CRISv32: use generic clockevents
Implement a oneshot-capable clockevents device so we get support for things like hrtimers and NOHZ. Signed-off-by: Rabin Vincent <rabin@rab.in> Signed-off-by: Jesper Nilsson <jespern@axis.com>
This commit is contained in:
parent
16428f943d
commit
ed9fd3ff02
|
@ -55,6 +55,7 @@ config CRIS
|
|||
select IRQ_DOMAIN if ETRAX_ARCH_V32
|
||||
select OF if ETRAX_ARCH_V32
|
||||
select OF_EARLY_FLATTREE if ETRAX_ARCH_V32
|
||||
select GENERIC_CLOCKEVENTS if ETRAX_ARCH_V32
|
||||
|
||||
config HZ
|
||||
int
|
||||
|
|
|
@ -8,6 +8,7 @@
|
|||
#include <linux/timex.h>
|
||||
#include <linux/time.h>
|
||||
#include <linux/clocksource.h>
|
||||
#include <linux/clockchips.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/swap.h>
|
||||
#include <linux/sched.h>
|
||||
|
@ -36,6 +37,8 @@
|
|||
/* Number of 763 counts before watchdog bites */
|
||||
#define ETRAX_WD_CNT ((2*ETRAX_WD_HZ)/HZ + 1)
|
||||
|
||||
#define CRISV32_TIMER_FREQ (100000000lu)
|
||||
|
||||
/* Register the continuos readonly timer available in FS and ARTPEC-3. */
|
||||
static cycle_t read_cont_rotime(struct clocksource *cs)
|
||||
{
|
||||
|
@ -186,81 +189,99 @@ void handle_watchdog_bite(struct pt_regs *regs)
|
|||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
* timer_interrupt() needs to keep up the real-time clock,
|
||||
* as well as call the "xtime_update()" routine every clocktick.
|
||||
*/
|
||||
extern void cris_do_profile(struct pt_regs *regs);
|
||||
extern void cris_profile_sample(struct pt_regs *regs);
|
||||
static void __iomem *timer_base;
|
||||
|
||||
static inline irqreturn_t timer_interrupt(int irq, void *dev_id)
|
||||
static void crisv32_clkevt_mode(enum clock_event_mode mode,
|
||||
struct clock_event_device *dev)
|
||||
{
|
||||
struct pt_regs *regs = get_irq_regs();
|
||||
int cpu = smp_processor_id();
|
||||
reg_timer_r_masked_intr masked_intr;
|
||||
reg_timer_rw_ack_intr ack_intr = { 0 };
|
||||
reg_timer_rw_tmr0_ctrl ctrl = {
|
||||
.op = regk_timer_hold,
|
||||
.freq = regk_timer_f100,
|
||||
};
|
||||
|
||||
/* Check if the timer interrupt is for us (a tmr0 int) */
|
||||
masked_intr = REG_RD(timer, timer_regs[cpu], r_masked_intr);
|
||||
if (!masked_intr.tmr0)
|
||||
REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl);
|
||||
}
|
||||
|
||||
static int crisv32_clkevt_next_event(unsigned long evt,
|
||||
struct clock_event_device *dev)
|
||||
{
|
||||
reg_timer_rw_tmr0_ctrl ctrl = {
|
||||
.op = regk_timer_ld,
|
||||
.freq = regk_timer_f100,
|
||||
};
|
||||
|
||||
REG_WR(timer, timer_base, rw_tmr0_div, evt);
|
||||
REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl);
|
||||
|
||||
ctrl.op = regk_timer_run;
|
||||
REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static irqreturn_t crisv32_timer_interrupt(int irq, void *dev_id)
|
||||
{
|
||||
struct clock_event_device *evt = dev_id;
|
||||
reg_timer_rw_tmr0_ctrl ctrl = {
|
||||
.op = regk_timer_hold,
|
||||
.freq = regk_timer_f100,
|
||||
};
|
||||
reg_timer_rw_ack_intr ack = { .tmr0 = 1 };
|
||||
reg_timer_r_masked_intr intr;
|
||||
|
||||
intr = REG_RD(timer, timer_base, r_masked_intr);
|
||||
if (!intr.tmr0)
|
||||
return IRQ_NONE;
|
||||
|
||||
/* Acknowledge the timer irq. */
|
||||
ack_intr.tmr0 = 1;
|
||||
REG_WR(timer, timer_regs[cpu], rw_ack_intr, ack_intr);
|
||||
REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl);
|
||||
REG_WR(timer, timer_base, rw_ack_intr, ack);
|
||||
|
||||
/* Reset watchdog otherwise it resets us! */
|
||||
reset_watchdog();
|
||||
#ifdef CONFIG_SYSTEM_PROFILER
|
||||
cris_profile_sample(get_irq_regs());
|
||||
#endif
|
||||
|
||||
/* Update statistics. */
|
||||
update_process_times(user_mode(regs));
|
||||
evt->event_handler(evt);
|
||||
|
||||
cris_do_profile(regs); /* Save profiling information */
|
||||
|
||||
/* The master CPU is responsible for the time keeping. */
|
||||
if (cpu != 0)
|
||||
return IRQ_HANDLED;
|
||||
|
||||
/* Call the real timer interrupt handler */
|
||||
xtime_update(1);
|
||||
return IRQ_HANDLED;
|
||||
}
|
||||
|
||||
/* Timer is IRQF_SHARED so drivers can add stuff to the timer irq chain. */
|
||||
static struct irqaction irq_timer = {
|
||||
.handler = timer_interrupt,
|
||||
.flags = IRQF_SHARED,
|
||||
.name = "timer"
|
||||
static struct clock_event_device crisv32_clockevent = {
|
||||
.name = "crisv32-timer",
|
||||
.rating = 300,
|
||||
.features = CLOCK_EVT_FEAT_ONESHOT,
|
||||
.set_mode = crisv32_clkevt_mode,
|
||||
.set_next_event = crisv32_clkevt_next_event,
|
||||
};
|
||||
|
||||
void __init cris_timer_init(void)
|
||||
/* Timer is IRQF_SHARED so drivers can add stuff to the timer irq chain. */
|
||||
static struct irqaction irq_timer = {
|
||||
.handler = crisv32_timer_interrupt,
|
||||
.flags = IRQF_TIMER | IRQF_SHARED,
|
||||
.name = "crisv32-timer",
|
||||
.dev_id = &crisv32_clockevent,
|
||||
};
|
||||
|
||||
static void __init crisv32_timer_init(void)
|
||||
{
|
||||
int cpu = smp_processor_id();
|
||||
reg_timer_rw_tmr0_ctrl tmr0_ctrl = { 0 };
|
||||
reg_timer_rw_tmr0_div tmr0_div = TIMER0_DIV;
|
||||
reg_timer_rw_intr_mask timer_intr_mask;
|
||||
reg_timer_rw_tmr0_ctrl ctrl = {
|
||||
.op = regk_timer_hold,
|
||||
.freq = regk_timer_f100,
|
||||
};
|
||||
|
||||
/* Setup the etrax timers.
|
||||
* Base frequency is 100MHz, divider 1000000 -> 100 HZ
|
||||
* We use timer0, so timer1 is free.
|
||||
* The trig timer is used by the fasttimer API if enabled.
|
||||
*/
|
||||
REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl);
|
||||
|
||||
tmr0_ctrl.op = regk_timer_ld;
|
||||
tmr0_ctrl.freq = regk_timer_f100;
|
||||
REG_WR(timer, timer_regs[cpu], rw_tmr0_div, tmr0_div);
|
||||
REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Load */
|
||||
tmr0_ctrl.op = regk_timer_run;
|
||||
REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Start */
|
||||
|
||||
/* Enable the timer irq. */
|
||||
timer_intr_mask = REG_RD(timer, timer_regs[cpu], rw_intr_mask);
|
||||
timer_intr_mask = REG_RD(timer, timer_base, rw_intr_mask);
|
||||
timer_intr_mask.tmr0 = 1;
|
||||
REG_WR(timer, timer_regs[cpu], rw_intr_mask, timer_intr_mask);
|
||||
REG_WR(timer, timer_base, rw_intr_mask, timer_intr_mask);
|
||||
}
|
||||
|
||||
void __init time_init(void)
|
||||
{
|
||||
reg_intr_vect_rw_mask intr_mask;
|
||||
int irq;
|
||||
int ret;
|
||||
|
||||
/* Probe for the RTC and read it if it exists.
|
||||
* Before the RTC can be probed the loops_per_usec variable needs
|
||||
|
@ -270,17 +291,21 @@ void __init time_init(void)
|
|||
*/
|
||||
loops_per_usec = 50;
|
||||
|
||||
/* Start CPU local timer. */
|
||||
cris_timer_init();
|
||||
irq = TIMER0_INTR_VECT;
|
||||
timer_base = (void __iomem *) regi_timer0;
|
||||
|
||||
/* Enable the timer irq in global config. */
|
||||
intr_mask = REG_RD_VECT(intr_vect, regi_irq, rw_mask, 1);
|
||||
intr_mask.timer0 = 1;
|
||||
REG_WR_VECT(intr_vect, regi_irq, rw_mask, 1, intr_mask);
|
||||
crisv32_timer_init();
|
||||
|
||||
/* Now actually register the timer irq handler that calls
|
||||
* timer_interrupt(). */
|
||||
setup_irq(TIMER0_INTR_VECT, &irq_timer);
|
||||
crisv32_clockevent.cpumask = cpu_possible_mask;
|
||||
crisv32_clockevent.irq = irq;
|
||||
|
||||
ret = setup_irq(irq, &irq_timer);
|
||||
if (ret)
|
||||
pr_warn("failed to setup irq %d\n", irq);
|
||||
|
||||
clockevents_config_and_register(&crisv32_clockevent,
|
||||
CRISV32_TIMER_FREQ,
|
||||
2, 0xffffffff);
|
||||
|
||||
/* Enable watchdog if we should use one. */
|
||||
|
||||
|
|
Loading…
Reference in New Issue