cpufreq: arm_big_little: add in-kernel switching (IKS) support

This patch adds IKS (In Kernel Switcher) support to cpufreq driver.

This creates a combined freq table for A7-A15 CPU pairs. A7 frequencies
are virtualized and scaled down to half the actual frequencies to
approximate a linear scale across the combined A7+A15 range. When the
requested frequency change crosses the A7-A15 boundary a cluster switch
is invoked.

Based on earlier work from Sudeep KarkadaNagesha.

Signed-off-by: Sudeep KarkadaNagesha <sudeep.karkadanagesha@arm.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This commit is contained in:
Viresh Kumar 2013-10-30 15:44:40 -04:00 committed by Rafael J. Wysocki
parent 9e941b6f42
commit e79a23c5b9
2 changed files with 337 additions and 31 deletions

View File

@ -24,27 +24,165 @@
#include <linux/cpufreq.h> #include <linux/cpufreq.h>
#include <linux/cpumask.h> #include <linux/cpumask.h>
#include <linux/export.h> #include <linux/export.h>
#include <linux/mutex.h>
#include <linux/of_platform.h> #include <linux/of_platform.h>
#include <linux/pm_opp.h> #include <linux/pm_opp.h>
#include <linux/slab.h> #include <linux/slab.h>
#include <linux/topology.h> #include <linux/topology.h>
#include <linux/types.h> #include <linux/types.h>
#include <asm/bL_switcher.h>
#include "arm_big_little.h" #include "arm_big_little.h"
/* Currently we support only two clusters */ /* Currently we support only two clusters */
#define A15_CLUSTER 0
#define A7_CLUSTER 1
#define MAX_CLUSTERS 2 #define MAX_CLUSTERS 2
#ifdef CONFIG_BL_SWITCHER
#define is_bL_switching_enabled() true
#else
#define is_bL_switching_enabled() false
#endif
#define ACTUAL_FREQ(cluster, freq) ((cluster == A7_CLUSTER) ? freq << 1 : freq)
#define VIRT_FREQ(cluster, freq) ((cluster == A7_CLUSTER) ? freq >> 1 : freq)
static struct cpufreq_arm_bL_ops *arm_bL_ops; static struct cpufreq_arm_bL_ops *arm_bL_ops;
static struct clk *clk[MAX_CLUSTERS]; static struct clk *clk[MAX_CLUSTERS];
static struct cpufreq_frequency_table *freq_table[MAX_CLUSTERS]; static struct cpufreq_frequency_table *freq_table[MAX_CLUSTERS + 1];
static atomic_t cluster_usage[MAX_CLUSTERS] = {ATOMIC_INIT(0), ATOMIC_INIT(0)}; static atomic_t cluster_usage[MAX_CLUSTERS + 1];
static unsigned int bL_cpufreq_get(unsigned int cpu) static unsigned int clk_big_min; /* (Big) clock frequencies */
static unsigned int clk_little_max; /* Maximum clock frequency (Little) */
static DEFINE_PER_CPU(unsigned int, physical_cluster);
static DEFINE_PER_CPU(unsigned int, cpu_last_req_freq);
static struct mutex cluster_lock[MAX_CLUSTERS];
static inline int raw_cpu_to_cluster(int cpu)
{ {
u32 cur_cluster = cpu_to_cluster(cpu); return topology_physical_package_id(cpu);
}
return clk_get_rate(clk[cur_cluster]) / 1000; static inline int cpu_to_cluster(int cpu)
{
return is_bL_switching_enabled() ?
MAX_CLUSTERS : raw_cpu_to_cluster(cpu);
}
static unsigned int find_cluster_maxfreq(int cluster)
{
int j;
u32 max_freq = 0, cpu_freq;
for_each_online_cpu(j) {
cpu_freq = per_cpu(cpu_last_req_freq, j);
if ((cluster == per_cpu(physical_cluster, j)) &&
(max_freq < cpu_freq))
max_freq = cpu_freq;
}
pr_debug("%s: cluster: %d, max freq: %d\n", __func__, cluster,
max_freq);
return max_freq;
}
static unsigned int clk_get_cpu_rate(unsigned int cpu)
{
u32 cur_cluster = per_cpu(physical_cluster, cpu);
u32 rate = clk_get_rate(clk[cur_cluster]) / 1000;
/* For switcher we use virtual A7 clock rates */
if (is_bL_switching_enabled())
rate = VIRT_FREQ(cur_cluster, rate);
pr_debug("%s: cpu: %d, cluster: %d, freq: %u\n", __func__, cpu,
cur_cluster, rate);
return rate;
}
static unsigned int bL_cpufreq_get_rate(unsigned int cpu)
{
if (is_bL_switching_enabled()) {
pr_debug("%s: freq: %d\n", __func__, per_cpu(cpu_last_req_freq,
cpu));
return per_cpu(cpu_last_req_freq, cpu);
} else {
return clk_get_cpu_rate(cpu);
}
}
static unsigned int
bL_cpufreq_set_rate(u32 cpu, u32 old_cluster, u32 new_cluster, u32 rate)
{
u32 new_rate, prev_rate;
int ret;
bool bLs = is_bL_switching_enabled();
mutex_lock(&cluster_lock[new_cluster]);
if (bLs) {
prev_rate = per_cpu(cpu_last_req_freq, cpu);
per_cpu(cpu_last_req_freq, cpu) = rate;
per_cpu(physical_cluster, cpu) = new_cluster;
new_rate = find_cluster_maxfreq(new_cluster);
new_rate = ACTUAL_FREQ(new_cluster, new_rate);
} else {
new_rate = rate;
}
pr_debug("%s: cpu: %d, old cluster: %d, new cluster: %d, freq: %d\n",
__func__, cpu, old_cluster, new_cluster, new_rate);
ret = clk_set_rate(clk[new_cluster], new_rate * 1000);
if (WARN_ON(ret)) {
pr_err("clk_set_rate failed: %d, new cluster: %d\n", ret,
new_cluster);
if (bLs) {
per_cpu(cpu_last_req_freq, cpu) = prev_rate;
per_cpu(physical_cluster, cpu) = old_cluster;
}
mutex_unlock(&cluster_lock[new_cluster]);
return ret;
}
mutex_unlock(&cluster_lock[new_cluster]);
/* Recalc freq for old cluster when switching clusters */
if (old_cluster != new_cluster) {
pr_debug("%s: cpu: %d, old cluster: %d, new cluster: %d\n",
__func__, cpu, old_cluster, new_cluster);
/* Switch cluster */
bL_switch_request(cpu, new_cluster);
mutex_lock(&cluster_lock[old_cluster]);
/* Set freq of old cluster if there are cpus left on it */
new_rate = find_cluster_maxfreq(old_cluster);
new_rate = ACTUAL_FREQ(old_cluster, new_rate);
if (new_rate) {
pr_debug("%s: Updating rate of old cluster: %d, to freq: %d\n",
__func__, old_cluster, new_rate);
if (clk_set_rate(clk[old_cluster], new_rate * 1000))
pr_err("%s: clk_set_rate failed: %d, old cluster: %d\n",
__func__, ret, old_cluster);
}
mutex_unlock(&cluster_lock[old_cluster]);
}
return 0;
} }
/* Set clock frequency */ /* Set clock frequency */
@ -52,63 +190,164 @@ static int bL_cpufreq_set_target(struct cpufreq_policy *policy,
unsigned int index) unsigned int index)
{ {
struct cpufreq_freqs freqs; struct cpufreq_freqs freqs;
u32 cpu = policy->cpu, cur_cluster; u32 cpu = policy->cpu, cur_cluster, new_cluster, actual_cluster;
int ret = 0; int ret = 0;
cur_cluster = cpu_to_cluster(policy->cpu); cur_cluster = cpu_to_cluster(cpu);
new_cluster = actual_cluster = per_cpu(physical_cluster, cpu);
freqs.old = bL_cpufreq_get(policy->cpu); freqs.old = bL_cpufreq_get_rate(cpu);
freqs.new = freq_table[cur_cluster][index].frequency; freqs.new = freq_table[cur_cluster][index].frequency;
pr_debug("%s: cpu: %d, cluster: %d, oldfreq: %d, target freq: %d, new freq: %d\n", pr_debug("%s: cpu: %d, cluster: %d, oldfreq: %d, target freq: %d, new freq: %d\n",
__func__, cpu, cur_cluster, freqs.old, freqs.new, __func__, cpu, cur_cluster, freqs.old, freqs.new,
freqs.new); freqs.new);
if (is_bL_switching_enabled()) {
if ((actual_cluster == A15_CLUSTER) &&
(freqs.new < clk_big_min)) {
new_cluster = A7_CLUSTER;
} else if ((actual_cluster == A7_CLUSTER) &&
(freqs.new > clk_little_max)) {
new_cluster = A15_CLUSTER;
}
}
cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE); cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
ret = clk_set_rate(clk[cur_cluster], freqs.new * 1000); ret = bL_cpufreq_set_rate(cpu, actual_cluster, new_cluster, freqs.new);
if (ret) { if (ret)
pr_err("clk_set_rate failed: %d\n", ret);
freqs.new = freqs.old; freqs.new = freqs.old;
}
cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE); cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
return ret; return ret;
} }
static inline u32 get_table_count(struct cpufreq_frequency_table *table)
{
int count;
for (count = 0; table[count].frequency != CPUFREQ_TABLE_END; count++)
;
return count;
}
/* get the minimum frequency in the cpufreq_frequency_table */
static inline u32 get_table_min(struct cpufreq_frequency_table *table)
{
int i;
uint32_t min_freq = ~0;
for (i = 0; (table[i].frequency != CPUFREQ_TABLE_END); i++)
if (table[i].frequency < min_freq)
min_freq = table[i].frequency;
return min_freq;
}
/* get the maximum frequency in the cpufreq_frequency_table */
static inline u32 get_table_max(struct cpufreq_frequency_table *table)
{
int i;
uint32_t max_freq = 0;
for (i = 0; (table[i].frequency != CPUFREQ_TABLE_END); i++)
if (table[i].frequency > max_freq)
max_freq = table[i].frequency;
return max_freq;
}
static int merge_cluster_tables(void)
{
int i, j, k = 0, count = 1;
struct cpufreq_frequency_table *table;
for (i = 0; i < MAX_CLUSTERS; i++)
count += get_table_count(freq_table[i]);
table = kzalloc(sizeof(*table) * count, GFP_KERNEL);
if (!table)
return -ENOMEM;
freq_table[MAX_CLUSTERS] = table;
/* Add in reverse order to get freqs in increasing order */
for (i = MAX_CLUSTERS - 1; i >= 0; i--) {
for (j = 0; freq_table[i][j].frequency != CPUFREQ_TABLE_END;
j++) {
table[k].frequency = VIRT_FREQ(i,
freq_table[i][j].frequency);
pr_debug("%s: index: %d, freq: %d\n", __func__, k,
table[k].frequency);
k++;
}
}
table[k].driver_data = k;
table[k].frequency = CPUFREQ_TABLE_END;
pr_debug("%s: End, table: %p, count: %d\n", __func__, table, k);
return 0;
}
static void _put_cluster_clk_and_freq_table(struct device *cpu_dev)
{
u32 cluster = raw_cpu_to_cluster(cpu_dev->id);
if (!freq_table[cluster])
return;
clk_put(clk[cluster]);
dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]);
dev_dbg(cpu_dev, "%s: cluster: %d\n", __func__, cluster);
}
static void put_cluster_clk_and_freq_table(struct device *cpu_dev) static void put_cluster_clk_and_freq_table(struct device *cpu_dev)
{ {
u32 cluster = cpu_to_cluster(cpu_dev->id); u32 cluster = cpu_to_cluster(cpu_dev->id);
int i;
if (!atomic_dec_return(&cluster_usage[cluster])) { if (atomic_dec_return(&cluster_usage[cluster]))
clk_put(clk[cluster]); return;
dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]);
dev_dbg(cpu_dev, "%s: cluster: %d\n", __func__, cluster); if (cluster < MAX_CLUSTERS)
return _put_cluster_clk_and_freq_table(cpu_dev);
for_each_present_cpu(i) {
struct device *cdev = get_cpu_device(i);
if (!cdev) {
pr_err("%s: failed to get cpu%d device\n", __func__, i);
return;
}
_put_cluster_clk_and_freq_table(cdev);
} }
/* free virtual table */
kfree(freq_table[cluster]);
} }
static int get_cluster_clk_and_freq_table(struct device *cpu_dev) static int _get_cluster_clk_and_freq_table(struct device *cpu_dev)
{ {
u32 cluster = cpu_to_cluster(cpu_dev->id); u32 cluster = raw_cpu_to_cluster(cpu_dev->id);
char name[14] = "cpu-cluster."; char name[14] = "cpu-cluster.";
int ret; int ret;
if (atomic_inc_return(&cluster_usage[cluster]) != 1) if (freq_table[cluster])
return 0; return 0;
ret = arm_bL_ops->init_opp_table(cpu_dev); ret = arm_bL_ops->init_opp_table(cpu_dev);
if (ret) { if (ret) {
dev_err(cpu_dev, "%s: init_opp_table failed, cpu: %d, err: %d\n", dev_err(cpu_dev, "%s: init_opp_table failed, cpu: %d, err: %d\n",
__func__, cpu_dev->id, ret); __func__, cpu_dev->id, ret);
goto atomic_dec; goto out;
} }
ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table[cluster]); ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table[cluster]);
if (ret) { if (ret) {
dev_err(cpu_dev, "%s: failed to init cpufreq table, cpu: %d, err: %d\n", dev_err(cpu_dev, "%s: failed to init cpufreq table, cpu: %d, err: %d\n",
__func__, cpu_dev->id, ret); __func__, cpu_dev->id, ret);
goto atomic_dec; goto out;
} }
name[12] = cluster + '0'; name[12] = cluster + '0';
@ -125,13 +364,72 @@ static int get_cluster_clk_and_freq_table(struct device *cpu_dev)
ret = PTR_ERR(clk[cluster]); ret = PTR_ERR(clk[cluster]);
dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]); dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]);
atomic_dec: out:
atomic_dec(&cluster_usage[cluster]);
dev_err(cpu_dev, "%s: Failed to get data for cluster: %d\n", __func__, dev_err(cpu_dev, "%s: Failed to get data for cluster: %d\n", __func__,
cluster); cluster);
return ret; return ret;
} }
static int get_cluster_clk_and_freq_table(struct device *cpu_dev)
{
u32 cluster = cpu_to_cluster(cpu_dev->id);
int i, ret;
if (atomic_inc_return(&cluster_usage[cluster]) != 1)
return 0;
if (cluster < MAX_CLUSTERS) {
ret = _get_cluster_clk_and_freq_table(cpu_dev);
if (ret)
atomic_dec(&cluster_usage[cluster]);
return ret;
}
/*
* Get data for all clusters and fill virtual cluster with a merge of
* both
*/
for_each_present_cpu(i) {
struct device *cdev = get_cpu_device(i);
if (!cdev) {
pr_err("%s: failed to get cpu%d device\n", __func__, i);
return -ENODEV;
}
ret = _get_cluster_clk_and_freq_table(cdev);
if (ret)
goto put_clusters;
}
ret = merge_cluster_tables();
if (ret)
goto put_clusters;
/* Assuming 2 cluster, set clk_big_min and clk_little_max */
clk_big_min = get_table_min(freq_table[0]);
clk_little_max = VIRT_FREQ(1, get_table_max(freq_table[1]));
pr_debug("%s: cluster: %d, clk_big_min: %d, clk_little_max: %d\n",
__func__, cluster, clk_big_min, clk_little_max);
return 0;
put_clusters:
for_each_present_cpu(i) {
struct device *cdev = get_cpu_device(i);
if (!cdev) {
pr_err("%s: failed to get cpu%d device\n", __func__, i);
return -ENODEV;
}
_put_cluster_clk_and_freq_table(cdev);
}
atomic_dec(&cluster_usage[cluster]);
return ret;
}
/* Per-CPU initialization */ /* Per-CPU initialization */
static int bL_cpufreq_init(struct cpufreq_policy *policy) static int bL_cpufreq_init(struct cpufreq_policy *policy)
{ {
@ -158,13 +456,23 @@ static int bL_cpufreq_init(struct cpufreq_policy *policy)
return ret; return ret;
} }
if (cur_cluster < MAX_CLUSTERS) {
cpumask_copy(policy->cpus, topology_core_cpumask(policy->cpu));
per_cpu(physical_cluster, policy->cpu) = cur_cluster;
} else {
/* Assumption: during init, we are always running on A15 */
per_cpu(physical_cluster, policy->cpu) = A15_CLUSTER;
}
if (arm_bL_ops->get_transition_latency) if (arm_bL_ops->get_transition_latency)
policy->cpuinfo.transition_latency = policy->cpuinfo.transition_latency =
arm_bL_ops->get_transition_latency(cpu_dev); arm_bL_ops->get_transition_latency(cpu_dev);
else else
policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL; policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
cpumask_copy(policy->cpus, topology_core_cpumask(policy->cpu)); if (is_bL_switching_enabled())
per_cpu(cpu_last_req_freq, policy->cpu) = clk_get_cpu_rate(policy->cpu);
dev_info(cpu_dev, "%s: CPU %d initialized\n", __func__, policy->cpu); dev_info(cpu_dev, "%s: CPU %d initialized\n", __func__, policy->cpu);
return 0; return 0;
@ -194,7 +502,7 @@ static struct cpufreq_driver bL_cpufreq_driver = {
CPUFREQ_HAVE_GOVERNOR_PER_POLICY, CPUFREQ_HAVE_GOVERNOR_PER_POLICY,
.verify = cpufreq_generic_frequency_table_verify, .verify = cpufreq_generic_frequency_table_verify,
.target_index = bL_cpufreq_set_target, .target_index = bL_cpufreq_set_target,
.get = bL_cpufreq_get, .get = bL_cpufreq_get_rate,
.init = bL_cpufreq_init, .init = bL_cpufreq_init,
.exit = bL_cpufreq_exit, .exit = bL_cpufreq_exit,
.attr = cpufreq_generic_attr, .attr = cpufreq_generic_attr,
@ -202,7 +510,7 @@ static struct cpufreq_driver bL_cpufreq_driver = {
int bL_cpufreq_register(struct cpufreq_arm_bL_ops *ops) int bL_cpufreq_register(struct cpufreq_arm_bL_ops *ops)
{ {
int ret; int ret, i;
if (arm_bL_ops) { if (arm_bL_ops) {
pr_debug("%s: Already registered: %s, exiting\n", __func__, pr_debug("%s: Already registered: %s, exiting\n", __func__,
@ -217,6 +525,9 @@ int bL_cpufreq_register(struct cpufreq_arm_bL_ops *ops)
arm_bL_ops = ops; arm_bL_ops = ops;
for (i = 0; i < MAX_CLUSTERS; i++)
mutex_init(&cluster_lock[i]);
ret = cpufreq_register_driver(&bL_cpufreq_driver); ret = cpufreq_register_driver(&bL_cpufreq_driver);
if (ret) { if (ret) {
pr_info("%s: Failed registering platform driver: %s, err: %d\n", pr_info("%s: Failed registering platform driver: %s, err: %d\n",

View File

@ -34,11 +34,6 @@ struct cpufreq_arm_bL_ops {
int (*init_opp_table)(struct device *cpu_dev); int (*init_opp_table)(struct device *cpu_dev);
}; };
static inline int cpu_to_cluster(int cpu)
{
return topology_physical_package_id(cpu);
}
int bL_cpufreq_register(struct cpufreq_arm_bL_ops *ops); int bL_cpufreq_register(struct cpufreq_arm_bL_ops *ops);
void bL_cpufreq_unregister(struct cpufreq_arm_bL_ops *ops); void bL_cpufreq_unregister(struct cpufreq_arm_bL_ops *ops);