sfc: ARFS filter IDs
Associate an arbitrary ID with each ARFS filter, allowing to properly query
for expiry. The association is maintained in a hash table, which is
protected by a spinlock.
v3: fix build warnings when CONFIG_RFS_ACCEL is disabled (thanks lkp-robot).
v2: fixed uninitialised variable (thanks davem and lkp-robot).
Fixes: 3af0f34290
("sfc: replace asynchronous filter operations")
Signed-off-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
parent
d805c52093
commit
f8d6203780
|
@ -3999,29 +3999,6 @@ static void efx_ef10_prepare_flr(struct efx_nic *efx)
|
|||
atomic_set(&efx->active_queues, 0);
|
||||
}
|
||||
|
||||
static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
|
||||
const struct efx_filter_spec *right)
|
||||
{
|
||||
if ((left->match_flags ^ right->match_flags) |
|
||||
((left->flags ^ right->flags) &
|
||||
(EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
|
||||
return false;
|
||||
|
||||
return memcmp(&left->outer_vid, &right->outer_vid,
|
||||
sizeof(struct efx_filter_spec) -
|
||||
offsetof(struct efx_filter_spec, outer_vid)) == 0;
|
||||
}
|
||||
|
||||
static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
|
||||
{
|
||||
BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
|
||||
return jhash2((const u32 *)&spec->outer_vid,
|
||||
(sizeof(struct efx_filter_spec) -
|
||||
offsetof(struct efx_filter_spec, outer_vid)) / 4,
|
||||
0);
|
||||
/* XXX should we randomise the initval? */
|
||||
}
|
||||
|
||||
/* Decide whether a filter should be exclusive or else should allow
|
||||
* delivery to additional recipients. Currently we decide that
|
||||
* filters for specific local unicast MAC and IP addresses are
|
||||
|
@ -4346,7 +4323,7 @@ static s32 efx_ef10_filter_insert(struct efx_nic *efx,
|
|||
goto out_unlock;
|
||||
match_pri = rc;
|
||||
|
||||
hash = efx_ef10_filter_hash(spec);
|
||||
hash = efx_filter_spec_hash(spec);
|
||||
is_mc_recip = efx_filter_is_mc_recipient(spec);
|
||||
if (is_mc_recip)
|
||||
bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
|
||||
|
@ -4378,7 +4355,7 @@ static s32 efx_ef10_filter_insert(struct efx_nic *efx,
|
|||
if (!saved_spec) {
|
||||
if (ins_index < 0)
|
||||
ins_index = i;
|
||||
} else if (efx_ef10_filter_equal(spec, saved_spec)) {
|
||||
} else if (efx_filter_spec_equal(spec, saved_spec)) {
|
||||
if (spec->priority < saved_spec->priority &&
|
||||
spec->priority != EFX_FILTER_PRI_AUTO) {
|
||||
rc = -EPERM;
|
||||
|
@ -4762,27 +4739,62 @@ static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
|
|||
static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
|
||||
unsigned int filter_idx)
|
||||
{
|
||||
struct efx_filter_spec *spec, saved_spec;
|
||||
struct efx_ef10_filter_table *table;
|
||||
struct efx_filter_spec *spec;
|
||||
bool ret;
|
||||
struct efx_arfs_rule *rule = NULL;
|
||||
bool ret = true, force = false;
|
||||
u16 arfs_id;
|
||||
|
||||
down_read(&efx->filter_sem);
|
||||
table = efx->filter_state;
|
||||
down_write(&table->lock);
|
||||
spec = efx_ef10_filter_entry_spec(table, filter_idx);
|
||||
|
||||
if (!spec || spec->priority != EFX_FILTER_PRI_HINT) {
|
||||
ret = true;
|
||||
if (!spec || spec->priority != EFX_FILTER_PRI_HINT)
|
||||
goto out_unlock;
|
||||
}
|
||||
|
||||
if (!rps_may_expire_flow(efx->net_dev, spec->dmaq_id, flow_id, 0)) {
|
||||
spin_lock_bh(&efx->rps_hash_lock);
|
||||
if (!efx->rps_hash_table) {
|
||||
/* In the absence of the table, we always return 0 to ARFS. */
|
||||
arfs_id = 0;
|
||||
} else {
|
||||
rule = efx_rps_hash_find(efx, spec);
|
||||
if (!rule)
|
||||
/* ARFS table doesn't know of this filter, so remove it */
|
||||
goto expire;
|
||||
arfs_id = rule->arfs_id;
|
||||
ret = efx_rps_check_rule(rule, filter_idx, &force);
|
||||
if (force)
|
||||
goto expire;
|
||||
if (!ret) {
|
||||
spin_unlock_bh(&efx->rps_hash_lock);
|
||||
goto out_unlock;
|
||||
}
|
||||
}
|
||||
if (!rps_may_expire_flow(efx->net_dev, spec->dmaq_id, flow_id, arfs_id))
|
||||
ret = false;
|
||||
goto out_unlock;
|
||||
}
|
||||
|
||||
else if (rule)
|
||||
rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
|
||||
expire:
|
||||
saved_spec = *spec; /* remove operation will kfree spec */
|
||||
spin_unlock_bh(&efx->rps_hash_lock);
|
||||
/* At this point (since we dropped the lock), another thread might queue
|
||||
* up a fresh insertion request (but the actual insertion will be held
|
||||
* up by our possession of the filter table lock). In that case, it
|
||||
* will set rule->filter_id to EFX_ARFS_FILTER_ID_PENDING, meaning that
|
||||
* the rule is not removed by efx_rps_hash_del() below.
|
||||
*/
|
||||
ret = efx_ef10_filter_remove_internal(efx, 1U << spec->priority,
|
||||
filter_idx, true) == 0;
|
||||
/* While we can't safely dereference rule (we dropped the lock), we can
|
||||
* still test it for NULL.
|
||||
*/
|
||||
if (ret && rule) {
|
||||
/* Expiring, so remove entry from ARFS table */
|
||||
spin_lock_bh(&efx->rps_hash_lock);
|
||||
efx_rps_hash_del(efx, &saved_spec);
|
||||
spin_unlock_bh(&efx->rps_hash_lock);
|
||||
}
|
||||
out_unlock:
|
||||
up_write(&table->lock);
|
||||
up_read(&efx->filter_sem);
|
||||
|
|
|
@ -3027,6 +3027,10 @@ static int efx_init_struct(struct efx_nic *efx,
|
|||
mutex_init(&efx->mac_lock);
|
||||
#ifdef CONFIG_RFS_ACCEL
|
||||
mutex_init(&efx->rps_mutex);
|
||||
spin_lock_init(&efx->rps_hash_lock);
|
||||
/* Failure to allocate is not fatal, but may degrade ARFS performance */
|
||||
efx->rps_hash_table = kcalloc(EFX_ARFS_HASH_TABLE_SIZE,
|
||||
sizeof(*efx->rps_hash_table), GFP_KERNEL);
|
||||
#endif
|
||||
efx->phy_op = &efx_dummy_phy_operations;
|
||||
efx->mdio.dev = net_dev;
|
||||
|
@ -3070,6 +3074,10 @@ static void efx_fini_struct(struct efx_nic *efx)
|
|||
{
|
||||
int i;
|
||||
|
||||
#ifdef CONFIG_RFS_ACCEL
|
||||
kfree(efx->rps_hash_table);
|
||||
#endif
|
||||
|
||||
for (i = 0; i < EFX_MAX_CHANNELS; i++)
|
||||
kfree(efx->channel[i]);
|
||||
|
||||
|
@ -3092,6 +3100,141 @@ void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
|
|||
stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
|
||||
}
|
||||
|
||||
bool efx_filter_spec_equal(const struct efx_filter_spec *left,
|
||||
const struct efx_filter_spec *right)
|
||||
{
|
||||
if ((left->match_flags ^ right->match_flags) |
|
||||
((left->flags ^ right->flags) &
|
||||
(EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
|
||||
return false;
|
||||
|
||||
return memcmp(&left->outer_vid, &right->outer_vid,
|
||||
sizeof(struct efx_filter_spec) -
|
||||
offsetof(struct efx_filter_spec, outer_vid)) == 0;
|
||||
}
|
||||
|
||||
u32 efx_filter_spec_hash(const struct efx_filter_spec *spec)
|
||||
{
|
||||
BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
|
||||
return jhash2((const u32 *)&spec->outer_vid,
|
||||
(sizeof(struct efx_filter_spec) -
|
||||
offsetof(struct efx_filter_spec, outer_vid)) / 4,
|
||||
0);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_RFS_ACCEL
|
||||
bool efx_rps_check_rule(struct efx_arfs_rule *rule, unsigned int filter_idx,
|
||||
bool *force)
|
||||
{
|
||||
if (rule->filter_id == EFX_ARFS_FILTER_ID_PENDING) {
|
||||
/* ARFS is currently updating this entry, leave it */
|
||||
return false;
|
||||
}
|
||||
if (rule->filter_id == EFX_ARFS_FILTER_ID_ERROR) {
|
||||
/* ARFS tried and failed to update this, so it's probably out
|
||||
* of date. Remove the filter and the ARFS rule entry.
|
||||
*/
|
||||
rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
|
||||
*force = true;
|
||||
return true;
|
||||
} else if (WARN_ON(rule->filter_id != filter_idx)) { /* can't happen */
|
||||
/* ARFS has moved on, so old filter is not needed. Since we did
|
||||
* not mark the rule with EFX_ARFS_FILTER_ID_REMOVING, it will
|
||||
* not be removed by efx_rps_hash_del() subsequently.
|
||||
*/
|
||||
*force = true;
|
||||
return true;
|
||||
}
|
||||
/* Remove it iff ARFS wants to. */
|
||||
return true;
|
||||
}
|
||||
|
||||
struct hlist_head *efx_rps_hash_bucket(struct efx_nic *efx,
|
||||
const struct efx_filter_spec *spec)
|
||||
{
|
||||
u32 hash = efx_filter_spec_hash(spec);
|
||||
|
||||
WARN_ON(!spin_is_locked(&efx->rps_hash_lock));
|
||||
if (!efx->rps_hash_table)
|
||||
return NULL;
|
||||
return &efx->rps_hash_table[hash % EFX_ARFS_HASH_TABLE_SIZE];
|
||||
}
|
||||
|
||||
struct efx_arfs_rule *efx_rps_hash_find(struct efx_nic *efx,
|
||||
const struct efx_filter_spec *spec)
|
||||
{
|
||||
struct efx_arfs_rule *rule;
|
||||
struct hlist_head *head;
|
||||
struct hlist_node *node;
|
||||
|
||||
head = efx_rps_hash_bucket(efx, spec);
|
||||
if (!head)
|
||||
return NULL;
|
||||
hlist_for_each(node, head) {
|
||||
rule = container_of(node, struct efx_arfs_rule, node);
|
||||
if (efx_filter_spec_equal(spec, &rule->spec))
|
||||
return rule;
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
struct efx_arfs_rule *efx_rps_hash_add(struct efx_nic *efx,
|
||||
const struct efx_filter_spec *spec,
|
||||
bool *new)
|
||||
{
|
||||
struct efx_arfs_rule *rule;
|
||||
struct hlist_head *head;
|
||||
struct hlist_node *node;
|
||||
|
||||
head = efx_rps_hash_bucket(efx, spec);
|
||||
if (!head)
|
||||
return NULL;
|
||||
hlist_for_each(node, head) {
|
||||
rule = container_of(node, struct efx_arfs_rule, node);
|
||||
if (efx_filter_spec_equal(spec, &rule->spec)) {
|
||||
*new = false;
|
||||
return rule;
|
||||
}
|
||||
}
|
||||
rule = kmalloc(sizeof(*rule), GFP_ATOMIC);
|
||||
*new = true;
|
||||
if (rule) {
|
||||
memcpy(&rule->spec, spec, sizeof(rule->spec));
|
||||
hlist_add_head(&rule->node, head);
|
||||
}
|
||||
return rule;
|
||||
}
|
||||
|
||||
void efx_rps_hash_del(struct efx_nic *efx, const struct efx_filter_spec *spec)
|
||||
{
|
||||
struct efx_arfs_rule *rule;
|
||||
struct hlist_head *head;
|
||||
struct hlist_node *node;
|
||||
|
||||
head = efx_rps_hash_bucket(efx, spec);
|
||||
if (WARN_ON(!head))
|
||||
return;
|
||||
hlist_for_each(node, head) {
|
||||
rule = container_of(node, struct efx_arfs_rule, node);
|
||||
if (efx_filter_spec_equal(spec, &rule->spec)) {
|
||||
/* Someone already reused the entry. We know that if
|
||||
* this check doesn't fire (i.e. filter_id == REMOVING)
|
||||
* then the REMOVING mark was put there by our caller,
|
||||
* because caller is holding a lock on filter table and
|
||||
* only holders of that lock set REMOVING.
|
||||
*/
|
||||
if (rule->filter_id != EFX_ARFS_FILTER_ID_REMOVING)
|
||||
return;
|
||||
hlist_del(node);
|
||||
kfree(rule);
|
||||
return;
|
||||
}
|
||||
}
|
||||
/* We didn't find it. */
|
||||
WARN_ON(1);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* RSS contexts. We're using linked lists and crappy O(n) algorithms, because
|
||||
* (a) this is an infrequent control-plane operation and (b) n is small (max 64)
|
||||
*/
|
||||
|
|
|
@ -186,6 +186,27 @@ static inline void efx_filter_rfs_expire(struct work_struct *data) {}
|
|||
#endif
|
||||
bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec);
|
||||
|
||||
bool efx_filter_spec_equal(const struct efx_filter_spec *left,
|
||||
const struct efx_filter_spec *right);
|
||||
u32 efx_filter_spec_hash(const struct efx_filter_spec *spec);
|
||||
|
||||
#ifdef CONFIG_RFS_ACCEL
|
||||
bool efx_rps_check_rule(struct efx_arfs_rule *rule, unsigned int filter_idx,
|
||||
bool *force);
|
||||
|
||||
struct efx_arfs_rule *efx_rps_hash_find(struct efx_nic *efx,
|
||||
const struct efx_filter_spec *spec);
|
||||
|
||||
/* @new is written to indicate if entry was newly added (true) or if an old
|
||||
* entry was found and returned (false).
|
||||
*/
|
||||
struct efx_arfs_rule *efx_rps_hash_add(struct efx_nic *efx,
|
||||
const struct efx_filter_spec *spec,
|
||||
bool *new);
|
||||
|
||||
void efx_rps_hash_del(struct efx_nic *efx, const struct efx_filter_spec *spec);
|
||||
#endif
|
||||
|
||||
/* RSS contexts */
|
||||
struct efx_rss_context *efx_alloc_rss_context_entry(struct efx_nic *efx);
|
||||
struct efx_rss_context *efx_find_rss_context_entry(struct efx_nic *efx, u32 id);
|
||||
|
|
|
@ -2905,18 +2905,45 @@ bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
|
|||
{
|
||||
struct efx_farch_filter_state *state = efx->filter_state;
|
||||
struct efx_farch_filter_table *table;
|
||||
bool ret = false;
|
||||
bool ret = false, force = false;
|
||||
u16 arfs_id;
|
||||
|
||||
down_write(&state->lock);
|
||||
spin_lock_bh(&efx->rps_hash_lock);
|
||||
table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
|
||||
if (test_bit(index, table->used_bitmap) &&
|
||||
table->spec[index].priority == EFX_FILTER_PRI_HINT &&
|
||||
rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
|
||||
flow_id, 0)) {
|
||||
efx_farch_filter_table_clear_entry(efx, table, index);
|
||||
ret = true;
|
||||
}
|
||||
table->spec[index].priority == EFX_FILTER_PRI_HINT) {
|
||||
struct efx_arfs_rule *rule = NULL;
|
||||
struct efx_filter_spec spec;
|
||||
|
||||
efx_farch_filter_to_gen_spec(&spec, &table->spec[index]);
|
||||
if (!efx->rps_hash_table) {
|
||||
/* In the absence of the table, we always returned 0 to
|
||||
* ARFS, so use the same to query it.
|
||||
*/
|
||||
arfs_id = 0;
|
||||
} else {
|
||||
rule = efx_rps_hash_find(efx, &spec);
|
||||
if (!rule) {
|
||||
/* ARFS table doesn't know of this filter, remove it */
|
||||
force = true;
|
||||
} else {
|
||||
arfs_id = rule->arfs_id;
|
||||
if (!efx_rps_check_rule(rule, index, &force))
|
||||
goto out_unlock;
|
||||
}
|
||||
}
|
||||
if (force || rps_may_expire_flow(efx->net_dev, spec.dmaq_id,
|
||||
flow_id, arfs_id)) {
|
||||
if (rule)
|
||||
rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
|
||||
efx_rps_hash_del(efx, &spec);
|
||||
efx_farch_filter_table_clear_entry(efx, table, index);
|
||||
ret = true;
|
||||
}
|
||||
}
|
||||
out_unlock:
|
||||
spin_unlock_bh(&efx->rps_hash_lock);
|
||||
up_write(&state->lock);
|
||||
return ret;
|
||||
}
|
||||
|
|
|
@ -734,6 +734,35 @@ struct efx_rss_context {
|
|||
};
|
||||
|
||||
#ifdef CONFIG_RFS_ACCEL
|
||||
/* Order of these is important, since filter_id >= %EFX_ARFS_FILTER_ID_PENDING
|
||||
* is used to test if filter does or will exist.
|
||||
*/
|
||||
#define EFX_ARFS_FILTER_ID_PENDING -1
|
||||
#define EFX_ARFS_FILTER_ID_ERROR -2
|
||||
#define EFX_ARFS_FILTER_ID_REMOVING -3
|
||||
/**
|
||||
* struct efx_arfs_rule - record of an ARFS filter and its IDs
|
||||
* @node: linkage into hash table
|
||||
* @spec: details of the filter (used as key for hash table). Use efx->type to
|
||||
* determine which member to use.
|
||||
* @rxq_index: channel to which the filter will steer traffic.
|
||||
* @arfs_id: filter ID which was returned to ARFS
|
||||
* @filter_id: index in software filter table. May be
|
||||
* %EFX_ARFS_FILTER_ID_PENDING if filter was not inserted yet,
|
||||
* %EFX_ARFS_FILTER_ID_ERROR if filter insertion failed, or
|
||||
* %EFX_ARFS_FILTER_ID_REMOVING if expiry is currently removing the filter.
|
||||
*/
|
||||
struct efx_arfs_rule {
|
||||
struct hlist_node node;
|
||||
struct efx_filter_spec spec;
|
||||
u16 rxq_index;
|
||||
u16 arfs_id;
|
||||
s32 filter_id;
|
||||
};
|
||||
|
||||
/* Size chosen so that the table is one page (4kB) */
|
||||
#define EFX_ARFS_HASH_TABLE_SIZE 512
|
||||
|
||||
/**
|
||||
* struct efx_async_filter_insertion - Request to asynchronously insert a filter
|
||||
* @net_dev: Reference to the netdevice
|
||||
|
@ -873,6 +902,10 @@ struct efx_async_filter_insertion {
|
|||
* @rps_expire_channel's @rps_flow_id
|
||||
* @rps_slot_map: bitmap of in-flight entries in @rps_slot
|
||||
* @rps_slot: array of ARFS insertion requests for efx_filter_rfs_work()
|
||||
* @rps_hash_lock: Protects ARFS filter mapping state (@rps_hash_table and
|
||||
* @rps_next_id).
|
||||
* @rps_hash_table: Mapping between ARFS filters and their various IDs
|
||||
* @rps_next_id: next arfs_id for an ARFS filter
|
||||
* @active_queues: Count of RX and TX queues that haven't been flushed and drained.
|
||||
* @rxq_flush_pending: Count of number of receive queues that need to be flushed.
|
||||
* Decremented when the efx_flush_rx_queue() is called.
|
||||
|
@ -1029,6 +1062,9 @@ struct efx_nic {
|
|||
unsigned int rps_expire_index;
|
||||
unsigned long rps_slot_map;
|
||||
struct efx_async_filter_insertion rps_slot[EFX_RPS_MAX_IN_FLIGHT];
|
||||
spinlock_t rps_hash_lock;
|
||||
struct hlist_head *rps_hash_table;
|
||||
u32 rps_next_id;
|
||||
#endif
|
||||
|
||||
atomic_t active_queues;
|
||||
|
|
|
@ -834,9 +834,29 @@ static void efx_filter_rfs_work(struct work_struct *data)
|
|||
struct efx_nic *efx = netdev_priv(req->net_dev);
|
||||
struct efx_channel *channel = efx_get_channel(efx, req->rxq_index);
|
||||
int slot_idx = req - efx->rps_slot;
|
||||
struct efx_arfs_rule *rule;
|
||||
u16 arfs_id = 0;
|
||||
int rc;
|
||||
|
||||
rc = efx->type->filter_insert(efx, &req->spec, true);
|
||||
if (efx->rps_hash_table) {
|
||||
spin_lock_bh(&efx->rps_hash_lock);
|
||||
rule = efx_rps_hash_find(efx, &req->spec);
|
||||
/* The rule might have already gone, if someone else's request
|
||||
* for the same spec was already worked and then expired before
|
||||
* we got around to our work. In that case we have nothing
|
||||
* tying us to an arfs_id, meaning that as soon as the filter
|
||||
* is considered for expiry it will be removed.
|
||||
*/
|
||||
if (rule) {
|
||||
if (rc < 0)
|
||||
rule->filter_id = EFX_ARFS_FILTER_ID_ERROR;
|
||||
else
|
||||
rule->filter_id = rc;
|
||||
arfs_id = rule->arfs_id;
|
||||
}
|
||||
spin_unlock_bh(&efx->rps_hash_lock);
|
||||
}
|
||||
if (rc >= 0) {
|
||||
/* Remember this so we can check whether to expire the filter
|
||||
* later.
|
||||
|
@ -848,18 +868,18 @@ static void efx_filter_rfs_work(struct work_struct *data)
|
|||
|
||||
if (req->spec.ether_type == htons(ETH_P_IP))
|
||||
netif_info(efx, rx_status, efx->net_dev,
|
||||
"steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d]\n",
|
||||
"steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n",
|
||||
(req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
|
||||
req->spec.rem_host, ntohs(req->spec.rem_port),
|
||||
req->spec.loc_host, ntohs(req->spec.loc_port),
|
||||
req->rxq_index, req->flow_id, rc);
|
||||
req->rxq_index, req->flow_id, rc, arfs_id);
|
||||
else
|
||||
netif_info(efx, rx_status, efx->net_dev,
|
||||
"steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d]\n",
|
||||
"steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n",
|
||||
(req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
|
||||
req->spec.rem_host, ntohs(req->spec.rem_port),
|
||||
req->spec.loc_host, ntohs(req->spec.loc_port),
|
||||
req->rxq_index, req->flow_id, rc);
|
||||
req->rxq_index, req->flow_id, rc, arfs_id);
|
||||
}
|
||||
|
||||
/* Release references */
|
||||
|
@ -872,8 +892,10 @@ int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
|
|||
{
|
||||
struct efx_nic *efx = netdev_priv(net_dev);
|
||||
struct efx_async_filter_insertion *req;
|
||||
struct efx_arfs_rule *rule;
|
||||
struct flow_keys fk;
|
||||
int slot_idx;
|
||||
bool new;
|
||||
int rc;
|
||||
|
||||
/* find a free slot */
|
||||
|
@ -926,12 +948,42 @@ int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
|
|||
req->spec.rem_port = fk.ports.src;
|
||||
req->spec.loc_port = fk.ports.dst;
|
||||
|
||||
if (efx->rps_hash_table) {
|
||||
/* Add it to ARFS hash table */
|
||||
spin_lock(&efx->rps_hash_lock);
|
||||
rule = efx_rps_hash_add(efx, &req->spec, &new);
|
||||
if (!rule) {
|
||||
rc = -ENOMEM;
|
||||
goto out_unlock;
|
||||
}
|
||||
if (new)
|
||||
rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER;
|
||||
rc = rule->arfs_id;
|
||||
/* Skip if existing or pending filter already does the right thing */
|
||||
if (!new && rule->rxq_index == rxq_index &&
|
||||
rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING)
|
||||
goto out_unlock;
|
||||
rule->rxq_index = rxq_index;
|
||||
rule->filter_id = EFX_ARFS_FILTER_ID_PENDING;
|
||||
spin_unlock(&efx->rps_hash_lock);
|
||||
} else {
|
||||
/* Without an ARFS hash table, we just use arfs_id 0 for all
|
||||
* filters. This means if multiple flows hash to the same
|
||||
* flow_id, all but the most recently touched will be eligible
|
||||
* for expiry.
|
||||
*/
|
||||
rc = 0;
|
||||
}
|
||||
|
||||
/* Queue the request */
|
||||
dev_hold(req->net_dev = net_dev);
|
||||
INIT_WORK(&req->work, efx_filter_rfs_work);
|
||||
req->rxq_index = rxq_index;
|
||||
req->flow_id = flow_id;
|
||||
schedule_work(&req->work);
|
||||
return 0;
|
||||
return rc;
|
||||
out_unlock:
|
||||
spin_unlock(&efx->rps_hash_lock);
|
||||
out_clear:
|
||||
clear_bit(slot_idx, &efx->rps_slot_map);
|
||||
return rc;
|
||||
|
|
Loading…
Reference in New Issue