
||||
path.slots[0]++;
|
||||
}
|
||||
// FIXME -ENOSPC
|
||||
check_pending:
|
||||
/* we have to make sure we didn't find an extent that has already
|
||||
* been allocated by the map tree or the original allocation
|
||||
*/
|
||||
release_path(root, &path);
|
||||
BUG_ON(ins->objectid < search_start);
|
||||
if (orig_root->extent_root == orig_root) {
|
||||
BUG_ON(num_blocks != 1);
|
||||
if ((root->current_insert.objectid <= ins->objectid &&
|
||||
root->current_insert.objectid +
|
||||
root->current_insert.offset > ins->objectid) ||
|
||||
(root->current_insert.objectid > ins->objectid &&
|
||||
root->current_insert.objectid <= ins->objectid +
|
||||
ins->offset) ||
|
||||
radix_tree_tag_get(&root->cache_radix, ins->objectid,
|
||||
CTREE_EXTENT_PENDING)) {
|
||||
search_start = ins->objectid + 1;
|
||||
goto check_failed;
|
||||
}
|
||||
}
|
||||
if (ins->offset != 1)
|
||||
BUG();
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* insert all of the pending extents reserved during the original
|
||||
* allocation. (CTREE_EXTENT_PENDING). Returns zero if it all worked out
|
||||
*/
|
||||
static int insert_pending_extents(struct ctree_root *extent_root)
|
||||
{
|
||||
int ret;
|
||||
struct key key;
|
||||
struct extent_item item;
|
||||
struct tree_buffer *gang[4];
|
||||
int i;
|
||||
|
||||
// FIXME -ENOSPC
|
||||
item.refs = 1;
|
||||
item.owner = extent_root->node->node.header.parentid;
|
||||
while(1) {
|
||||
ret = radix_tree_gang_lookup_tag(&extent_root->cache_radix,
|
||||
(void **)gang, 0,
|
||||
ARRAY_SIZE(gang),
|
||||
CTREE_EXTENT_PENDING);
|
||||
if (!ret)
|
||||
break;
|
||||
for (i = 0; i < ret; i++) {
|
||||
key.objectid = gang[i]->blocknr;
|
||||
key.flags = 0;
|
||||
key.offset = 1;
|
||||
ret = insert_item(extent_root, &key, &item,
|
||||
sizeof(item));
|
||||
if (ret) {
|
||||
BUG();
|
||||
// FIXME undo it and return sane
|
||||
return ret;
|
||||
}
|
||||
radix_tree_tag_clear(&extent_root->cache_radix,
|
||||
gang[i]->blocknr,
|
||||
CTREE_EXTENT_PENDING);
|
||||
tree_block_release(extent_root, gang[i]);
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* finds a free extent and does all the dirty work required for allocation
|
||||
* returns the key for the extent through ins, and a tree buffer for
|
||||
* the first block of the extent through buf.
|
||||
*
|
||||
* returns 0 if everything worked, non-zero otherwise.
|
||||
*/
|
||||
int alloc_extent(struct ctree_root *root, u64 num_blocks, u64 search_start,
|
||||
u64 search_end, u64 owner, struct key *ins,
|
||||
struct tree_buffer **buf)
|
||||
{
|
||||
int ret;
|
||||
int pending_ret;
|
||||
struct extent_item extent_item;
|
||||
extent_item.refs = 1;
|
||||
extent_item.owner = owner;
|
||||
|
||||
ret = find_free_extent(root, num_blocks, search_start, search_end, ins);
|
||||
if (ret)
|
||||
return ret;
|
||||
if (root != root->extent_root) {
|
||||
memcpy(&root->extent_root->current_insert, ins, sizeof(*ins));
|
||||
ret = insert_item(root->extent_root, ins, &extent_item,
|
||||
sizeof(extent_item));
|
||||
memset(&root->extent_root->current_insert, 0,
|
||||
sizeof(struct key));
|
||||
pending_ret = insert_pending_extents(root->extent_root);
|
||||
if (ret)
|
||||
return ret;
|
||||
if (pending_ret)
|
||||
return pending_ret;
|
||||
*buf = find_tree_block(root, ins->objectid);
|
||||
return 0;
|
||||
}
|
||||
/* we're allocating an extent for the extent tree, don't recurse */
|
||||
BUG_ON(ins->offset != 1);
|
||||
*buf = find_tree_block(root, ins->objectid);
|
||||
BUG_ON(!*buf);
|
||||
radix_tree_tag_set(&root->cache_radix, ins->objectid,
|
||||
CTREE_EXTENT_PENDING);
|
||||
(*buf)->count++;
|
||||
return 0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
* helper function to allocate a block for a given tree
|
||||
* returns the tree buffer or NULL.
|
||||
*/
|
||||
struct tree_buffer *alloc_free_block(struct ctree_root *root)
|
||||
{
|
||||
struct key ins;
|
||||
int ret;
|
||||
struct tree_buffer *buf = NULL;
|
||||
|
||||
ret = alloc_extent(root, 1, 0, (unsigned long)-1,
|
||||
root->node->node.header.parentid,
|
||||
&ins, &buf);
|
||||
|
||||
if (ret) {
|
||||
BUG();
|
||||
return NULL;
|
||||
}
|
||||
if (root != root->extent_root)
|
||||
BUG_ON(radix_tree_tag_get(&root->extent_root->cache_radix,
|
||||
buf->blocknr, CTREE_EXTENT_PENDING));
|
||||
return buf;
|
||||
}
|
|
@ -0,0 +1,295 @@
|
|||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <signal.h>
|
||||
#include "kerncompat.h"
|
||||
#include "radix-tree.h"
|
||||
#include "ctree.h"
|
||||
#include "disk-io.h"
|
||||
#include "print-tree.h"
|
||||
|
||||
int keep_running = 1;
|
||||
|
||||
static int setup_key(struct radix_tree_root *root, struct key *key, int exists)
|
||||
{
|
||||
int num = rand();
|
||||
unsigned long res[2];
|
||||
int ret;
|
||||
|
||||
key->flags = 0;
|
||||
key->offset = 0;
|
||||
again:
|
||||
ret = radix_tree_gang_lookup(root, (void **)res, num, 2);
|
||||
if (exists) {
|
||||
if (ret == 0)
|
||||
return -1;
|
||||
num = res[0];
|
||||
} else if (ret != 0 && num == res[0]) {
|
||||
num++;
|
||||
if (ret > 1 && num == res[1]) {
|
||||
num++;
|
||||
goto again;
|
||||
}
|
||||
}
|
||||
key->objectid = num;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int ins_one(struct ctree_root *root, struct radix_tree_root *radix)
|
||||
{
|
||||
struct ctree_path path;
|
||||
struct key key;
|
||||
int ret;
|
||||
char buf[128];
|
||||
init_path(&path);
|
||||
ret = setup_key(radix, &key, 0);
|
||||
sprintf(buf, "str-%lu\n", key.objectid);
|
||||
ret = insert_item(root, &key, buf, strlen(buf));
|
||||
if (ret)
|
||||
goto error;
|
||||
radix_tree_preload(GFP_KERNEL);
|
||||
ret = radix_tree_insert(radix, key.objectid,
|
||||
(void *)key.objectid);
|
||||
radix_tree_preload_end();
|
||||
if (ret)
|
||||
goto error;
|
||||
return ret;
|
||||
error:
|
||||
printf("failed to insert %lu\n", key.objectid);
|
||||
return -1;
|
||||
}
|
||||
|
||||
static int insert_dup(struct ctree_root *root, struct radix_tree_root *radix)
|
||||
{
|
||||
struct ctree_path path;
|
||||
struct key key;
|
||||
int ret;
|
||||
char buf[128];
|
||||
init_path(&path);
|
||||
ret = setup_key(radix, &key, 1);
|
||||
if (ret < 0)
|
||||
return 0;
|
||||
sprintf(buf, "str-%lu\n", key.objectid);
|
||||
ret = insert_item(root, &key, buf, strlen(buf));
|
||||
if (ret != -EEXIST) {
|
||||
printf("insert on %lu gave us %d\n", key.objectid, ret);
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int del_one(struct ctree_root *root, struct radix_tree_root *radix)
|
||||
{
|
||||
struct ctree_path path;
|
||||
struct key key;
|
||||
int ret;
|
||||
unsigned long *ptr;
|
||||
init_path(&path);
|
||||
ret = setup_key(radix, &key, 1);
|
||||
if (ret < 0)
|
||||
return 0;
|
||||
ret = search_slot(root, &key, &path, -1);
|
||||
if (ret)
|
||||
goto error;
|
||||
ret = del_item(root, &path);
|
||||
release_path(root, &path);
|
||||
if (ret != 0)
|
||||
goto error;
|
||||
ptr = radix_tree_delete(radix, key.objectid);
|
||||
if (!ptr)
|
||||
goto error;
|
||||
return 0;
|
||||
error:
|
||||
printf("failed to delete %lu\n", key.objectid);
|
||||
return -1;
|
||||
}
|
||||
|
||||
static int lookup_item(struct ctree_root *root, struct radix_tree_root *radix)
|
||||
{
|
||||
struct ctree_path path;
|
||||
struct key key;
|
||||
int ret;
|
||||
init_path(&path);
|
||||
ret = setup_key(radix, &key, 1);
|
||||
if (ret < 0)
|
||||
return 0;
|
||||
ret = search_slot(root, &key, &path, 0);
|
||||
release_path(root, &path);
|
||||
if (ret)
|
||||
goto error;
|
||||
return 0;
|
||||
error:
|
||||
printf("unable to find key %lu\n", key.objectid);
|
||||
return -1;
|
||||
}
|
||||
|
||||
static int lookup_enoent(struct ctree_root *root, struct radix_tree_root *radix)
|
||||
{
|
||||
struct ctree_path path;
|
||||
struct key key;
|
||||
int ret;
|
||||
init_path(&path);
|
||||
ret = setup_key(radix, &key, 0);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
ret = search_slot(root, &key, &path, 0);
|
||||
release_path(root, &path);
|
||||
if (ret == 0)
|
||||
goto error;
|
||||
return 0;
|
||||
error:
|
||||
printf("able to find key that should not exist %lu\n", key.objectid);
|
||||
return -1;
|
||||
}
|
||||
|
||||
int (*ops[])(struct ctree_root *root, struct radix_tree_root *radix) =
|
||||
{ ins_one, insert_dup, del_one, lookup_item, lookup_enoent };
|
||||
|
||||
static int fill_radix(struct ctree_root *root, struct radix_tree_root *radix)
|
||||
{
|
||||
struct ctree_path path;
|
||||
struct key key;
|
||||
u64 found;
|
||||
int ret;
|
||||
int slot;
|
||||
int i;
|
||||
key.offset = 0;
|
||||
key.flags = 0;
|
||||
key.objectid = (unsigned long)-1;
|
||||
while(1) {
|
||||
init_path(&path);
|
||||
ret = search_slot(root, &key, &path, 0);
|
||||
slot = path.slots[0];
|
||||
if (ret != 0) {
|
||||
if (slot == 0) {
|
||||
release_path(root, &path);
|
||||
break;
|
||||
}
|
||||
slot -= 1;
|
||||
}
|
||||
for (i = slot; i >= 0; i--) {
|
||||
found = path.nodes[0]->leaf.items[i].key.objectid;
|
||||
radix_tree_preload(GFP_KERNEL);
|
||||
ret = radix_tree_insert(radix, found, (void *)found);
|
||||
if (ret) {
|
||||
fprintf(stderr,
|
||||
"failed to insert %lu into radix\n",
|
||||
found);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
radix_tree_preload_end();
|
||||
}
|
||||
release_path(root, &path);
|
||||
key.objectid = found - 1;
|
||||
if (key.objectid > found)
|
||||
break;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
void sigstopper(int ignored)
|
||||
{
|
||||
keep_running = 0;
|
||||
fprintf(stderr, "caught exit signal, stopping\n");
|
||||
}
|
||||
|
||||
int print_usage(void)
|
||||
{
|
||||
printf("usage: tester [-ih] [-c count] [-f count]\n");
|
||||
printf("\t -c count -- iteration count after filling\n");
|
||||
printf("\t -f count -- run this many random inserts before starting\n");
|
||||
printf("\t -i -- only do initial fill\n");
|
||||
printf("\t -h -- this help text\n");
|
||||
exit(1);
|
||||
}
|
||||
int main(int ac, char **av)
|
||||
{
|
||||
RADIX_TREE(radix, GFP_KERNEL);
|
||||
struct ctree_super_block super;
|
||||
struct ctree_root *root;
|
||||
int i;
|
||||
int ret;
|
||||
int count;
|
||||
int op;
|
||||
int iterations = 20000;
|
||||
int init_fill_count = 800000;
|
||||
int err = 0;
|
||||
int initial_only = 0;
|
||||
radix_tree_init();
|
||||
root = open_ctree("dbfile", &super);
|
||||
fill_radix(root, &radix);
|
||||
|
||||
signal(SIGTERM, sigstopper);
|
||||
signal(SIGINT, sigstopper);
|
||||
|
||||
for (i = 1 ; i < ac ; i++) {
|
||||
if (strcmp(av[i], "-i") == 0) {
|
||||
initial_only = 1;
|
||||
} else if (strcmp(av[i], "-c") == 0) {
|
||||
iterations = atoi(av[i+1]);
|
||||
i++;
|
||||
} else if (strcmp(av[i], "-f") == 0) {
|
||||
init_fill_count = atoi(av[i+1]);
|
||||
i++;
|
||||
} else {
|
||||
print_usage();
|
||||
}
|
||||
}
|
||||
for (i = 0; i < init_fill_count; i++) {
|
||||
ret = ins_one(root, &radix);
|
||||
if (ret) {
|
||||
printf("initial fill failed\n");
|
||||
err = ret;
|
||||
goto out;
|
||||
}
|
||||
if (i % 10000 == 0) {
|
||||
printf("initial fill %d level %d count %d\n", i,
|
||||
node_level(root->node->node.header.flags),
|
||||
root->node->node.header.nritems);
|
||||
}
|
||||
if (keep_running == 0) {
|
||||
err = 0;
|
||||
goto out;
|
||||
}
|
||||
}
|
||||
if (initial_only == 1) {
|
||||
goto out;
|
||||
}
|
||||
for (i = 0; i < iterations; i++) {
|
||||
op = rand() % ARRAY_SIZE(ops);
|
||||
count = rand() % 128;
|
||||
if (i % 2000 == 0) {
|
||||
printf("%d\n", i);
|
||||
fflush(stdout);
|
||||
}
|
||||
if (i && i % 5000 == 0) {
|
||||
printf("open & close, root level %d nritems %d\n",
|
||||
node_level(root->node->node.header.flags),
|
||||
root->node->node.header.nritems);
|
||||
write_ctree_super(root, &super);
|
||||
close_ctree(root);
|
||||
root = open_ctree("dbfile", &super);
|
||||
}
|
||||
while(count--) {
|
||||
ret = ops[op](root, &radix);
|
||||
if (ret) {
|
||||
fprintf(stderr, "op %d failed %d:%d\n",
|
||||
op, i, iterations);
|
||||
print_tree(root, root->node);
|
||||
fprintf(stderr, "op %d failed %d:%d\n",
|
||||
op, i, iterations);
|
||||
err = ret;
|
||||
goto out;
|
||||
}
|
||||
if (keep_running == 0) {
|
||||
err = 0;
|
||||
goto out;
|
||||
}
|
||||
}
|
||||
}
|
||||
out:
|
||||
write_ctree_super(root, &super);
|
||||
close_ctree(root);
|
||||
return err;
|
||||
}
|
||||
|
Loading…
Reference in New Issue