[media] dib0070: Fix indenting

The indentation on this driver were deadly broken. On lots
of places, it was using 4 spaces instead of tab to indent.
On other parts, it were using tabs.

Also, on several places, it were not even being properly aligned,
as reported by smatch:
	drivers/media/dvb-frontends/dib0070.c:179 dib0070_set_bandwidth() warn: inconsistent indenting
	drivers/media/dvb-frontends/dib0070.c:198 dib0070_captrim() warn: inconsistent indenting
	drivers/media/dvb-frontends/dib0070.c:246 dib0070_set_ctrl_lo5() warn: inconsistent indenting
	drivers/media/dvb-frontends/dib0070.c:260 dib0070_ctrl_agc_filter() warn: inconsistent indenting
	drivers/media/dvb-frontends/dib0070.c:494 dib0070_tune_digital() warn: inconsistent indenting
	drivers/media/dvb-frontends/dib0070.c:498 dib0070_tune_digital() warn: inconsistent indenting
	drivers/media/dvb-frontends/dib0070.c:655 dib0070_reset() warn: inconsistent indenting
	drivers/media/dvb-frontends/dib0070.c:711 dib0070_reset() warn: curly braces intended?
	drivers/media/dvb-frontends/dib0070.c:713 dib0070_reset() warn: inconsistent indenting

My first idea were to leave it as-is or to just touch the above.

However, this won't be fixing anything. So, as painful as it
is, let's fix indentation globally on the driver, and then
address the inconsistencies.

Hopefully, this driver doesn't have much patches, so it likely
won't conflict to any other patch during this merge window.

Besides the big size of this patch, no functional changes
were done.

Signed-off-by: Mauro Carvalho Chehab <mchehab@osg.samsung.com>
This commit is contained in:
Mauro Carvalho Chehab 2015-04-29 12:23:49 -03:00
parent f9e2e0e8ba
commit f3f8ef2274
1 changed files with 281 additions and 282 deletions

View File

@ -58,10 +58,10 @@ struct dib0070_state {
u16 wbd_ff_offset; u16 wbd_ff_offset;
u8 revision; u8 revision;
enum frontend_tune_state tune_state; enum frontend_tune_state tune_state;
u32 current_rf; u32 current_rf;
/* for the captrim binary search */ /* for the captrim binary search */
s8 step; s8 step;
u16 adc_diff; u16 adc_diff;
@ -72,7 +72,7 @@ struct dib0070_state {
const struct dib0070_tuning *current_tune_table_index; const struct dib0070_tuning *current_tune_table_index;
const struct dib0070_lna_match *lna_match; const struct dib0070_lna_match *lna_match;
u8 wbd_gain_current; u8 wbd_gain_current;
u16 wbd_offset_3_3[2]; u16 wbd_offset_3_3[2];
/* for the I2C transfer */ /* for the I2C transfer */
@ -151,31 +151,31 @@ static int dib0070_write_reg(struct dib0070_state *state, u8 reg, u16 val)
} while (0) } while (0)
static int dib0070_set_bandwidth(struct dvb_frontend *fe) static int dib0070_set_bandwidth(struct dvb_frontend *fe)
{ {
struct dib0070_state *state = fe->tuner_priv; struct dib0070_state *state = fe->tuner_priv;
u16 tmp = dib0070_read_reg(state, 0x02) & 0x3fff; u16 tmp = dib0070_read_reg(state, 0x02) & 0x3fff;
if (state->fe->dtv_property_cache.bandwidth_hz/1000 > 7000) if (state->fe->dtv_property_cache.bandwidth_hz/1000 > 7000)
tmp |= (0 << 14); tmp |= (0 << 14);
else if (state->fe->dtv_property_cache.bandwidth_hz/1000 > 6000) else if (state->fe->dtv_property_cache.bandwidth_hz/1000 > 6000)
tmp |= (1 << 14); tmp |= (1 << 14);
else if (state->fe->dtv_property_cache.bandwidth_hz/1000 > 5000) else if (state->fe->dtv_property_cache.bandwidth_hz/1000 > 5000)
tmp |= (2 << 14); tmp |= (2 << 14);
else else
tmp |= (3 << 14); tmp |= (3 << 14);
dib0070_write_reg(state, 0x02, tmp); dib0070_write_reg(state, 0x02, tmp);
/* sharpen the BB filter in ISDB-T to have higher immunity to adjacent channels */ /* sharpen the BB filter in ISDB-T to have higher immunity to adjacent channels */
if (state->fe->dtv_property_cache.delivery_system == SYS_ISDBT) { if (state->fe->dtv_property_cache.delivery_system == SYS_ISDBT) {
u16 value = dib0070_read_reg(state, 0x17); u16 value = dib0070_read_reg(state, 0x17);
dib0070_write_reg(state, 0x17, value & 0xfffc); dib0070_write_reg(state, 0x17, value & 0xfffc);
tmp = dib0070_read_reg(state, 0x01) & 0x01ff; tmp = dib0070_read_reg(state, 0x01) & 0x01ff;
dib0070_write_reg(state, 0x01, tmp | (60 << 9)); dib0070_write_reg(state, 0x01, tmp | (60 << 9));
dib0070_write_reg(state, 0x17, value); dib0070_write_reg(state, 0x17, value);
} }
return 0; return 0;
} }
@ -186,7 +186,6 @@ static int dib0070_captrim(struct dib0070_state *state, enum frontend_tune_state
int ret = 0; int ret = 0;
if (*tune_state == CT_TUNER_STEP_0) { if (*tune_state == CT_TUNER_STEP_0) {
dib0070_write_reg(state, 0x0f, 0xed10); dib0070_write_reg(state, 0x0f, 0xed10);
dib0070_write_reg(state, 0x17, 0x0034); dib0070_write_reg(state, 0x17, 0x0034);
@ -195,7 +194,7 @@ static int dib0070_captrim(struct dib0070_state *state, enum frontend_tune_state
state->adc_diff = 3000; state->adc_diff = 3000;
ret = 20; ret = 20;
*tune_state = CT_TUNER_STEP_1; *tune_state = CT_TUNER_STEP_1;
} else if (*tune_state == CT_TUNER_STEP_1) { } else if (*tune_state == CT_TUNER_STEP_1) {
state->step /= 2; state->step /= 2;
dib0070_write_reg(state, 0x14, state->lo4 | state->captrim); dib0070_write_reg(state, 0x14, state->lo4 | state->captrim);
@ -220,9 +219,6 @@ static int dib0070_captrim(struct dib0070_state *state, enum frontend_tune_state
dprintk("CAPTRIM=%hd is closer to target (%hd/%hd)", state->captrim, adc, state->adc_diff); dprintk("CAPTRIM=%hd is closer to target (%hd/%hd)", state->captrim, adc, state->adc_diff);
state->adc_diff = adc; state->adc_diff = adc;
state->fcaptrim = state->captrim; state->fcaptrim = state->captrim;
} }
state->captrim += (step_sign * state->step); state->captrim += (step_sign * state->step);
@ -243,7 +239,8 @@ static int dib0070_captrim(struct dib0070_state *state, enum frontend_tune_state
static int dib0070_set_ctrl_lo5(struct dvb_frontend *fe, u8 vco_bias_trim, u8 hf_div_trim, u8 cp_current, u8 third_order_filt) static int dib0070_set_ctrl_lo5(struct dvb_frontend *fe, u8 vco_bias_trim, u8 hf_div_trim, u8 cp_current, u8 third_order_filt)
{ {
struct dib0070_state *state = fe->tuner_priv; struct dib0070_state *state = fe->tuner_priv;
u16 lo5 = (third_order_filt << 14) | (0 << 13) | (1 << 12) | (3 << 9) | (cp_current << 6) | (hf_div_trim << 3) | (vco_bias_trim << 0); u16 lo5 = (third_order_filt << 14) | (0 << 13) | (1 << 12) | (3 << 9) | (cp_current << 6) | (hf_div_trim << 3) | (vco_bias_trim << 0);
dprintk("CTRL_LO5: 0x%x", lo5); dprintk("CTRL_LO5: 0x%x", lo5);
return dib0070_write_reg(state, 0x15, lo5); return dib0070_write_reg(state, 0x15, lo5);
} }
@ -257,281 +254,282 @@ void dib0070_ctrl_agc_filter(struct dvb_frontend *fe, u8 open)
dib0070_write_reg(state, 0x1a, 0x0000); dib0070_write_reg(state, 0x1a, 0x0000);
} else { } else {
dib0070_write_reg(state, 0x1b, 0x4112); dib0070_write_reg(state, 0x1b, 0x4112);
if (state->cfg->vga_filter != 0) { if (state->cfg->vga_filter != 0) {
dib0070_write_reg(state, 0x1a, state->cfg->vga_filter); dib0070_write_reg(state, 0x1a, state->cfg->vga_filter);
dprintk("vga filter register is set to %x", state->cfg->vga_filter); dprintk("vga filter register is set to %x", state->cfg->vga_filter);
} else } else
dib0070_write_reg(state, 0x1a, 0x0009); dib0070_write_reg(state, 0x1a, 0x0009);
} }
} }
EXPORT_SYMBOL(dib0070_ctrl_agc_filter); EXPORT_SYMBOL(dib0070_ctrl_agc_filter);
struct dib0070_tuning { struct dib0070_tuning {
u32 max_freq; /* for every frequency less than or equal to that field: this information is correct */ u32 max_freq; /* for every frequency less than or equal to that field: this information is correct */
u8 switch_trim; u8 switch_trim;
u8 vco_band; u8 vco_band;
u8 hfdiv; u8 hfdiv;
u8 vco_multi; u8 vco_multi;
u8 presc; u8 presc;
u8 wbdmux; u8 wbdmux;
u16 tuner_enable; u16 tuner_enable;
}; };
struct dib0070_lna_match { struct dib0070_lna_match {
u32 max_freq; /* for every frequency less than or equal to that field: this information is correct */ u32 max_freq; /* for every frequency less than or equal to that field: this information is correct */
u8 lna_band; u8 lna_band;
}; };
static const struct dib0070_tuning dib0070s_tuning_table[] = { static const struct dib0070_tuning dib0070s_tuning_table[] = {
{ 570000, 2, 1, 3, 6, 6, 2, 0x4000 | 0x0800 }, /* UHF */ { 570000, 2, 1, 3, 6, 6, 2, 0x4000 | 0x0800 }, /* UHF */
{ 700000, 2, 0, 2, 4, 2, 2, 0x4000 | 0x0800 }, { 700000, 2, 0, 2, 4, 2, 2, 0x4000 | 0x0800 },
{ 863999, 2, 1, 2, 4, 2, 2, 0x4000 | 0x0800 }, { 863999, 2, 1, 2, 4, 2, 2, 0x4000 | 0x0800 },
{ 1500000, 0, 1, 1, 2, 2, 4, 0x2000 | 0x0400 }, /* LBAND */ { 1500000, 0, 1, 1, 2, 2, 4, 0x2000 | 0x0400 }, /* LBAND */
{ 1600000, 0, 1, 1, 2, 2, 4, 0x2000 | 0x0400 }, { 1600000, 0, 1, 1, 2, 2, 4, 0x2000 | 0x0400 },
{ 2000000, 0, 1, 1, 2, 2, 4, 0x2000 | 0x0400 }, { 2000000, 0, 1, 1, 2, 2, 4, 0x2000 | 0x0400 },
{ 0xffffffff, 0, 0, 8, 1, 2, 1, 0x8000 | 0x1000 }, /* SBAND */ { 0xffffffff, 0, 0, 8, 1, 2, 1, 0x8000 | 0x1000 }, /* SBAND */
}; };
static const struct dib0070_tuning dib0070_tuning_table[] = { static const struct dib0070_tuning dib0070_tuning_table[] = {
{ 115000, 1, 0, 7, 24, 2, 1, 0x8000 | 0x1000 }, /* FM below 92MHz cannot be tuned */ { 115000, 1, 0, 7, 24, 2, 1, 0x8000 | 0x1000 }, /* FM below 92MHz cannot be tuned */
{ 179500, 1, 0, 3, 16, 2, 1, 0x8000 | 0x1000 }, /* VHF */ { 179500, 1, 0, 3, 16, 2, 1, 0x8000 | 0x1000 }, /* VHF */
{ 189999, 1, 1, 3, 16, 2, 1, 0x8000 | 0x1000 }, { 189999, 1, 1, 3, 16, 2, 1, 0x8000 | 0x1000 },
{ 250000, 1, 0, 6, 12, 2, 1, 0x8000 | 0x1000 }, { 250000, 1, 0, 6, 12, 2, 1, 0x8000 | 0x1000 },
{ 569999, 2, 1, 5, 6, 2, 2, 0x4000 | 0x0800 }, /* UHF */ { 569999, 2, 1, 5, 6, 2, 2, 0x4000 | 0x0800 }, /* UHF */
{ 699999, 2, 0, 1, 4, 2, 2, 0x4000 | 0x0800 }, { 699999, 2, 0, 1, 4, 2, 2, 0x4000 | 0x0800 },
{ 863999, 2, 1, 1, 4, 2, 2, 0x4000 | 0x0800 }, { 863999, 2, 1, 1, 4, 2, 2, 0x4000 | 0x0800 },
{ 0xffffffff, 0, 1, 0, 2, 2, 4, 0x2000 | 0x0400 }, /* LBAND or everything higher than UHF */ { 0xffffffff, 0, 1, 0, 2, 2, 4, 0x2000 | 0x0400 }, /* LBAND or everything higher than UHF */
}; };
static const struct dib0070_lna_match dib0070_lna_flip_chip[] = { static const struct dib0070_lna_match dib0070_lna_flip_chip[] = {
{ 180000, 0 }, /* VHF */ { 180000, 0 }, /* VHF */
{ 188000, 1 }, { 188000, 1 },
{ 196400, 2 }, { 196400, 2 },
{ 250000, 3 }, { 250000, 3 },
{ 550000, 0 }, /* UHF */ { 550000, 0 }, /* UHF */
{ 590000, 1 }, { 590000, 1 },
{ 666000, 3 }, { 666000, 3 },
{ 864000, 5 }, { 864000, 5 },
{ 1500000, 0 }, /* LBAND or everything higher than UHF */ { 1500000, 0 }, /* LBAND or everything higher than UHF */
{ 1600000, 1 }, { 1600000, 1 },
{ 2000000, 3 }, { 2000000, 3 },
{ 0xffffffff, 7 }, { 0xffffffff, 7 },
}; };
static const struct dib0070_lna_match dib0070_lna[] = { static const struct dib0070_lna_match dib0070_lna[] = {
{ 180000, 0 }, /* VHF */ { 180000, 0 }, /* VHF */
{ 188000, 1 }, { 188000, 1 },
{ 196400, 2 }, { 196400, 2 },
{ 250000, 3 }, { 250000, 3 },
{ 550000, 2 }, /* UHF */ { 550000, 2 }, /* UHF */
{ 650000, 3 }, { 650000, 3 },
{ 750000, 5 }, { 750000, 5 },
{ 850000, 6 }, { 850000, 6 },
{ 864000, 7 }, { 864000, 7 },
{ 1500000, 0 }, /* LBAND or everything higher than UHF */ { 1500000, 0 }, /* LBAND or everything higher than UHF */
{ 1600000, 1 }, { 1600000, 1 },
{ 2000000, 3 }, { 2000000, 3 },
{ 0xffffffff, 7 }, { 0xffffffff, 7 },
}; };
#define LPF 100 #define LPF 100
static int dib0070_tune_digital(struct dvb_frontend *fe) static int dib0070_tune_digital(struct dvb_frontend *fe)
{ {
struct dib0070_state *state = fe->tuner_priv; struct dib0070_state *state = fe->tuner_priv;
const struct dib0070_tuning *tune; const struct dib0070_tuning *tune;
const struct dib0070_lna_match *lna_match; const struct dib0070_lna_match *lna_match;
enum frontend_tune_state *tune_state = &state->tune_state; enum frontend_tune_state *tune_state = &state->tune_state;
int ret = 10; /* 1ms is the default delay most of the time */ int ret = 10; /* 1ms is the default delay most of the time */
u8 band = (u8)BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency/1000); u8 band = (u8)BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency/1000);
u32 freq = fe->dtv_property_cache.frequency/1000 + (band == BAND_VHF ? state->cfg->freq_offset_khz_vhf : state->cfg->freq_offset_khz_uhf); u32 freq = fe->dtv_property_cache.frequency/1000 + (band == BAND_VHF ? state->cfg->freq_offset_khz_vhf : state->cfg->freq_offset_khz_uhf);
#ifdef CONFIG_SYS_ISDBT #ifdef CONFIG_SYS_ISDBT
if (state->fe->dtv_property_cache.delivery_system == SYS_ISDBT && state->fe->dtv_property_cache.isdbt_sb_mode == 1) if (state->fe->dtv_property_cache.delivery_system == SYS_ISDBT && state->fe->dtv_property_cache.isdbt_sb_mode == 1)
if (((state->fe->dtv_property_cache.isdbt_sb_segment_count % 2) if (((state->fe->dtv_property_cache.isdbt_sb_segment_count % 2)
&& (state->fe->dtv_property_cache.isdbt_sb_segment_idx == ((state->fe->dtv_property_cache.isdbt_sb_segment_count / 2) + 1))) && (state->fe->dtv_property_cache.isdbt_sb_segment_idx == ((state->fe->dtv_property_cache.isdbt_sb_segment_count / 2) + 1)))
|| (((state->fe->dtv_property_cache.isdbt_sb_segment_count % 2) == 0) || (((state->fe->dtv_property_cache.isdbt_sb_segment_count % 2) == 0)
&& (state->fe->dtv_property_cache.isdbt_sb_segment_idx == (state->fe->dtv_property_cache.isdbt_sb_segment_count / 2))) && (state->fe->dtv_property_cache.isdbt_sb_segment_idx == (state->fe->dtv_property_cache.isdbt_sb_segment_count / 2)))
|| (((state->fe->dtv_property_cache.isdbt_sb_segment_count % 2) == 0) || (((state->fe->dtv_property_cache.isdbt_sb_segment_count % 2) == 0)
&& (state->fe->dtv_property_cache.isdbt_sb_segment_idx == ((state->fe->dtv_property_cache.isdbt_sb_segment_count / 2) + 1)))) && (state->fe->dtv_property_cache.isdbt_sb_segment_idx == ((state->fe->dtv_property_cache.isdbt_sb_segment_count / 2) + 1))))
freq += 850; freq += 850;
#endif #endif
if (state->current_rf != freq) {
switch (state->revision) {
case DIB0070S_P1A:
tune = dib0070s_tuning_table;
lna_match = dib0070_lna;
break;
default:
tune = dib0070_tuning_table;
if (state->cfg->flip_chip)
lna_match = dib0070_lna_flip_chip;
else
lna_match = dib0070_lna;
break;
}
while (freq > tune->max_freq) /* find the right one */
tune++;
while (freq > lna_match->max_freq) /* find the right one */
lna_match++;
state->current_tune_table_index = tune;
state->lna_match = lna_match;
}
if (*tune_state == CT_TUNER_START) {
dprintk("Tuning for Band: %hd (%d kHz)", band, freq);
if (state->current_rf != freq) { if (state->current_rf != freq) {
u8 REFDIV;
u32 FBDiv, Rest, FREF, VCOF_kHz;
u8 Den;
state->current_rf = freq;
state->lo4 = (state->current_tune_table_index->vco_band << 11) | (state->current_tune_table_index->hfdiv << 7);
dib0070_write_reg(state, 0x17, 0x30);
VCOF_kHz = state->current_tune_table_index->vco_multi * freq * 2;
switch (band) {
case BAND_VHF:
REFDIV = (u8) ((state->cfg->clock_khz + 9999) / 10000);
break;
case BAND_FM:
REFDIV = (u8) ((state->cfg->clock_khz) / 1000);
break;
default:
REFDIV = (u8) (state->cfg->clock_khz / 10000);
break;
}
FREF = state->cfg->clock_khz / REFDIV;
switch (state->revision) { switch (state->revision) {
case DIB0070S_P1A: case DIB0070S_P1A:
FBDiv = (VCOF_kHz / state->current_tune_table_index->presc / FREF); tune = dib0070s_tuning_table;
Rest = (VCOF_kHz / state->current_tune_table_index->presc) - FBDiv * FREF; lna_match = dib0070_lna;
break; break;
case DIB0070_P1G:
case DIB0070_P1F:
default: default:
FBDiv = (freq / (FREF / 2)); tune = dib0070_tuning_table;
Rest = 2 * freq - FBDiv * FREF; if (state->cfg->flip_chip)
break; lna_match = dib0070_lna_flip_chip;
else
lna_match = dib0070_lna;
break;
} }
while (freq > tune->max_freq) /* find the right one */
tune++;
while (freq > lna_match->max_freq) /* find the right one */
lna_match++;
if (Rest < LPF) state->current_tune_table_index = tune;
Rest = 0; state->lna_match = lna_match;
else if (Rest < 2 * LPF)
Rest = 2 * LPF;
else if (Rest > (FREF - LPF)) {
Rest = 0;
FBDiv += 1;
} else if (Rest > (FREF - 2 * LPF))
Rest = FREF - 2 * LPF;
Rest = (Rest * 6528) / (FREF / 10);
Den = 1;
if (Rest > 0) {
state->lo4 |= (1 << 14) | (1 << 12);
Den = 255;
}
dib0070_write_reg(state, 0x11, (u16)FBDiv);
dib0070_write_reg(state, 0x12, (Den << 8) | REFDIV);
dib0070_write_reg(state, 0x13, (u16) Rest);
if (state->revision == DIB0070S_P1A) {
if (band == BAND_SBAND) {
dib0070_set_ctrl_lo5(fe, 2, 4, 3, 0);
dib0070_write_reg(state, 0x1d, 0xFFFF);
} else
dib0070_set_ctrl_lo5(fe, 5, 4, 3, 1);
}
dib0070_write_reg(state, 0x20,
0x0040 | 0x0020 | 0x0010 | 0x0008 | 0x0002 | 0x0001 | state->current_tune_table_index->tuner_enable);
dprintk("REFDIV: %hd, FREF: %d", REFDIV, FREF);
dprintk("FBDIV: %d, Rest: %d", FBDiv, Rest);
dprintk("Num: %hd, Den: %hd, SD: %hd", (u16) Rest, Den, (state->lo4 >> 12) & 0x1);
dprintk("HFDIV code: %hd", state->current_tune_table_index->hfdiv);
dprintk("VCO = %hd", state->current_tune_table_index->vco_band);
dprintk("VCOF: ((%hd*%d) << 1))", state->current_tune_table_index->vco_multi, freq);
*tune_state = CT_TUNER_STEP_0;
} else { /* we are already tuned to this frequency - the configuration is correct */
ret = 50; /* wakeup time */
*tune_state = CT_TUNER_STEP_5;
} }
} else if ((*tune_state > CT_TUNER_START) && (*tune_state < CT_TUNER_STEP_4)) {
ret = dib0070_captrim(state, tune_state); if (*tune_state == CT_TUNER_START) {
dprintk("Tuning for Band: %hd (%d kHz)", band, freq);
if (state->current_rf != freq) {
u8 REFDIV;
u32 FBDiv, Rest, FREF, VCOF_kHz;
u8 Den;
} else if (*tune_state == CT_TUNER_STEP_4) { state->current_rf = freq;
const struct dib0070_wbd_gain_cfg *tmp = state->cfg->wbd_gain; state->lo4 = (state->current_tune_table_index->vco_band << 11) | (state->current_tune_table_index->hfdiv << 7);
if (tmp != NULL) {
while (freq/1000 > tmp->freq) /* find the right one */
tmp++; dib0070_write_reg(state, 0x17, 0x30);
dib0070_write_reg(state, 0x0f,
(0 << 15) | (1 << 14) | (3 << 12)
| (tmp->wbd_gain_val << 9) | (0 << 8) | (1 << 7) VCOF_kHz = state->current_tune_table_index->vco_multi * freq * 2;
| (state->current_tune_table_index->wbdmux << 0));
state->wbd_gain_current = tmp->wbd_gain_val; switch (band) {
} else { case BAND_VHF:
REFDIV = (u8) ((state->cfg->clock_khz + 9999) / 10000);
break;
case BAND_FM:
REFDIV = (u8) ((state->cfg->clock_khz) / 1000);
break;
default:
REFDIV = (u8) (state->cfg->clock_khz / 10000);
break;
}
FREF = state->cfg->clock_khz / REFDIV;
switch (state->revision) {
case DIB0070S_P1A:
FBDiv = (VCOF_kHz / state->current_tune_table_index->presc / FREF);
Rest = (VCOF_kHz / state->current_tune_table_index->presc) - FBDiv * FREF;
break;
case DIB0070_P1G:
case DIB0070_P1F:
default:
FBDiv = (freq / (FREF / 2));
Rest = 2 * freq - FBDiv * FREF;
break;
}
if (Rest < LPF)
Rest = 0;
else if (Rest < 2 * LPF)
Rest = 2 * LPF;
else if (Rest > (FREF - LPF)) {
Rest = 0;
FBDiv += 1;
} else if (Rest > (FREF - 2 * LPF))
Rest = FREF - 2 * LPF;
Rest = (Rest * 6528) / (FREF / 10);
Den = 1;
if (Rest > 0) {
state->lo4 |= (1 << 14) | (1 << 12);
Den = 255;
}
dib0070_write_reg(state, 0x11, (u16)FBDiv);
dib0070_write_reg(state, 0x12, (Den << 8) | REFDIV);
dib0070_write_reg(state, 0x13, (u16) Rest);
if (state->revision == DIB0070S_P1A) {
if (band == BAND_SBAND) {
dib0070_set_ctrl_lo5(fe, 2, 4, 3, 0);
dib0070_write_reg(state, 0x1d, 0xFFFF);
} else
dib0070_set_ctrl_lo5(fe, 5, 4, 3, 1);
}
dib0070_write_reg(state, 0x20,
0x0040 | 0x0020 | 0x0010 | 0x0008 | 0x0002 | 0x0001 | state->current_tune_table_index->tuner_enable);
dprintk("REFDIV: %hd, FREF: %d", REFDIV, FREF);
dprintk("FBDIV: %d, Rest: %d", FBDiv, Rest);
dprintk("Num: %hd, Den: %hd, SD: %hd", (u16) Rest, Den, (state->lo4 >> 12) & 0x1);
dprintk("HFDIV code: %hd", state->current_tune_table_index->hfdiv);
dprintk("VCO = %hd", state->current_tune_table_index->vco_band);
dprintk("VCOF: ((%hd*%d) << 1))", state->current_tune_table_index->vco_multi, freq);
*tune_state = CT_TUNER_STEP_0;
} else { /* we are already tuned to this frequency - the configuration is correct */
ret = 50; /* wakeup time */
*tune_state = CT_TUNER_STEP_5;
}
} else if ((*tune_state > CT_TUNER_START) && (*tune_state < CT_TUNER_STEP_4)) {
ret = dib0070_captrim(state, tune_state);
} else if (*tune_state == CT_TUNER_STEP_4) {
const struct dib0070_wbd_gain_cfg *tmp = state->cfg->wbd_gain;
if (tmp != NULL) {
while (freq/1000 > tmp->freq) /* find the right one */
tmp++;
dib0070_write_reg(state, 0x0f, dib0070_write_reg(state, 0x0f,
(0 << 15) | (1 << 14) | (3 << 12) | (6 << 9) | (0 << 8) | (1 << 7) | (state->current_tune_table_index-> (0 << 15) | (1 << 14) | (3 << 12)
wbdmux << 0)); | (tmp->wbd_gain_val << 9) | (0 << 8) | (1 << 7)
state->wbd_gain_current = 6; | (state->current_tune_table_index->wbdmux << 0));
} state->wbd_gain_current = tmp->wbd_gain_val;
} else {
dib0070_write_reg(state, 0x0f,
(0 << 15) | (1 << 14) | (3 << 12)
| (6 << 9) | (0 << 8) | (1 << 7)
| (state->current_tune_table_index->wbdmux << 0));
state->wbd_gain_current = 6;
}
dib0070_write_reg(state, 0x06, 0x3fff); dib0070_write_reg(state, 0x06, 0x3fff);
dib0070_write_reg(state, 0x07, dib0070_write_reg(state, 0x07,
(state->current_tune_table_index->switch_trim << 11) | (7 << 8) | (state->lna_match->lna_band << 3) | (3 << 0)); (state->current_tune_table_index->switch_trim << 11) | (7 << 8) | (state->lna_match->lna_band << 3) | (3 << 0));
dib0070_write_reg(state, 0x08, (state->lna_match->lna_band << 10) | (3 << 7) | (127)); dib0070_write_reg(state, 0x08, (state->lna_match->lna_band << 10) | (3 << 7) | (127));
dib0070_write_reg(state, 0x0d, 0x0d80); dib0070_write_reg(state, 0x0d, 0x0d80);
dib0070_write_reg(state, 0x18, 0x07ff); dib0070_write_reg(state, 0x18, 0x07ff);
dib0070_write_reg(state, 0x17, 0x0033); dib0070_write_reg(state, 0x17, 0x0033);
*tune_state = CT_TUNER_STEP_5; *tune_state = CT_TUNER_STEP_5;
} else if (*tune_state == CT_TUNER_STEP_5) { } else if (*tune_state == CT_TUNER_STEP_5) {
dib0070_set_bandwidth(fe); dib0070_set_bandwidth(fe);
*tune_state = CT_TUNER_STOP; *tune_state = CT_TUNER_STOP;
} else { } else {
ret = FE_CALLBACK_TIME_NEVER; /* tuner finished, time to call again infinite */ ret = FE_CALLBACK_TIME_NEVER; /* tuner finished, time to call again infinite */
} }
return ret; return ret;
} }
static int dib0070_tune(struct dvb_frontend *fe) static int dib0070_tune(struct dvb_frontend *fe)
{ {
struct dib0070_state *state = fe->tuner_priv; struct dib0070_state *state = fe->tuner_priv;
uint32_t ret; uint32_t ret;
state->tune_state = CT_TUNER_START; state->tune_state = CT_TUNER_START;
do { do {
ret = dib0070_tune_digital(fe); ret = dib0070_tune_digital(fe);
if (ret != FE_CALLBACK_TIME_NEVER) if (ret != FE_CALLBACK_TIME_NEVER)
msleep(ret/10); msleep(ret/10);
else else
break; break;
} while (state->tune_state != CT_TUNER_STOP); } while (state->tune_state != CT_TUNER_STOP);
return 0; return 0;
} }
static int dib0070_wakeup(struct dvb_frontend *fe) static int dib0070_wakeup(struct dvb_frontend *fe)
@ -610,48 +608,48 @@ static const u16 dib0070_p1f_defaults[] =
static u16 dib0070_read_wbd_offset(struct dib0070_state *state, u8 gain) static u16 dib0070_read_wbd_offset(struct dib0070_state *state, u8 gain)
{ {
u16 tuner_en = dib0070_read_reg(state, 0x20); u16 tuner_en = dib0070_read_reg(state, 0x20);
u16 offset; u16 offset;
dib0070_write_reg(state, 0x18, 0x07ff); dib0070_write_reg(state, 0x18, 0x07ff);
dib0070_write_reg(state, 0x20, 0x0800 | 0x4000 | 0x0040 | 0x0020 | 0x0010 | 0x0008 | 0x0002 | 0x0001); dib0070_write_reg(state, 0x20, 0x0800 | 0x4000 | 0x0040 | 0x0020 | 0x0010 | 0x0008 | 0x0002 | 0x0001);
dib0070_write_reg(state, 0x0f, (1 << 14) | (2 << 12) | (gain << 9) | (1 << 8) | (1 << 7) | (0 << 0)); dib0070_write_reg(state, 0x0f, (1 << 14) | (2 << 12) | (gain << 9) | (1 << 8) | (1 << 7) | (0 << 0));
msleep(9); msleep(9);
offset = dib0070_read_reg(state, 0x19); offset = dib0070_read_reg(state, 0x19);
dib0070_write_reg(state, 0x20, tuner_en); dib0070_write_reg(state, 0x20, tuner_en);
return offset; return offset;
} }
static void dib0070_wbd_offset_calibration(struct dib0070_state *state) static void dib0070_wbd_offset_calibration(struct dib0070_state *state)
{ {
u8 gain; u8 gain;
for (gain = 6; gain < 8; gain++) { for (gain = 6; gain < 8; gain++) {
state->wbd_offset_3_3[gain - 6] = ((dib0070_read_wbd_offset(state, gain) * 8 * 18 / 33 + 1) / 2); state->wbd_offset_3_3[gain - 6] = ((dib0070_read_wbd_offset(state, gain) * 8 * 18 / 33 + 1) / 2);
dprintk("Gain: %d, WBDOffset (3.3V) = %hd", gain, state->wbd_offset_3_3[gain-6]); dprintk("Gain: %d, WBDOffset (3.3V) = %hd", gain, state->wbd_offset_3_3[gain-6]);
} }
} }
u16 dib0070_wbd_offset(struct dvb_frontend *fe) u16 dib0070_wbd_offset(struct dvb_frontend *fe)
{ {
struct dib0070_state *state = fe->tuner_priv; struct dib0070_state *state = fe->tuner_priv;
const struct dib0070_wbd_gain_cfg *tmp = state->cfg->wbd_gain; const struct dib0070_wbd_gain_cfg *tmp = state->cfg->wbd_gain;
u32 freq = fe->dtv_property_cache.frequency/1000; u32 freq = fe->dtv_property_cache.frequency/1000;
if (tmp != NULL) { if (tmp != NULL) {
while (freq/1000 > tmp->freq) /* find the right one */ while (freq/1000 > tmp->freq) /* find the right one */
tmp++; tmp++;
state->wbd_gain_current = tmp->wbd_gain_val; state->wbd_gain_current = tmp->wbd_gain_val;
} else } else
state->wbd_gain_current = 6; state->wbd_gain_current = 6;
return state->wbd_offset_3_3[state->wbd_gain_current - 6]; return state->wbd_offset_3_3[state->wbd_gain_current - 6];
} }
EXPORT_SYMBOL(dib0070_wbd_offset); EXPORT_SYMBOL(dib0070_wbd_offset);
#define pgm_read_word(w) (*w) #define pgm_read_word(w) (*w)
static int dib0070_reset(struct dvb_frontend *fe) static int dib0070_reset(struct dvb_frontend *fe)
{ {
struct dib0070_state *state = fe->tuner_priv; struct dib0070_state *state = fe->tuner_priv;
u16 l, r, *n; u16 l, r, *n;
HARD_RESET(state); HARD_RESET(state);
@ -664,7 +662,7 @@ static int dib0070_reset(struct dvb_frontend *fe)
#else #else
#warning forcing SBAND #warning forcing SBAND
#endif #endif
state->revision = DIB0070S_P1A; state->revision = DIB0070S_P1A;
/* P1F or not */ /* P1F or not */
dprintk("Revision: %x", state->revision); dprintk("Revision: %x", state->revision);
@ -703,24 +701,25 @@ static int dib0070_reset(struct dvb_frontend *fe)
dib0070_write_reg(state, 0x02, r | (1 << 5)); dib0070_write_reg(state, 0x02, r | (1 << 5));
} }
if (state->revision == DIB0070S_P1A) if (state->revision == DIB0070S_P1A)
dib0070_set_ctrl_lo5(fe, 2, 4, 3, 0); dib0070_set_ctrl_lo5(fe, 2, 4, 3, 0);
else else
dib0070_set_ctrl_lo5(fe, 5, 4, state->cfg->charge_pump, state->cfg->enable_third_order_filter); dib0070_set_ctrl_lo5(fe, 5, 4, state->cfg->charge_pump,
state->cfg->enable_third_order_filter);
dib0070_write_reg(state, 0x01, (54 << 9) | 0xc8); dib0070_write_reg(state, 0x01, (54 << 9) | 0xc8);
dib0070_wbd_offset_calibration(state); dib0070_wbd_offset_calibration(state);
return 0; return 0;
} }
static int dib0070_get_frequency(struct dvb_frontend *fe, u32 *frequency) static int dib0070_get_frequency(struct dvb_frontend *fe, u32 *frequency)
{ {
struct dib0070_state *state = fe->tuner_priv; struct dib0070_state *state = fe->tuner_priv;
*frequency = 1000 * state->current_rf; *frequency = 1000 * state->current_rf;
return 0; return 0;
} }
static int dib0070_release(struct dvb_frontend *fe) static int dib0070_release(struct dvb_frontend *fe)