Merge branch 'slab/common-for-cgroups' into slab/for-linus

Fix up a trivial conflict with NUMA_NO_NODE cleanups.

Conflicts:
	mm/slob.c

Signed-off-by: Pekka Enberg <penberg@kernel.org>
This commit is contained in:
Pekka Enberg 2012-10-03 09:56:37 +03:00
commit f4178cdddd
5 changed files with 281 additions and 278 deletions

255
mm/slab.c
View File

@ -570,9 +570,9 @@ static struct arraycache_init initarray_generic =
{ {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
/* internal cache of cache description objs */ /* internal cache of cache description objs */
static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES]; static struct kmem_list3 *kmem_cache_nodelists[MAX_NUMNODES];
static struct kmem_cache cache_cache = { static struct kmem_cache kmem_cache_boot = {
.nodelists = cache_cache_nodelists, .nodelists = kmem_cache_nodelists,
.batchcount = 1, .batchcount = 1,
.limit = BOOT_CPUCACHE_ENTRIES, .limit = BOOT_CPUCACHE_ENTRIES,
.shared = 1, .shared = 1,
@ -795,6 +795,7 @@ static void cache_estimate(unsigned long gfporder, size_t buffer_size,
*left_over = slab_size - nr_objs*buffer_size - mgmt_size; *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
} }
#if DEBUG
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
static void __slab_error(const char *function, struct kmem_cache *cachep, static void __slab_error(const char *function, struct kmem_cache *cachep,
@ -805,6 +806,7 @@ static void __slab_error(const char *function, struct kmem_cache *cachep,
dump_stack(); dump_stack();
add_taint(TAINT_BAD_PAGE); add_taint(TAINT_BAD_PAGE);
} }
#endif
/* /*
* By default on NUMA we use alien caches to stage the freeing of * By default on NUMA we use alien caches to stage the freeing of
@ -1587,15 +1589,17 @@ void __init kmem_cache_init(void)
int order; int order;
int node; int node;
kmem_cache = &kmem_cache_boot;
if (num_possible_nodes() == 1) if (num_possible_nodes() == 1)
use_alien_caches = 0; use_alien_caches = 0;
for (i = 0; i < NUM_INIT_LISTS; i++) { for (i = 0; i < NUM_INIT_LISTS; i++) {
kmem_list3_init(&initkmem_list3[i]); kmem_list3_init(&initkmem_list3[i]);
if (i < MAX_NUMNODES) if (i < MAX_NUMNODES)
cache_cache.nodelists[i] = NULL; kmem_cache->nodelists[i] = NULL;
} }
set_up_list3s(&cache_cache, CACHE_CACHE); set_up_list3s(kmem_cache, CACHE_CACHE);
/* /*
* Fragmentation resistance on low memory - only use bigger * Fragmentation resistance on low memory - only use bigger
@ -1607,9 +1611,9 @@ void __init kmem_cache_init(void)
/* Bootstrap is tricky, because several objects are allocated /* Bootstrap is tricky, because several objects are allocated
* from caches that do not exist yet: * from caches that do not exist yet:
* 1) initialize the cache_cache cache: it contains the struct * 1) initialize the kmem_cache cache: it contains the struct
* kmem_cache structures of all caches, except cache_cache itself: * kmem_cache structures of all caches, except kmem_cache itself:
* cache_cache is statically allocated. * kmem_cache is statically allocated.
* Initially an __init data area is used for the head array and the * Initially an __init data area is used for the head array and the
* kmem_list3 structures, it's replaced with a kmalloc allocated * kmem_list3 structures, it's replaced with a kmalloc allocated
* array at the end of the bootstrap. * array at the end of the bootstrap.
@ -1618,43 +1622,43 @@ void __init kmem_cache_init(void)
* An __init data area is used for the head array. * An __init data area is used for the head array.
* 3) Create the remaining kmalloc caches, with minimally sized * 3) Create the remaining kmalloc caches, with minimally sized
* head arrays. * head arrays.
* 4) Replace the __init data head arrays for cache_cache and the first * 4) Replace the __init data head arrays for kmem_cache and the first
* kmalloc cache with kmalloc allocated arrays. * kmalloc cache with kmalloc allocated arrays.
* 5) Replace the __init data for kmem_list3 for cache_cache and * 5) Replace the __init data for kmem_list3 for kmem_cache and
* the other cache's with kmalloc allocated memory. * the other cache's with kmalloc allocated memory.
* 6) Resize the head arrays of the kmalloc caches to their final sizes. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
*/ */
node = numa_mem_id(); node = numa_mem_id();
/* 1) create the cache_cache */ /* 1) create the kmem_cache */
INIT_LIST_HEAD(&slab_caches); INIT_LIST_HEAD(&slab_caches);
list_add(&cache_cache.list, &slab_caches); list_add(&kmem_cache->list, &slab_caches);
cache_cache.colour_off = cache_line_size(); kmem_cache->colour_off = cache_line_size();
cache_cache.array[smp_processor_id()] = &initarray_cache.cache; kmem_cache->array[smp_processor_id()] = &initarray_cache.cache;
cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node]; kmem_cache->nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
/* /*
* struct kmem_cache size depends on nr_node_ids & nr_cpu_ids * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
*/ */
cache_cache.size = offsetof(struct kmem_cache, array[nr_cpu_ids]) + kmem_cache->size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
nr_node_ids * sizeof(struct kmem_list3 *); nr_node_ids * sizeof(struct kmem_list3 *);
cache_cache.object_size = cache_cache.size; kmem_cache->object_size = kmem_cache->size;
cache_cache.size = ALIGN(cache_cache.size, kmem_cache->size = ALIGN(kmem_cache->object_size,
cache_line_size()); cache_line_size());
cache_cache.reciprocal_buffer_size = kmem_cache->reciprocal_buffer_size =
reciprocal_value(cache_cache.size); reciprocal_value(kmem_cache->size);
for (order = 0; order < MAX_ORDER; order++) { for (order = 0; order < MAX_ORDER; order++) {
cache_estimate(order, cache_cache.size, cache_estimate(order, kmem_cache->size,
cache_line_size(), 0, &left_over, &cache_cache.num); cache_line_size(), 0, &left_over, &kmem_cache->num);
if (cache_cache.num) if (kmem_cache->num)
break; break;
} }
BUG_ON(!cache_cache.num); BUG_ON(!kmem_cache->num);
cache_cache.gfporder = order; kmem_cache->gfporder = order;
cache_cache.colour = left_over / cache_cache.colour_off; kmem_cache->colour = left_over / kmem_cache->colour_off;
cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) + kmem_cache->slab_size = ALIGN(kmem_cache->num * sizeof(kmem_bufctl_t) +
sizeof(struct slab), cache_line_size()); sizeof(struct slab), cache_line_size());
/* 2+3) create the kmalloc caches */ /* 2+3) create the kmalloc caches */
@ -1667,19 +1671,22 @@ void __init kmem_cache_init(void)
* bug. * bug.
*/ */
sizes[INDEX_AC].cs_cachep = __kmem_cache_create(names[INDEX_AC].name, sizes[INDEX_AC].cs_cachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
sizes[INDEX_AC].cs_size, sizes[INDEX_AC].cs_cachep->name = names[INDEX_AC].name;
ARCH_KMALLOC_MINALIGN, sizes[INDEX_AC].cs_cachep->size = sizes[INDEX_AC].cs_size;
ARCH_KMALLOC_FLAGS|SLAB_PANIC, sizes[INDEX_AC].cs_cachep->object_size = sizes[INDEX_AC].cs_size;
NULL); sizes[INDEX_AC].cs_cachep->align = ARCH_KMALLOC_MINALIGN;
__kmem_cache_create(sizes[INDEX_AC].cs_cachep, ARCH_KMALLOC_FLAGS|SLAB_PANIC);
list_add(&sizes[INDEX_AC].cs_cachep->list, &slab_caches);
if (INDEX_AC != INDEX_L3) { if (INDEX_AC != INDEX_L3) {
sizes[INDEX_L3].cs_cachep = sizes[INDEX_L3].cs_cachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
__kmem_cache_create(names[INDEX_L3].name, sizes[INDEX_L3].cs_cachep->name = names[INDEX_L3].name;
sizes[INDEX_L3].cs_size, sizes[INDEX_L3].cs_cachep->size = sizes[INDEX_L3].cs_size;
ARCH_KMALLOC_MINALIGN, sizes[INDEX_L3].cs_cachep->object_size = sizes[INDEX_L3].cs_size;
ARCH_KMALLOC_FLAGS|SLAB_PANIC, sizes[INDEX_L3].cs_cachep->align = ARCH_KMALLOC_MINALIGN;
NULL); __kmem_cache_create(sizes[INDEX_L3].cs_cachep, ARCH_KMALLOC_FLAGS|SLAB_PANIC);
list_add(&sizes[INDEX_L3].cs_cachep->list, &slab_caches);
} }
slab_early_init = 0; slab_early_init = 0;
@ -1693,20 +1700,23 @@ void __init kmem_cache_init(void)
* allow tighter packing of the smaller caches. * allow tighter packing of the smaller caches.
*/ */
if (!sizes->cs_cachep) { if (!sizes->cs_cachep) {
sizes->cs_cachep = __kmem_cache_create(names->name, sizes->cs_cachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
sizes->cs_size, sizes->cs_cachep->name = names->name;
ARCH_KMALLOC_MINALIGN, sizes->cs_cachep->size = sizes->cs_size;
ARCH_KMALLOC_FLAGS|SLAB_PANIC, sizes->cs_cachep->object_size = sizes->cs_size;
NULL); sizes->cs_cachep->align = ARCH_KMALLOC_MINALIGN;
__kmem_cache_create(sizes->cs_cachep, ARCH_KMALLOC_FLAGS|SLAB_PANIC);
list_add(&sizes->cs_cachep->list, &slab_caches);
} }
#ifdef CONFIG_ZONE_DMA #ifdef CONFIG_ZONE_DMA
sizes->cs_dmacachep = __kmem_cache_create( sizes->cs_dmacachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
names->name_dma, sizes->cs_dmacachep->name = names->name_dma;
sizes->cs_size, sizes->cs_dmacachep->size = sizes->cs_size;
ARCH_KMALLOC_MINALIGN, sizes->cs_dmacachep->object_size = sizes->cs_size;
ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA| sizes->cs_dmacachep->align = ARCH_KMALLOC_MINALIGN;
SLAB_PANIC, __kmem_cache_create(sizes->cs_dmacachep,
NULL); ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA| SLAB_PANIC);
list_add(&sizes->cs_dmacachep->list, &slab_caches);
#endif #endif
sizes++; sizes++;
names++; names++;
@ -1717,15 +1727,15 @@ void __init kmem_cache_init(void)
ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache); BUG_ON(cpu_cache_get(kmem_cache) != &initarray_cache.cache);
memcpy(ptr, cpu_cache_get(&cache_cache), memcpy(ptr, cpu_cache_get(kmem_cache),
sizeof(struct arraycache_init)); sizeof(struct arraycache_init));
/* /*
* Do not assume that spinlocks can be initialized via memcpy: * Do not assume that spinlocks can be initialized via memcpy:
*/ */
spin_lock_init(&ptr->lock); spin_lock_init(&ptr->lock);
cache_cache.array[smp_processor_id()] = ptr; kmem_cache->array[smp_processor_id()] = ptr;
ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
@ -1746,7 +1756,7 @@ void __init kmem_cache_init(void)
int nid; int nid;
for_each_online_node(nid) { for_each_online_node(nid) {
init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid); init_list(kmem_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
init_list(malloc_sizes[INDEX_AC].cs_cachep, init_list(malloc_sizes[INDEX_AC].cs_cachep,
&initkmem_list3[SIZE_AC + nid], nid); &initkmem_list3[SIZE_AC + nid], nid);
@ -2195,27 +2205,6 @@ static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
} }
} }
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
int i;
struct kmem_list3 *l3;
for_each_online_cpu(i)
kfree(cachep->array[i]);
/* NUMA: free the list3 structures */
for_each_online_node(i) {
l3 = cachep->nodelists[i];
if (l3) {
kfree(l3->shared);
free_alien_cache(l3->alien);
kfree(l3);
}
}
kmem_cache_free(&cache_cache, cachep);
}
/** /**
* calculate_slab_order - calculate size (page order) of slabs * calculate_slab_order - calculate size (page order) of slabs
* @cachep: pointer to the cache that is being created * @cachep: pointer to the cache that is being created
@ -2352,9 +2341,6 @@ static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
* Cannot be called within a int, but can be interrupted. * Cannot be called within a int, but can be interrupted.
* The @ctor is run when new pages are allocated by the cache. * The @ctor is run when new pages are allocated by the cache.
* *
* @name must be valid until the cache is destroyed. This implies that
* the module calling this has to destroy the cache before getting unloaded.
*
* The flags are * The flags are
* *
* %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
@ -2367,13 +2353,13 @@ static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
* cacheline. This can be beneficial if you're counting cycles as closely * cacheline. This can be beneficial if you're counting cycles as closely
* as davem. * as davem.
*/ */
struct kmem_cache * int
__kmem_cache_create (const char *name, size_t size, size_t align, __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
unsigned long flags, void (*ctor)(void *))
{ {
size_t left_over, slab_size, ralign; size_t left_over, slab_size, ralign;
struct kmem_cache *cachep = NULL;
gfp_t gfp; gfp_t gfp;
int err;
size_t size = cachep->size;
#if DEBUG #if DEBUG
#if FORCED_DEBUG #if FORCED_DEBUG
@ -2445,8 +2431,8 @@ __kmem_cache_create (const char *name, size_t size, size_t align,
ralign = ARCH_SLAB_MINALIGN; ralign = ARCH_SLAB_MINALIGN;
} }
/* 3) caller mandated alignment */ /* 3) caller mandated alignment */
if (ralign < align) { if (ralign < cachep->align) {
ralign = align; ralign = cachep->align;
} }
/* disable debug if necessary */ /* disable debug if necessary */
if (ralign > __alignof__(unsigned long long)) if (ralign > __alignof__(unsigned long long))
@ -2454,21 +2440,14 @@ __kmem_cache_create (const char *name, size_t size, size_t align,
/* /*
* 4) Store it. * 4) Store it.
*/ */
align = ralign; cachep->align = ralign;
if (slab_is_available()) if (slab_is_available())
gfp = GFP_KERNEL; gfp = GFP_KERNEL;
else else
gfp = GFP_NOWAIT; gfp = GFP_NOWAIT;
/* Get cache's description obj. */
cachep = kmem_cache_zalloc(&cache_cache, gfp);
if (!cachep)
return NULL;
cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids]; cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
cachep->object_size = size;
cachep->align = align;
#if DEBUG #if DEBUG
/* /*
@ -2514,18 +2493,15 @@ __kmem_cache_create (const char *name, size_t size, size_t align,
*/ */
flags |= CFLGS_OFF_SLAB; flags |= CFLGS_OFF_SLAB;
size = ALIGN(size, align); size = ALIGN(size, cachep->align);
left_over = calculate_slab_order(cachep, size, align, flags); left_over = calculate_slab_order(cachep, size, cachep->align, flags);
if (!cachep->num)
return -E2BIG;
if (!cachep->num) {
printk(KERN_ERR
"kmem_cache_create: couldn't create cache %s.\n", name);
kmem_cache_free(&cache_cache, cachep);
return NULL;
}
slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t) slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
+ sizeof(struct slab), align); + sizeof(struct slab), cachep->align);
/* /*
* If the slab has been placed off-slab, and we have enough space then * If the slab has been placed off-slab, and we have enough space then
@ -2553,8 +2529,8 @@ __kmem_cache_create (const char *name, size_t size, size_t align,
cachep->colour_off = cache_line_size(); cachep->colour_off = cache_line_size();
/* Offset must be a multiple of the alignment. */ /* Offset must be a multiple of the alignment. */
if (cachep->colour_off < align) if (cachep->colour_off < cachep->align)
cachep->colour_off = align; cachep->colour_off = cachep->align;
cachep->colour = left_over / cachep->colour_off; cachep->colour = left_over / cachep->colour_off;
cachep->slab_size = slab_size; cachep->slab_size = slab_size;
cachep->flags = flags; cachep->flags = flags;
@ -2575,12 +2551,11 @@ __kmem_cache_create (const char *name, size_t size, size_t align,
*/ */
BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache)); BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
} }
cachep->ctor = ctor;
cachep->name = name;
if (setup_cpu_cache(cachep, gfp)) { err = setup_cpu_cache(cachep, gfp);
__kmem_cache_destroy(cachep); if (err) {
return NULL; __kmem_cache_shutdown(cachep);
return err;
} }
if (flags & SLAB_DEBUG_OBJECTS) { if (flags & SLAB_DEBUG_OBJECTS) {
@ -2593,9 +2568,7 @@ __kmem_cache_create (const char *name, size_t size, size_t align,
slab_set_debugobj_lock_classes(cachep); slab_set_debugobj_lock_classes(cachep);
} }
/* cache setup completed, link it into the list */ return 0;
list_add(&cachep->list, &slab_caches);
return cachep;
} }
#if DEBUG #if DEBUG
@ -2754,49 +2727,29 @@ int kmem_cache_shrink(struct kmem_cache *cachep)
} }
EXPORT_SYMBOL(kmem_cache_shrink); EXPORT_SYMBOL(kmem_cache_shrink);
/** int __kmem_cache_shutdown(struct kmem_cache *cachep)
* kmem_cache_destroy - delete a cache
* @cachep: the cache to destroy
*
* Remove a &struct kmem_cache object from the slab cache.
*
* It is expected this function will be called by a module when it is
* unloaded. This will remove the cache completely, and avoid a duplicate
* cache being allocated each time a module is loaded and unloaded, if the
* module doesn't have persistent in-kernel storage across loads and unloads.
*
* The cache must be empty before calling this function.
*
* The caller must guarantee that no one will allocate memory from the cache
* during the kmem_cache_destroy().
*/
void kmem_cache_destroy(struct kmem_cache *cachep)
{ {
BUG_ON(!cachep || in_interrupt()); int i;
struct kmem_list3 *l3;
int rc = __cache_shrink(cachep);
/* Find the cache in the chain of caches. */ if (rc)
get_online_cpus(); return rc;
mutex_lock(&slab_mutex);
/* for_each_online_cpu(i)
* the chain is never empty, cache_cache is never destroyed kfree(cachep->array[i]);
*/
list_del(&cachep->list); /* NUMA: free the list3 structures */
if (__cache_shrink(cachep)) { for_each_online_node(i) {
slab_error(cachep, "Can't free all objects"); l3 = cachep->nodelists[i];
list_add(&cachep->list, &slab_caches); if (l3) {
mutex_unlock(&slab_mutex); kfree(l3->shared);
put_online_cpus(); free_alien_cache(l3->alien);
return; kfree(l3);
}
} }
return 0;
if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
rcu_barrier();
__kmem_cache_destroy(cachep);
mutex_unlock(&slab_mutex);
put_online_cpus();
} }
EXPORT_SYMBOL(kmem_cache_destroy);
/* /*
* Get the memory for a slab management obj. * Get the memory for a slab management obj.
@ -3330,7 +3283,7 @@ static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags) static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
{ {
if (cachep == &cache_cache) if (cachep == kmem_cache)
return false; return false;
return should_failslab(cachep->object_size, flags, cachep->flags); return should_failslab(cachep->object_size, flags, cachep->flags);

View File

@ -25,9 +25,26 @@ extern enum slab_state slab_state;
/* The slab cache mutex protects the management structures during changes */ /* The slab cache mutex protects the management structures during changes */
extern struct mutex slab_mutex; extern struct mutex slab_mutex;
/* The list of all slab caches on the system */
extern struct list_head slab_caches; extern struct list_head slab_caches;
struct kmem_cache *__kmem_cache_create(const char *name, size_t size, /* The slab cache that manages slab cache information */
extern struct kmem_cache *kmem_cache;
/* Functions provided by the slab allocators */
extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
#ifdef CONFIG_SLUB
struct kmem_cache *__kmem_cache_alias(const char *name, size_t size,
size_t align, unsigned long flags, void (*ctor)(void *)); size_t align, unsigned long flags, void (*ctor)(void *));
#else
static inline struct kmem_cache *__kmem_cache_alias(const char *name, size_t size,
size_t align, unsigned long flags, void (*ctor)(void *))
{ return NULL; }
#endif
int __kmem_cache_shutdown(struct kmem_cache *);
#endif #endif

View File

@ -22,6 +22,7 @@
enum slab_state slab_state; enum slab_state slab_state;
LIST_HEAD(slab_caches); LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex); DEFINE_MUTEX(slab_mutex);
struct kmem_cache *kmem_cache;
#ifdef CONFIG_DEBUG_VM #ifdef CONFIG_DEBUG_VM
static int kmem_cache_sanity_check(const char *name, size_t size) static int kmem_cache_sanity_check(const char *name, size_t size)
@ -98,21 +99,92 @@ struct kmem_cache *kmem_cache_create(const char *name, size_t size, size_t align
unsigned long flags, void (*ctor)(void *)) unsigned long flags, void (*ctor)(void *))
{ {
struct kmem_cache *s = NULL; struct kmem_cache *s = NULL;
int err = 0;
get_online_cpus(); get_online_cpus();
mutex_lock(&slab_mutex); mutex_lock(&slab_mutex);
if (kmem_cache_sanity_check(name, size) == 0)
s = __kmem_cache_create(name, size, align, flags, ctor); if (!kmem_cache_sanity_check(name, size) == 0)
goto out_locked;
s = __kmem_cache_alias(name, size, align, flags, ctor);
if (s)
goto out_locked;
s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
if (s) {
s->object_size = s->size = size;
s->align = align;
s->ctor = ctor;
s->name = kstrdup(name, GFP_KERNEL);
if (!s->name) {
kmem_cache_free(kmem_cache, s);
err = -ENOMEM;
goto out_locked;
}
err = __kmem_cache_create(s, flags);
if (!err) {
s->refcount = 1;
list_add(&s->list, &slab_caches);
} else {
kfree(s->name);
kmem_cache_free(kmem_cache, s);
}
} else
err = -ENOMEM;
out_locked:
mutex_unlock(&slab_mutex); mutex_unlock(&slab_mutex);
put_online_cpus(); put_online_cpus();
if (!s && (flags & SLAB_PANIC)) if (err) {
panic("kmem_cache_create: Failed to create slab '%s'\n", name);
if (flags & SLAB_PANIC)
panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
name, err);
else {
printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
name, err);
dump_stack();
}
return NULL;
}
return s; return s;
} }
EXPORT_SYMBOL(kmem_cache_create); EXPORT_SYMBOL(kmem_cache_create);
void kmem_cache_destroy(struct kmem_cache *s)
{
get_online_cpus();
mutex_lock(&slab_mutex);
s->refcount--;
if (!s->refcount) {
list_del(&s->list);
if (!__kmem_cache_shutdown(s)) {
if (s->flags & SLAB_DESTROY_BY_RCU)
rcu_barrier();
kfree(s->name);
kmem_cache_free(kmem_cache, s);
} else {
list_add(&s->list, &slab_caches);
printk(KERN_ERR "kmem_cache_destroy %s: Slab cache still has objects\n",
s->name);
dump_stack();
}
}
mutex_unlock(&slab_mutex);
put_online_cpus();
}
EXPORT_SYMBOL(kmem_cache_destroy);
int slab_is_available(void) int slab_is_available(void)
{ {
return slab_state >= UP; return slab_state >= UP;

View File

@ -529,44 +529,24 @@ size_t ksize(const void *block)
} }
EXPORT_SYMBOL(ksize); EXPORT_SYMBOL(ksize);
struct kmem_cache *__kmem_cache_create(const char *name, size_t size, int __kmem_cache_create(struct kmem_cache *c, unsigned long flags)
size_t align, unsigned long flags, void (*ctor)(void *))
{ {
struct kmem_cache *c; size_t align = c->size;
c = slob_alloc(sizeof(struct kmem_cache), if (flags & SLAB_DESTROY_BY_RCU) {
GFP_KERNEL, ARCH_KMALLOC_MINALIGN, NUMA_NO_NODE); /* leave room for rcu footer at the end of object */
c->size += sizeof(struct slob_rcu);
if (c) {
c->name = name;
c->size = size;
if (flags & SLAB_DESTROY_BY_RCU) {
/* leave room for rcu footer at the end of object */
c->size += sizeof(struct slob_rcu);
}
c->flags = flags;
c->ctor = ctor;
/* ignore alignment unless it's forced */
c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0;
if (c->align < ARCH_SLAB_MINALIGN)
c->align = ARCH_SLAB_MINALIGN;
if (c->align < align)
c->align = align;
kmemleak_alloc(c, sizeof(struct kmem_cache), 1, GFP_KERNEL);
c->refcount = 1;
} }
return c; c->flags = flags;
} /* ignore alignment unless it's forced */
c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0;
if (c->align < ARCH_SLAB_MINALIGN)
c->align = ARCH_SLAB_MINALIGN;
if (c->align < align)
c->align = align;
void kmem_cache_destroy(struct kmem_cache *c) return 0;
{
kmemleak_free(c);
if (c->flags & SLAB_DESTROY_BY_RCU)
rcu_barrier();
slob_free(c, sizeof(struct kmem_cache));
} }
EXPORT_SYMBOL(kmem_cache_destroy);
void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node) void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
{ {
@ -634,14 +614,28 @@ unsigned int kmem_cache_size(struct kmem_cache *c)
} }
EXPORT_SYMBOL(kmem_cache_size); EXPORT_SYMBOL(kmem_cache_size);
int __kmem_cache_shutdown(struct kmem_cache *c)
{
/* No way to check for remaining objects */
return 0;
}
int kmem_cache_shrink(struct kmem_cache *d) int kmem_cache_shrink(struct kmem_cache *d)
{ {
return 0; return 0;
} }
EXPORT_SYMBOL(kmem_cache_shrink); EXPORT_SYMBOL(kmem_cache_shrink);
struct kmem_cache kmem_cache_boot = {
.name = "kmem_cache",
.size = sizeof(struct kmem_cache),
.flags = SLAB_PANIC,
.align = ARCH_KMALLOC_MINALIGN,
};
void __init kmem_cache_init(void) void __init kmem_cache_init(void)
{ {
kmem_cache = &kmem_cache_boot;
slab_state = UP; slab_state = UP;
} }

145
mm/slub.c
View File

@ -210,11 +210,7 @@ static void sysfs_slab_remove(struct kmem_cache *);
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
{ return 0; } { return 0; }
static inline void sysfs_slab_remove(struct kmem_cache *s) static inline void sysfs_slab_remove(struct kmem_cache *s) { }
{
kfree(s->name);
kfree(s);
}
#endif #endif
@ -626,7 +622,7 @@ static void object_err(struct kmem_cache *s, struct page *page,
print_trailer(s, page, object); print_trailer(s, page, object);
} }
static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
{ {
va_list args; va_list args;
char buf[100]; char buf[100];
@ -2627,6 +2623,13 @@ void kmem_cache_free(struct kmem_cache *s, void *x)
page = virt_to_head_page(x); page = virt_to_head_page(x);
if (kmem_cache_debug(s) && page->slab != s) {
pr_err("kmem_cache_free: Wrong slab cache. %s but object"
" is from %s\n", page->slab->name, s->name);
WARN_ON_ONCE(1);
return;
}
slab_free(s, page, x, _RET_IP_); slab_free(s, page, x, _RET_IP_);
trace_kmem_cache_free(_RET_IP_, x); trace_kmem_cache_free(_RET_IP_, x);
@ -3041,17 +3044,9 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order)
} }
static int kmem_cache_open(struct kmem_cache *s, static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
const char *name, size_t size,
size_t align, unsigned long flags,
void (*ctor)(void *))
{ {
memset(s, 0, kmem_size); s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
s->name = name;
s->ctor = ctor;
s->object_size = size;
s->align = align;
s->flags = kmem_cache_flags(size, flags, name, ctor);
s->reserved = 0; s->reserved = 0;
if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
@ -3113,7 +3108,6 @@ static int kmem_cache_open(struct kmem_cache *s,
else else
s->cpu_partial = 30; s->cpu_partial = 30;
s->refcount = 1;
#ifdef CONFIG_NUMA #ifdef CONFIG_NUMA
s->remote_node_defrag_ratio = 1000; s->remote_node_defrag_ratio = 1000;
#endif #endif
@ -3121,16 +3115,16 @@ static int kmem_cache_open(struct kmem_cache *s,
goto error; goto error;
if (alloc_kmem_cache_cpus(s)) if (alloc_kmem_cache_cpus(s))
return 1; return 0;
free_kmem_cache_nodes(s); free_kmem_cache_nodes(s);
error: error:
if (flags & SLAB_PANIC) if (flags & SLAB_PANIC)
panic("Cannot create slab %s size=%lu realsize=%u " panic("Cannot create slab %s size=%lu realsize=%u "
"order=%u offset=%u flags=%lx\n", "order=%u offset=%u flags=%lx\n",
s->name, (unsigned long)size, s->size, oo_order(s->oo), s->name, (unsigned long)s->size, s->size, oo_order(s->oo),
s->offset, flags); s->offset, flags);
return 0; return -EINVAL;
} }
/* /*
@ -3152,7 +3146,7 @@ static void list_slab_objects(struct kmem_cache *s, struct page *page,
sizeof(long), GFP_ATOMIC); sizeof(long), GFP_ATOMIC);
if (!map) if (!map)
return; return;
slab_err(s, page, "%s", text); slab_err(s, page, text, s->name);
slab_lock(page); slab_lock(page);
get_map(s, page, map); get_map(s, page, map);
@ -3184,7 +3178,7 @@ static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
discard_slab(s, page); discard_slab(s, page);
} else { } else {
list_slab_objects(s, page, list_slab_objects(s, page,
"Objects remaining on kmem_cache_close()"); "Objects remaining in %s on kmem_cache_close()");
} }
} }
} }
@ -3197,7 +3191,6 @@ static inline int kmem_cache_close(struct kmem_cache *s)
int node; int node;
flush_all(s); flush_all(s);
free_percpu(s->cpu_slab);
/* Attempt to free all objects */ /* Attempt to free all objects */
for_each_node_state(node, N_NORMAL_MEMORY) { for_each_node_state(node, N_NORMAL_MEMORY) {
struct kmem_cache_node *n = get_node(s, node); struct kmem_cache_node *n = get_node(s, node);
@ -3206,33 +3199,20 @@ static inline int kmem_cache_close(struct kmem_cache *s)
if (n->nr_partial || slabs_node(s, node)) if (n->nr_partial || slabs_node(s, node))
return 1; return 1;
} }
free_percpu(s->cpu_slab);
free_kmem_cache_nodes(s); free_kmem_cache_nodes(s);
return 0; return 0;
} }
/* int __kmem_cache_shutdown(struct kmem_cache *s)
* Close a cache and release the kmem_cache structure
* (must be used for caches created using kmem_cache_create)
*/
void kmem_cache_destroy(struct kmem_cache *s)
{ {
mutex_lock(&slab_mutex); int rc = kmem_cache_close(s);
s->refcount--;
if (!s->refcount) { if (!rc)
list_del(&s->list);
mutex_unlock(&slab_mutex);
if (kmem_cache_close(s)) {
printk(KERN_ERR "SLUB %s: %s called for cache that "
"still has objects.\n", s->name, __func__);
dump_stack();
}
if (s->flags & SLAB_DESTROY_BY_RCU)
rcu_barrier();
sysfs_slab_remove(s); sysfs_slab_remove(s);
} else
mutex_unlock(&slab_mutex); return rc;
} }
EXPORT_SYMBOL(kmem_cache_destroy);
/******************************************************************** /********************************************************************
* Kmalloc subsystem * Kmalloc subsystem
@ -3241,8 +3221,6 @@ EXPORT_SYMBOL(kmem_cache_destroy);
struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT]; struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
EXPORT_SYMBOL(kmalloc_caches); EXPORT_SYMBOL(kmalloc_caches);
static struct kmem_cache *kmem_cache;
#ifdef CONFIG_ZONE_DMA #ifdef CONFIG_ZONE_DMA
static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT]; static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
#endif #endif
@ -3288,14 +3266,17 @@ static struct kmem_cache *__init create_kmalloc_cache(const char *name,
{ {
struct kmem_cache *s; struct kmem_cache *s;
s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT); s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
s->name = name;
s->size = s->object_size = size;
s->align = ARCH_KMALLOC_MINALIGN;
/* /*
* This function is called with IRQs disabled during early-boot on * This function is called with IRQs disabled during early-boot on
* single CPU so there's no need to take slab_mutex here. * single CPU so there's no need to take slab_mutex here.
*/ */
if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN, if (kmem_cache_open(s, flags))
flags, NULL))
goto panic; goto panic;
list_add(&s->list, &slab_caches); list_add(&s->list, &slab_caches);
@ -3734,12 +3715,12 @@ void __init kmem_cache_init(void)
slub_max_order = 0; slub_max_order = 0;
kmem_size = offsetof(struct kmem_cache, node) + kmem_size = offsetof(struct kmem_cache, node) +
nr_node_ids * sizeof(struct kmem_cache_node *); nr_node_ids * sizeof(struct kmem_cache_node *);
/* Allocate two kmem_caches from the page allocator */ /* Allocate two kmem_caches from the page allocator */
kmalloc_size = ALIGN(kmem_size, cache_line_size()); kmalloc_size = ALIGN(kmem_size, cache_line_size());
order = get_order(2 * kmalloc_size); order = get_order(2 * kmalloc_size);
kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order); kmem_cache = (void *)__get_free_pages(GFP_NOWAIT | __GFP_ZERO, order);
/* /*
* Must first have the slab cache available for the allocations of the * Must first have the slab cache available for the allocations of the
@ -3748,9 +3729,10 @@ void __init kmem_cache_init(void)
*/ */
kmem_cache_node = (void *)kmem_cache + kmalloc_size; kmem_cache_node = (void *)kmem_cache + kmalloc_size;
kmem_cache_open(kmem_cache_node, "kmem_cache_node", kmem_cache_node->name = "kmem_cache_node";
sizeof(struct kmem_cache_node), kmem_cache_node->size = kmem_cache_node->object_size =
0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); sizeof(struct kmem_cache_node);
kmem_cache_open(kmem_cache_node, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
@ -3758,8 +3740,10 @@ void __init kmem_cache_init(void)
slab_state = PARTIAL; slab_state = PARTIAL;
temp_kmem_cache = kmem_cache; temp_kmem_cache = kmem_cache;
kmem_cache_open(kmem_cache, "kmem_cache", kmem_size, kmem_cache->name = "kmem_cache";
0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); kmem_cache->size = kmem_cache->object_size = kmem_size;
kmem_cache_open(kmem_cache, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT); kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
memcpy(kmem_cache, temp_kmem_cache, kmem_size); memcpy(kmem_cache, temp_kmem_cache, kmem_size);
@ -3948,11 +3932,10 @@ static struct kmem_cache *find_mergeable(size_t size,
return NULL; return NULL;
} }
struct kmem_cache *__kmem_cache_create(const char *name, size_t size, struct kmem_cache *__kmem_cache_alias(const char *name, size_t size,
size_t align, unsigned long flags, void (*ctor)(void *)) size_t align, unsigned long flags, void (*ctor)(void *))
{ {
struct kmem_cache *s; struct kmem_cache *s;
char *n;
s = find_mergeable(size, align, flags, name, ctor); s = find_mergeable(size, align, flags, name, ctor);
if (s) { if (s) {
@ -3966,36 +3949,29 @@ struct kmem_cache *__kmem_cache_create(const char *name, size_t size,
if (sysfs_slab_alias(s, name)) { if (sysfs_slab_alias(s, name)) {
s->refcount--; s->refcount--;
return NULL; s = NULL;
} }
return s;
} }
n = kstrdup(name, GFP_KERNEL); return s;
if (!n) }
return NULL;
s = kmalloc(kmem_size, GFP_KERNEL); int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
if (s) { {
if (kmem_cache_open(s, n, int err;
size, align, flags, ctor)) {
int r;
list_add(&s->list, &slab_caches); err = kmem_cache_open(s, flags);
mutex_unlock(&slab_mutex); if (err)
r = sysfs_slab_add(s); return err;
mutex_lock(&slab_mutex);
if (!r) mutex_unlock(&slab_mutex);
return s; err = sysfs_slab_add(s);
mutex_lock(&slab_mutex);
list_del(&s->list); if (err)
kmem_cache_close(s); kmem_cache_close(s);
}
kfree(s); return err;
}
kfree(n);
return NULL;
} }
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
@ -5225,14 +5201,6 @@ static ssize_t slab_attr_store(struct kobject *kobj,
return err; return err;
} }
static void kmem_cache_release(struct kobject *kobj)
{
struct kmem_cache *s = to_slab(kobj);
kfree(s->name);
kfree(s);
}
static const struct sysfs_ops slab_sysfs_ops = { static const struct sysfs_ops slab_sysfs_ops = {
.show = slab_attr_show, .show = slab_attr_show,
.store = slab_attr_store, .store = slab_attr_store,
@ -5240,7 +5208,6 @@ static const struct sysfs_ops slab_sysfs_ops = {
static struct kobj_type slab_ktype = { static struct kobj_type slab_ktype = {
.sysfs_ops = &slab_sysfs_ops, .sysfs_ops = &slab_sysfs_ops,
.release = kmem_cache_release
}; };
static int uevent_filter(struct kset *kset, struct kobject *kobj) static int uevent_filter(struct kset *kset, struct kobject *kobj)