[MTD] [NAND] nand_ecc.c: rewrite for improved performance
This patch improves the performance of the ecc generation code by a factor of 18 on an INTEL D920 CPU, a factor of 7 on MIPS and a factor of 5 on ARM (NSLU2) Signed-off-by: Frans Meulenbroeks <fransmeulenbroeks@gmail.com> Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
This commit is contained in:
parent
782b7a367d
commit
e6cf5df183
|
@ -0,0 +1,714 @@
|
||||||
|
Introduction
|
||||||
|
============
|
||||||
|
|
||||||
|
Having looked at the linux mtd/nand driver and more specific at nand_ecc.c
|
||||||
|
I felt there was room for optimisation. I bashed the code for a few hours
|
||||||
|
performing tricks like table lookup removing superfluous code etc.
|
||||||
|
After that the speed was increased by 35-40%.
|
||||||
|
Still I was not too happy as I felt there was additional room for improvement.
|
||||||
|
|
||||||
|
Bad! I was hooked.
|
||||||
|
I decided to annotate my steps in this file. Perhaps it is useful to someone
|
||||||
|
or someone learns something from it.
|
||||||
|
|
||||||
|
|
||||||
|
The problem
|
||||||
|
===========
|
||||||
|
|
||||||
|
NAND flash (at least SLC one) typically has sectors of 256 bytes.
|
||||||
|
However NAND flash is not extremely reliable so some error detection
|
||||||
|
(and sometimes correction) is needed.
|
||||||
|
|
||||||
|
This is done by means of a Hamming code. I'll try to explain it in
|
||||||
|
laymans terms (and apologies to all the pro's in the field in case I do
|
||||||
|
not use the right terminology, my coding theory class was almost 30
|
||||||
|
years ago, and I must admit it was not one of my favourites).
|
||||||
|
|
||||||
|
As I said before the ecc calculation is performed on sectors of 256
|
||||||
|
bytes. This is done by calculating several parity bits over the rows and
|
||||||
|
columns. The parity used is even parity which means that the parity bit = 1
|
||||||
|
if the data over which the parity is calculated is 1 and the parity bit = 0
|
||||||
|
if the data over which the parity is calculated is 0. So the total
|
||||||
|
number of bits over the data over which the parity is calculated + the
|
||||||
|
parity bit is even. (see wikipedia if you can't follow this).
|
||||||
|
Parity is often calculated by means of an exclusive or operation,
|
||||||
|
sometimes also referred to as xor. In C the operator for xor is ^
|
||||||
|
|
||||||
|
Back to ecc.
|
||||||
|
Let's give a small figure:
|
||||||
|
|
||||||
|
byte 0: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp2 rp4 ... rp14
|
||||||
|
byte 1: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp1 rp2 rp4 ... rp14
|
||||||
|
byte 2: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp3 rp4 ... rp14
|
||||||
|
byte 3: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp1 rp3 rp4 ... rp14
|
||||||
|
byte 4: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp2 rp5 ... rp14
|
||||||
|
....
|
||||||
|
byte 254: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp3 rp5 ... rp15
|
||||||
|
byte 255: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp1 rp3 rp5 ... rp15
|
||||||
|
cp1 cp0 cp1 cp0 cp1 cp0 cp1 cp0
|
||||||
|
cp3 cp3 cp2 cp2 cp3 cp3 cp2 cp2
|
||||||
|
cp5 cp5 cp5 cp5 cp4 cp4 cp4 cp4
|
||||||
|
|
||||||
|
This figure represents a sector of 256 bytes.
|
||||||
|
cp is my abbreviaton for column parity, rp for row parity.
|
||||||
|
|
||||||
|
Let's start to explain column parity.
|
||||||
|
cp0 is the parity that belongs to all bit0, bit2, bit4, bit6.
|
||||||
|
so the sum of all bit0, bit2, bit4 and bit6 values + cp0 itself is even.
|
||||||
|
Similarly cp1 is the sum of all bit1, bit3, bit5 and bit7.
|
||||||
|
cp2 is the parity over bit0, bit1, bit4 and bit5
|
||||||
|
cp3 is the parity over bit2, bit3, bit6 and bit7.
|
||||||
|
cp4 is the parity over bit0, bit1, bit2 and bit3.
|
||||||
|
cp5 is the parity over bit4, bit5, bit6 and bit7.
|
||||||
|
Note that each of cp0 .. cp5 is exactly one bit.
|
||||||
|
|
||||||
|
Row parity actually works almost the same.
|
||||||
|
rp0 is the parity of all even bytes (0, 2, 4, 6, ... 252, 254)
|
||||||
|
rp1 is the parity of all odd bytes (1, 3, 5, 7, ..., 253, 255)
|
||||||
|
rp2 is the parity of all bytes 0, 1, 4, 5, 8, 9, ...
|
||||||
|
(so handle two bytes, then skip 2 bytes).
|
||||||
|
rp3 is covers the half rp2 does not cover (bytes 2, 3, 6, 7, 10, 11, ...)
|
||||||
|
for rp4 the rule is cover 4 bytes, skip 4 bytes, cover 4 bytes, skip 4 etc.
|
||||||
|
so rp4 calculates parity over bytes 0, 1, 2, 3, 8, 9, 10, 11, 16, ...)
|
||||||
|
and rp5 covers the other half, so bytes 4, 5, 6, 7, 12, 13, 14, 15, 20, ..
|
||||||
|
The story now becomes quite boring. I guess you get the idea.
|
||||||
|
rp6 covers 8 bytes then skips 8 etc
|
||||||
|
rp7 skips 8 bytes then covers 8 etc
|
||||||
|
rp8 covers 16 bytes then skips 16 etc
|
||||||
|
rp9 skips 16 bytes then covers 16 etc
|
||||||
|
rp10 covers 32 bytes then skips 32 etc
|
||||||
|
rp11 skips 32 bytes then covers 32 etc
|
||||||
|
rp12 covers 64 bytes then skips 64 etc
|
||||||
|
rp13 skips 64 bytes then covers 64 etc
|
||||||
|
rp14 covers 128 bytes then skips 128
|
||||||
|
rp15 skips 128 bytes then covers 128
|
||||||
|
|
||||||
|
In the end the parity bits are grouped together in three bytes as
|
||||||
|
follows:
|
||||||
|
ECC Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
|
||||||
|
ECC 0 rp07 rp06 rp05 rp04 rp03 rp02 rp01 rp00
|
||||||
|
ECC 1 rp15 rp14 rp13 rp12 rp11 rp10 rp09 rp08
|
||||||
|
ECC 2 cp5 cp4 cp3 cp2 cp1 cp0 1 1
|
||||||
|
|
||||||
|
I detected after writing this that ST application note AN1823
|
||||||
|
(http://www.st.com/stonline/books/pdf/docs/10123.pdf) gives a much
|
||||||
|
nicer picture.(but they use line parity as term where I use row parity)
|
||||||
|
Oh well, I'm graphically challenged, so suffer with me for a moment :-)
|
||||||
|
And I could not reuse the ST picture anyway for copyright reasons.
|
||||||
|
|
||||||
|
|
||||||
|
Attempt 0
|
||||||
|
=========
|
||||||
|
|
||||||
|
Implementing the parity calculation is pretty simple.
|
||||||
|
In C pseudocode:
|
||||||
|
for (i = 0; i < 256; i++)
|
||||||
|
{
|
||||||
|
if (i & 0x01)
|
||||||
|
rp1 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp1;
|
||||||
|
else
|
||||||
|
rp0 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp1;
|
||||||
|
if (i & 0x02)
|
||||||
|
rp3 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp3;
|
||||||
|
else
|
||||||
|
rp2 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp2;
|
||||||
|
if (i & 0x04)
|
||||||
|
rp5 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp5;
|
||||||
|
else
|
||||||
|
rp4 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp4;
|
||||||
|
if (i & 0x08)
|
||||||
|
rp7 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp7;
|
||||||
|
else
|
||||||
|
rp6 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp6;
|
||||||
|
if (i & 0x10)
|
||||||
|
rp9 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp9;
|
||||||
|
else
|
||||||
|
rp8 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp8;
|
||||||
|
if (i & 0x20)
|
||||||
|
rp11 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp11;
|
||||||
|
else
|
||||||
|
rp10 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp10;
|
||||||
|
if (i & 0x40)
|
||||||
|
rp13 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp13;
|
||||||
|
else
|
||||||
|
rp12 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp12;
|
||||||
|
if (i & 0x80)
|
||||||
|
rp15 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp15;
|
||||||
|
else
|
||||||
|
rp14 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp14;
|
||||||
|
cp0 = bit6 ^ bit4 ^ bit2 ^ bit0 ^ cp0;
|
||||||
|
cp1 = bit7 ^ bit5 ^ bit3 ^ bit1 ^ cp1;
|
||||||
|
cp2 = bit5 ^ bit4 ^ bit1 ^ bit0 ^ cp2;
|
||||||
|
cp3 = bit7 ^ bit6 ^ bit3 ^ bit2 ^ cp3
|
||||||
|
cp4 = bit3 ^ bit2 ^ bit1 ^ bit0 ^ cp4
|
||||||
|
cp5 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ cp5
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
Analysis 0
|
||||||
|
==========
|
||||||
|
|
||||||
|
C does have bitwise operators but not really operators to do the above
|
||||||
|
efficiently (and most hardware has no such instructions either).
|
||||||
|
Therefore without implementing this it was clear that the code above was
|
||||||
|
not going to bring me a Nobel prize :-)
|
||||||
|
|
||||||
|
Fortunately the exclusive or operation is commutative, so we can combine
|
||||||
|
the values in any order. So instead of calculating all the bits
|
||||||
|
individually, let us try to rearrange things.
|
||||||
|
For the column parity this is easy. We can just xor the bytes and in the
|
||||||
|
end filter out the relevant bits. This is pretty nice as it will bring
|
||||||
|
all cp calculation out of the if loop.
|
||||||
|
|
||||||
|
Similarly we can first xor the bytes for the various rows.
|
||||||
|
This leads to:
|
||||||
|
|
||||||
|
|
||||||
|
Attempt 1
|
||||||
|
=========
|
||||||
|
|
||||||
|
const char parity[256] = {
|
||||||
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
||||||
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
||||||
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
||||||
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
||||||
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
||||||
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
||||||
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
||||||
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
||||||
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
||||||
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
||||||
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
||||||
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
||||||
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
||||||
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
||||||
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
||||||
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0
|
||||||
|
};
|
||||||
|
|
||||||
|
void ecc1(const unsigned char *buf, unsigned char *code)
|
||||||
|
{
|
||||||
|
int i;
|
||||||
|
const unsigned char *bp = buf;
|
||||||
|
unsigned char cur;
|
||||||
|
unsigned char rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
|
||||||
|
unsigned char rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15;
|
||||||
|
unsigned char par;
|
||||||
|
|
||||||
|
par = 0;
|
||||||
|
rp0 = 0; rp1 = 0; rp2 = 0; rp3 = 0;
|
||||||
|
rp4 = 0; rp5 = 0; rp6 = 0; rp7 = 0;
|
||||||
|
rp8 = 0; rp9 = 0; rp10 = 0; rp11 = 0;
|
||||||
|
rp12 = 0; rp13 = 0; rp14 = 0; rp15 = 0;
|
||||||
|
|
||||||
|
for (i = 0; i < 256; i++)
|
||||||
|
{
|
||||||
|
cur = *bp++;
|
||||||
|
par ^= cur;
|
||||||
|
if (i & 0x01) rp1 ^= cur; else rp0 ^= cur;
|
||||||
|
if (i & 0x02) rp3 ^= cur; else rp2 ^= cur;
|
||||||
|
if (i & 0x04) rp5 ^= cur; else rp4 ^= cur;
|
||||||
|
if (i & 0x08) rp7 ^= cur; else rp6 ^= cur;
|
||||||
|
if (i & 0x10) rp9 ^= cur; else rp8 ^= cur;
|
||||||
|
if (i & 0x20) rp11 ^= cur; else rp10 ^= cur;
|
||||||
|
if (i & 0x40) rp13 ^= cur; else rp12 ^= cur;
|
||||||
|
if (i & 0x80) rp15 ^= cur; else rp14 ^= cur;
|
||||||
|
}
|
||||||
|
code[0] =
|
||||||
|
(parity[rp7] << 7) |
|
||||||
|
(parity[rp6] << 6) |
|
||||||
|
(parity[rp5] << 5) |
|
||||||
|
(parity[rp4] << 4) |
|
||||||
|
(parity[rp3] << 3) |
|
||||||
|
(parity[rp2] << 2) |
|
||||||
|
(parity[rp1] << 1) |
|
||||||
|
(parity[rp0]);
|
||||||
|
code[1] =
|
||||||
|
(parity[rp15] << 7) |
|
||||||
|
(parity[rp14] << 6) |
|
||||||
|
(parity[rp13] << 5) |
|
||||||
|
(parity[rp12] << 4) |
|
||||||
|
(parity[rp11] << 3) |
|
||||||
|
(parity[rp10] << 2) |
|
||||||
|
(parity[rp9] << 1) |
|
||||||
|
(parity[rp8]);
|
||||||
|
code[2] =
|
||||||
|
(parity[par & 0xf0] << 7) |
|
||||||
|
(parity[par & 0x0f] << 6) |
|
||||||
|
(parity[par & 0xcc] << 5) |
|
||||||
|
(parity[par & 0x33] << 4) |
|
||||||
|
(parity[par & 0xaa] << 3) |
|
||||||
|
(parity[par & 0x55] << 2);
|
||||||
|
code[0] = ~code[0];
|
||||||
|
code[1] = ~code[1];
|
||||||
|
code[2] = ~code[2];
|
||||||
|
}
|
||||||
|
|
||||||
|
Still pretty straightforward. The last three invert statements are there to
|
||||||
|
give a checksum of 0xff 0xff 0xff for an empty flash. In an empty flash
|
||||||
|
all data is 0xff, so the checksum then matches.
|
||||||
|
|
||||||
|
I also introduced the parity lookup. I expected this to be the fastest
|
||||||
|
way to calculate the parity, but I will investigate alternatives later
|
||||||
|
on.
|
||||||
|
|
||||||
|
|
||||||
|
Analysis 1
|
||||||
|
==========
|
||||||
|
|
||||||
|
The code works, but is not terribly efficient. On my system it took
|
||||||
|
almost 4 times as much time as the linux driver code. But hey, if it was
|
||||||
|
*that* easy this would have been done long before.
|
||||||
|
No pain. no gain.
|
||||||
|
|
||||||
|
Fortunately there is plenty of room for improvement.
|
||||||
|
|
||||||
|
In step 1 we moved from bit-wise calculation to byte-wise calculation.
|
||||||
|
However in C we can also use the unsigned long data type and virtually
|
||||||
|
every modern microprocessor supports 32 bit operations, so why not try
|
||||||
|
to write our code in such a way that we process data in 32 bit chunks.
|
||||||
|
|
||||||
|
Of course this means some modification as the row parity is byte by
|
||||||
|
byte. A quick analysis:
|
||||||
|
for the column parity we use the par variable. When extending to 32 bits
|
||||||
|
we can in the end easily calculate p0 and p1 from it.
|
||||||
|
(because par now consists of 4 bytes, contributing to rp1, rp0, rp1, rp0
|
||||||
|
respectively)
|
||||||
|
also rp2 and rp3 can be easily retrieved from par as rp3 covers the
|
||||||
|
first two bytes and rp2 the last two bytes.
|
||||||
|
|
||||||
|
Note that of course now the loop is executed only 64 times (256/4).
|
||||||
|
And note that care must taken wrt byte ordering. The way bytes are
|
||||||
|
ordered in a long is machine dependent, and might affect us.
|
||||||
|
Anyway, if there is an issue: this code is developed on x86 (to be
|
||||||
|
precise: a DELL PC with a D920 Intel CPU)
|
||||||
|
|
||||||
|
And of course the performance might depend on alignment, but I expect
|
||||||
|
that the I/O buffers in the nand driver are aligned properly (and
|
||||||
|
otherwise that should be fixed to get maximum performance).
|
||||||
|
|
||||||
|
Let's give it a try...
|
||||||
|
|
||||||
|
|
||||||
|
Attempt 2
|
||||||
|
=========
|
||||||
|
|
||||||
|
extern const char parity[256];
|
||||||
|
|
||||||
|
void ecc2(const unsigned char *buf, unsigned char *code)
|
||||||
|
{
|
||||||
|
int i;
|
||||||
|
const unsigned long *bp = (unsigned long *)buf;
|
||||||
|
unsigned long cur;
|
||||||
|
unsigned long rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
|
||||||
|
unsigned long rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15;
|
||||||
|
unsigned long par;
|
||||||
|
|
||||||
|
par = 0;
|
||||||
|
rp0 = 0; rp1 = 0; rp2 = 0; rp3 = 0;
|
||||||
|
rp4 = 0; rp5 = 0; rp6 = 0; rp7 = 0;
|
||||||
|
rp8 = 0; rp9 = 0; rp10 = 0; rp11 = 0;
|
||||||
|
rp12 = 0; rp13 = 0; rp14 = 0; rp15 = 0;
|
||||||
|
|
||||||
|
for (i = 0; i < 64; i++)
|
||||||
|
{
|
||||||
|
cur = *bp++;
|
||||||
|
par ^= cur;
|
||||||
|
if (i & 0x01) rp5 ^= cur; else rp4 ^= cur;
|
||||||
|
if (i & 0x02) rp7 ^= cur; else rp6 ^= cur;
|
||||||
|
if (i & 0x04) rp9 ^= cur; else rp8 ^= cur;
|
||||||
|
if (i & 0x08) rp11 ^= cur; else rp10 ^= cur;
|
||||||
|
if (i & 0x10) rp13 ^= cur; else rp12 ^= cur;
|
||||||
|
if (i & 0x20) rp15 ^= cur; else rp14 ^= cur;
|
||||||
|
}
|
||||||
|
/*
|
||||||
|
we need to adapt the code generation for the fact that rp vars are now
|
||||||
|
long; also the column parity calculation needs to be changed.
|
||||||
|
we'll bring rp4 to 15 back to single byte entities by shifting and
|
||||||
|
xoring
|
||||||
|
*/
|
||||||
|
rp4 ^= (rp4 >> 16); rp4 ^= (rp4 >> 8); rp4 &= 0xff;
|
||||||
|
rp5 ^= (rp5 >> 16); rp5 ^= (rp5 >> 8); rp5 &= 0xff;
|
||||||
|
rp6 ^= (rp6 >> 16); rp6 ^= (rp6 >> 8); rp6 &= 0xff;
|
||||||
|
rp7 ^= (rp7 >> 16); rp7 ^= (rp7 >> 8); rp7 &= 0xff;
|
||||||
|
rp8 ^= (rp8 >> 16); rp8 ^= (rp8 >> 8); rp8 &= 0xff;
|
||||||
|
rp9 ^= (rp9 >> 16); rp9 ^= (rp9 >> 8); rp9 &= 0xff;
|
||||||
|
rp10 ^= (rp10 >> 16); rp10 ^= (rp10 >> 8); rp10 &= 0xff;
|
||||||
|
rp11 ^= (rp11 >> 16); rp11 ^= (rp11 >> 8); rp11 &= 0xff;
|
||||||
|
rp12 ^= (rp12 >> 16); rp12 ^= (rp12 >> 8); rp12 &= 0xff;
|
||||||
|
rp13 ^= (rp13 >> 16); rp13 ^= (rp13 >> 8); rp13 &= 0xff;
|
||||||
|
rp14 ^= (rp14 >> 16); rp14 ^= (rp14 >> 8); rp14 &= 0xff;
|
||||||
|
rp15 ^= (rp15 >> 16); rp15 ^= (rp15 >> 8); rp15 &= 0xff;
|
||||||
|
rp3 = (par >> 16); rp3 ^= (rp3 >> 8); rp3 &= 0xff;
|
||||||
|
rp2 = par & 0xffff; rp2 ^= (rp2 >> 8); rp2 &= 0xff;
|
||||||
|
par ^= (par >> 16);
|
||||||
|
rp1 = (par >> 8); rp1 &= 0xff;
|
||||||
|
rp0 = (par & 0xff);
|
||||||
|
par ^= (par >> 8); par &= 0xff;
|
||||||
|
|
||||||
|
code[0] =
|
||||||
|
(parity[rp7] << 7) |
|
||||||
|
(parity[rp6] << 6) |
|
||||||
|
(parity[rp5] << 5) |
|
||||||
|
(parity[rp4] << 4) |
|
||||||
|
(parity[rp3] << 3) |
|
||||||
|
(parity[rp2] << 2) |
|
||||||
|
(parity[rp1] << 1) |
|
||||||
|
(parity[rp0]);
|
||||||
|
code[1] =
|
||||||
|
(parity[rp15] << 7) |
|
||||||
|
(parity[rp14] << 6) |
|
||||||
|
(parity[rp13] << 5) |
|
||||||
|
(parity[rp12] << 4) |
|
||||||
|
(parity[rp11] << 3) |
|
||||||
|
(parity[rp10] << 2) |
|
||||||
|
(parity[rp9] << 1) |
|
||||||
|
(parity[rp8]);
|
||||||
|
code[2] =
|
||||||
|
(parity[par & 0xf0] << 7) |
|
||||||
|
(parity[par & 0x0f] << 6) |
|
||||||
|
(parity[par & 0xcc] << 5) |
|
||||||
|
(parity[par & 0x33] << 4) |
|
||||||
|
(parity[par & 0xaa] << 3) |
|
||||||
|
(parity[par & 0x55] << 2);
|
||||||
|
code[0] = ~code[0];
|
||||||
|
code[1] = ~code[1];
|
||||||
|
code[2] = ~code[2];
|
||||||
|
}
|
||||||
|
|
||||||
|
The parity array is not shown any more. Note also that for these
|
||||||
|
examples I kinda deviated from my regular programming style by allowing
|
||||||
|
multiple statements on a line, not using { } in then and else blocks
|
||||||
|
with only a single statement and by using operators like ^=
|
||||||
|
|
||||||
|
|
||||||
|
Analysis 2
|
||||||
|
==========
|
||||||
|
|
||||||
|
The code (of course) works, and hurray: we are a little bit faster than
|
||||||
|
the linux driver code (about 15%). But wait, don't cheer too quickly.
|
||||||
|
THere is more to be gained.
|
||||||
|
If we look at e.g. rp14 and rp15 we see that we either xor our data with
|
||||||
|
rp14 or with rp15. However we also have par which goes over all data.
|
||||||
|
This means there is no need to calculate rp14 as it can be calculated from
|
||||||
|
rp15 through rp14 = par ^ rp15;
|
||||||
|
(or if desired we can avoid calculating rp15 and calculate it from
|
||||||
|
rp14). That is why some places refer to inverse parity.
|
||||||
|
Of course the same thing holds for rp4/5, rp6/7, rp8/9, rp10/11 and rp12/13.
|
||||||
|
Effectively this means we can eliminate the else clause from the if
|
||||||
|
statements. Also we can optimise the calculation in the end a little bit
|
||||||
|
by going from long to byte first. Actually we can even avoid the table
|
||||||
|
lookups
|
||||||
|
|
||||||
|
Attempt 3
|
||||||
|
=========
|
||||||
|
|
||||||
|
Odd replaced:
|
||||||
|
if (i & 0x01) rp5 ^= cur; else rp4 ^= cur;
|
||||||
|
if (i & 0x02) rp7 ^= cur; else rp6 ^= cur;
|
||||||
|
if (i & 0x04) rp9 ^= cur; else rp8 ^= cur;
|
||||||
|
if (i & 0x08) rp11 ^= cur; else rp10 ^= cur;
|
||||||
|
if (i & 0x10) rp13 ^= cur; else rp12 ^= cur;
|
||||||
|
if (i & 0x20) rp15 ^= cur; else rp14 ^= cur;
|
||||||
|
with
|
||||||
|
if (i & 0x01) rp5 ^= cur;
|
||||||
|
if (i & 0x02) rp7 ^= cur;
|
||||||
|
if (i & 0x04) rp9 ^= cur;
|
||||||
|
if (i & 0x08) rp11 ^= cur;
|
||||||
|
if (i & 0x10) rp13 ^= cur;
|
||||||
|
if (i & 0x20) rp15 ^= cur;
|
||||||
|
|
||||||
|
and outside the loop added:
|
||||||
|
rp4 = par ^ rp5;
|
||||||
|
rp6 = par ^ rp7;
|
||||||
|
rp8 = par ^ rp9;
|
||||||
|
rp10 = par ^ rp11;
|
||||||
|
rp12 = par ^ rp13;
|
||||||
|
rp14 = par ^ rp15;
|
||||||
|
|
||||||
|
And after that the code takes about 30% more time, although the number of
|
||||||
|
statements is reduced. This is also reflected in the assembly code.
|
||||||
|
|
||||||
|
|
||||||
|
Analysis 3
|
||||||
|
==========
|
||||||
|
|
||||||
|
Very weird. Guess it has to do with caching or instruction parallellism
|
||||||
|
or so. I also tried on an eeePC (Celeron, clocked at 900 Mhz). Interesting
|
||||||
|
observation was that this one is only 30% slower (according to time)
|
||||||
|
executing the code as my 3Ghz D920 processor.
|
||||||
|
|
||||||
|
Well, it was expected not to be easy so maybe instead move to a
|
||||||
|
different track: let's move back to the code from attempt2 and do some
|
||||||
|
loop unrolling. This will eliminate a few if statements. I'll try
|
||||||
|
different amounts of unrolling to see what works best.
|
||||||
|
|
||||||
|
|
||||||
|
Attempt 4
|
||||||
|
=========
|
||||||
|
|
||||||
|
Unrolled the loop 1, 2, 3 and 4 times.
|
||||||
|
For 4 the code starts with:
|
||||||
|
|
||||||
|
for (i = 0; i < 4; i++)
|
||||||
|
{
|
||||||
|
cur = *bp++;
|
||||||
|
par ^= cur;
|
||||||
|
rp4 ^= cur;
|
||||||
|
rp6 ^= cur;
|
||||||
|
rp8 ^= cur;
|
||||||
|
rp10 ^= cur;
|
||||||
|
if (i & 0x1) rp13 ^= cur; else rp12 ^= cur;
|
||||||
|
if (i & 0x2) rp15 ^= cur; else rp14 ^= cur;
|
||||||
|
cur = *bp++;
|
||||||
|
par ^= cur;
|
||||||
|
rp5 ^= cur;
|
||||||
|
rp6 ^= cur;
|
||||||
|
...
|
||||||
|
|
||||||
|
|
||||||
|
Analysis 4
|
||||||
|
==========
|
||||||
|
|
||||||
|
Unrolling once gains about 15%
|
||||||
|
Unrolling twice keeps the gain at about 15%
|
||||||
|
Unrolling three times gives a gain of 30% compared to attempt 2.
|
||||||
|
Unrolling four times gives a marginal improvement compared to unrolling
|
||||||
|
three times.
|
||||||
|
|
||||||
|
I decided to proceed with a four time unrolled loop anyway. It was my gut
|
||||||
|
feeling that in the next steps I would obtain additional gain from it.
|
||||||
|
|
||||||
|
The next step was triggered by the fact that par contains the xor of all
|
||||||
|
bytes and rp4 and rp5 each contain the xor of half of the bytes.
|
||||||
|
So in effect par = rp4 ^ rp5. But as xor is commutative we can also say
|
||||||
|
that rp5 = par ^ rp4. So no need to keep both rp4 and rp5 around. We can
|
||||||
|
eliminate rp5 (or rp4, but I already foresaw another optimisation).
|
||||||
|
The same holds for rp6/7, rp8/9, rp10/11 rp12/13 and rp14/15.
|
||||||
|
|
||||||
|
|
||||||
|
Attempt 5
|
||||||
|
=========
|
||||||
|
|
||||||
|
Effectively so all odd digit rp assignments in the loop were removed.
|
||||||
|
This included the else clause of the if statements.
|
||||||
|
Of course after the loop we need to correct things by adding code like:
|
||||||
|
rp5 = par ^ rp4;
|
||||||
|
Also the initial assignments (rp5 = 0; etc) could be removed.
|
||||||
|
Along the line I also removed the initialisation of rp0/1/2/3.
|
||||||
|
|
||||||
|
|
||||||
|
Analysis 5
|
||||||
|
==========
|
||||||
|
|
||||||
|
Measurements showed this was a good move. The run-time roughly halved
|
||||||
|
compared with attempt 4 with 4 times unrolled, and we only require 1/3rd
|
||||||
|
of the processor time compared to the current code in the linux kernel.
|
||||||
|
|
||||||
|
However, still I thought there was more. I didn't like all the if
|
||||||
|
statements. Why not keep a running parity and only keep the last if
|
||||||
|
statement. Time for yet another version!
|
||||||
|
|
||||||
|
|
||||||
|
Attempt 6
|
||||||
|
=========
|
||||||
|
|
||||||
|
THe code within the for loop was changed to:
|
||||||
|
|
||||||
|
for (i = 0; i < 4; i++)
|
||||||
|
{
|
||||||
|
cur = *bp++; tmppar = cur; rp4 ^= cur;
|
||||||
|
cur = *bp++; tmppar ^= cur; rp6 ^= tmppar;
|
||||||
|
cur = *bp++; tmppar ^= cur; rp4 ^= cur;
|
||||||
|
cur = *bp++; tmppar ^= cur; rp8 ^= tmppar;
|
||||||
|
|
||||||
|
cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp6 ^= cur;
|
||||||
|
cur = *bp++; tmppar ^= cur; rp6 ^= cur;
|
||||||
|
cur = *bp++; tmppar ^= cur; rp4 ^= cur;
|
||||||
|
cur = *bp++; tmppar ^= cur; rp10 ^= tmppar;
|
||||||
|
|
||||||
|
cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp6 ^= cur; rp8 ^= cur;
|
||||||
|
cur = *bp++; tmppar ^= cur; rp6 ^= cur; rp8 ^= cur;
|
||||||
|
cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp8 ^= cur;
|
||||||
|
cur = *bp++; tmppar ^= cur; rp8 ^= cur;
|
||||||
|
|
||||||
|
cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp6 ^= cur;
|
||||||
|
cur = *bp++; tmppar ^= cur; rp6 ^= cur;
|
||||||
|
cur = *bp++; tmppar ^= cur; rp4 ^= cur;
|
||||||
|
cur = *bp++; tmppar ^= cur;
|
||||||
|
|
||||||
|
par ^= tmppar;
|
||||||
|
if ((i & 0x1) == 0) rp12 ^= tmppar;
|
||||||
|
if ((i & 0x2) == 0) rp14 ^= tmppar;
|
||||||
|
}
|
||||||
|
|
||||||
|
As you can see tmppar is used to accumulate the parity within a for
|
||||||
|
iteration. In the last 3 statements is is added to par and, if needed,
|
||||||
|
to rp12 and rp14.
|
||||||
|
|
||||||
|
While making the changes I also found that I could exploit that tmppar
|
||||||
|
contains the running parity for this iteration. So instead of having:
|
||||||
|
rp4 ^= cur; rp6 = cur;
|
||||||
|
I removed the rp6 = cur; statement and did rp6 ^= tmppar; on next
|
||||||
|
statement. A similar change was done for rp8 and rp10
|
||||||
|
|
||||||
|
|
||||||
|
Analysis 6
|
||||||
|
==========
|
||||||
|
|
||||||
|
Measuring this code again showed big gain. When executing the original
|
||||||
|
linux code 1 million times, this took about 1 second on my system.
|
||||||
|
(using time to measure the performance). After this iteration I was back
|
||||||
|
to 0.075 sec. Actually I had to decide to start measuring over 10
|
||||||
|
million interations in order not to loose too much accuracy. This one
|
||||||
|
definitely seemed to be the jackpot!
|
||||||
|
|
||||||
|
There is a little bit more room for improvement though. There are three
|
||||||
|
places with statements:
|
||||||
|
rp4 ^= cur; rp6 ^= cur;
|
||||||
|
It seems more efficient to also maintain a variable rp4_6 in the while
|
||||||
|
loop; This eliminates 3 statements per loop. Of course after the loop we
|
||||||
|
need to correct by adding:
|
||||||
|
rp4 ^= rp4_6;
|
||||||
|
rp6 ^= rp4_6
|
||||||
|
Furthermore there are 4 sequential assingments to rp8. This can be
|
||||||
|
encoded slightly more efficient by saving tmppar before those 4 lines
|
||||||
|
and later do rp8 = rp8 ^ tmppar ^ notrp8;
|
||||||
|
(where notrp8 is the value of rp8 before those 4 lines).
|
||||||
|
Again a use of the commutative property of xor.
|
||||||
|
Time for a new test!
|
||||||
|
|
||||||
|
|
||||||
|
Attempt 7
|
||||||
|
=========
|
||||||
|
|
||||||
|
The new code now looks like:
|
||||||
|
|
||||||
|
for (i = 0; i < 4; i++)
|
||||||
|
{
|
||||||
|
cur = *bp++; tmppar = cur; rp4 ^= cur;
|
||||||
|
cur = *bp++; tmppar ^= cur; rp6 ^= tmppar;
|
||||||
|
cur = *bp++; tmppar ^= cur; rp4 ^= cur;
|
||||||
|
cur = *bp++; tmppar ^= cur; rp8 ^= tmppar;
|
||||||
|
|
||||||
|
cur = *bp++; tmppar ^= cur; rp4_6 ^= cur;
|
||||||
|
cur = *bp++; tmppar ^= cur; rp6 ^= cur;
|
||||||
|
cur = *bp++; tmppar ^= cur; rp4 ^= cur;
|
||||||
|
cur = *bp++; tmppar ^= cur; rp10 ^= tmppar;
|
||||||
|
|
||||||
|
notrp8 = tmppar;
|
||||||
|
cur = *bp++; tmppar ^= cur; rp4_6 ^= cur;
|
||||||
|
cur = *bp++; tmppar ^= cur; rp6 ^= cur;
|
||||||
|
cur = *bp++; tmppar ^= cur; rp4 ^= cur;
|
||||||
|
cur = *bp++; tmppar ^= cur;
|
||||||
|
rp8 = rp8 ^ tmppar ^ notrp8;
|
||||||
|
|
||||||
|
cur = *bp++; tmppar ^= cur; rp4_6 ^= cur;
|
||||||
|
cur = *bp++; tmppar ^= cur; rp6 ^= cur;
|
||||||
|
cur = *bp++; tmppar ^= cur; rp4 ^= cur;
|
||||||
|
cur = *bp++; tmppar ^= cur;
|
||||||
|
|
||||||
|
par ^= tmppar;
|
||||||
|
if ((i & 0x1) == 0) rp12 ^= tmppar;
|
||||||
|
if ((i & 0x2) == 0) rp14 ^= tmppar;
|
||||||
|
}
|
||||||
|
rp4 ^= rp4_6;
|
||||||
|
rp6 ^= rp4_6;
|
||||||
|
|
||||||
|
|
||||||
|
Not a big change, but every penny counts :-)
|
||||||
|
|
||||||
|
|
||||||
|
Analysis 7
|
||||||
|
==========
|
||||||
|
|
||||||
|
Acutally this made things worse. Not very much, but I don't want to move
|
||||||
|
into the wrong direction. Maybe something to investigate later. Could
|
||||||
|
have to do with caching again.
|
||||||
|
|
||||||
|
Guess that is what there is to win within the loop. Maybe unrolling one
|
||||||
|
more time will help. I'll keep the optimisations from 7 for now.
|
||||||
|
|
||||||
|
|
||||||
|
Attempt 8
|
||||||
|
=========
|
||||||
|
|
||||||
|
Unrolled the loop one more time.
|
||||||
|
|
||||||
|
|
||||||
|
Analysis 8
|
||||||
|
==========
|
||||||
|
|
||||||
|
This makes things worse. Let's stick with attempt 6 and continue from there.
|
||||||
|
Although it seems that the code within the loop cannot be optimised
|
||||||
|
further there is still room to optimize the generation of the ecc codes.
|
||||||
|
We can simply calcualate the total parity. If this is 0 then rp4 = rp5
|
||||||
|
etc. If the parity is 1, then rp4 = !rp5;
|
||||||
|
But if rp4 = rp5 we do not need rp5 etc. We can just write the even bits
|
||||||
|
in the result byte and then do something like
|
||||||
|
code[0] |= (code[0] << 1);
|
||||||
|
Lets test this.
|
||||||
|
|
||||||
|
|
||||||
|
Attempt 9
|
||||||
|
=========
|
||||||
|
|
||||||
|
Changed the code but again this slightly degrades performance. Tried all
|
||||||
|
kind of other things, like having dedicated parity arrays to avoid the
|
||||||
|
shift after parity[rp7] << 7; No gain.
|
||||||
|
Change the lookup using the parity array by using shift operators (e.g.
|
||||||
|
replace parity[rp7] << 7 with:
|
||||||
|
rp7 ^= (rp7 << 4);
|
||||||
|
rp7 ^= (rp7 << 2);
|
||||||
|
rp7 ^= (rp7 << 1);
|
||||||
|
rp7 &= 0x80;
|
||||||
|
No gain.
|
||||||
|
|
||||||
|
The only marginal change was inverting the parity bits, so we can remove
|
||||||
|
the last three invert statements.
|
||||||
|
|
||||||
|
Ah well, pity this does not deliver more. Then again 10 million
|
||||||
|
iterations using the linux driver code takes between 13 and 13.5
|
||||||
|
seconds, whereas my code now takes about 0.73 seconds for those 10
|
||||||
|
million iterations. So basically I've improved the performance by a
|
||||||
|
factor 18 on my system. Not that bad. Of course on different hardware
|
||||||
|
you will get different results. No warranties!
|
||||||
|
|
||||||
|
But of course there is no such thing as a free lunch. The codesize almost
|
||||||
|
tripled (from 562 bytes to 1434 bytes). Then again, it is not that much.
|
||||||
|
|
||||||
|
|
||||||
|
Correcting errors
|
||||||
|
=================
|
||||||
|
|
||||||
|
For correcting errors I again used the ST application note as a starter,
|
||||||
|
but I also peeked at the existing code.
|
||||||
|
The algorithm itself is pretty straightforward. Just xor the given and
|
||||||
|
the calculated ecc. If all bytes are 0 there is no problem. If 11 bits
|
||||||
|
are 1 we have one correctable bit error. If there is 1 bit 1, we have an
|
||||||
|
error in the given ecc code.
|
||||||
|
It proved to be fastest to do some table lookups. Performance gain
|
||||||
|
introduced by this is about a factor 2 on my system when a repair had to
|
||||||
|
be done, and 1% or so if no repair had to be done.
|
||||||
|
Code size increased from 330 bytes to 686 bytes for this function.
|
||||||
|
(gcc 4.2, -O3)
|
||||||
|
|
||||||
|
|
||||||
|
Conclusion
|
||||||
|
==========
|
||||||
|
|
||||||
|
The gain when calculating the ecc is tremendous. Om my development hardware
|
||||||
|
a speedup of a factor of 18 for ecc calculation was achieved. On a test on an
|
||||||
|
embedded system with a MIPS core a factor 7 was obtained.
|
||||||
|
On a test with a Linksys NSLU2 (ARMv5TE processor) the speedup was a factor
|
||||||
|
5 (big endian mode, gcc 4.1.2, -O3)
|
||||||
|
For correction not much gain could be obtained (as bitflips are rare). Then
|
||||||
|
again there are also much less cycles spent there.
|
||||||
|
|
||||||
|
It seems there is not much more gain possible in this, at least when
|
||||||
|
programmed in C. Of course it might be possible to squeeze something more
|
||||||
|
out of it with an assembler program, but due to pipeline behaviour etc
|
||||||
|
this is very tricky (at least for intel hw).
|
||||||
|
|
||||||
|
Author: Frans Meulenbroeks
|
||||||
|
Copyright (C) 2008 Koninklijke Philips Electronics NV.
|
|
@ -1,13 +1,18 @@
|
||||||
/*
|
/*
|
||||||
* This file contains an ECC algorithm from Toshiba that detects and
|
* This file contains an ECC algorithm that detects and corrects 1 bit
|
||||||
* corrects 1 bit errors in a 256 byte block of data.
|
* errors in a 256 byte block of data.
|
||||||
*
|
*
|
||||||
* drivers/mtd/nand/nand_ecc.c
|
* drivers/mtd/nand/nand_ecc.c
|
||||||
*
|
*
|
||||||
* Copyright (C) 2000-2004 Steven J. Hill (sjhill@realitydiluted.com)
|
* Copyright (C) 2008 Koninklijke Philips Electronics NV.
|
||||||
* Toshiba America Electronics Components, Inc.
|
* Author: Frans Meulenbroeks
|
||||||
*
|
*
|
||||||
* Copyright (C) 2006 Thomas Gleixner <tglx@linutronix.de>
|
* Completely replaces the previous ECC implementation which was written by:
|
||||||
|
* Steven J. Hill (sjhill@realitydiluted.com)
|
||||||
|
* Thomas Gleixner (tglx@linutronix.de)
|
||||||
|
*
|
||||||
|
* Information on how this algorithm works and how it was developed
|
||||||
|
* can be found in Documentation/nand/ecc.txt
|
||||||
*
|
*
|
||||||
* This file is free software; you can redistribute it and/or modify it
|
* This file is free software; you can redistribute it and/or modify it
|
||||||
* under the terms of the GNU General Public License as published by the
|
* under the terms of the GNU General Public License as published by the
|
||||||
|
@ -23,174 +28,417 @@
|
||||||
* with this file; if not, write to the Free Software Foundation, Inc.,
|
* with this file; if not, write to the Free Software Foundation, Inc.,
|
||||||
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
|
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
|
||||||
*
|
*
|
||||||
* As a special exception, if other files instantiate templates or use
|
|
||||||
* macros or inline functions from these files, or you compile these
|
|
||||||
* files and link them with other works to produce a work based on these
|
|
||||||
* files, these files do not by themselves cause the resulting work to be
|
|
||||||
* covered by the GNU General Public License. However the source code for
|
|
||||||
* these files must still be made available in accordance with section (3)
|
|
||||||
* of the GNU General Public License.
|
|
||||||
*
|
|
||||||
* This exception does not invalidate any other reasons why a work based on
|
|
||||||
* this file might be covered by the GNU General Public License.
|
|
||||||
*/
|
*/
|
||||||
|
|
||||||
|
/*
|
||||||
|
* The STANDALONE macro is useful when running the code outside the kernel
|
||||||
|
* e.g. when running the code in a testbed or a benchmark program.
|
||||||
|
* When STANDALONE is used, the module related macros are commented out
|
||||||
|
* as well as the linux include files.
|
||||||
|
* Instead a private definition of mtd_into is given to satisfy the compiler
|
||||||
|
* (the code does not use mtd_info, so the code does not care)
|
||||||
|
*/
|
||||||
|
#ifndef STANDALONE
|
||||||
#include <linux/types.h>
|
#include <linux/types.h>
|
||||||
#include <linux/kernel.h>
|
#include <linux/kernel.h>
|
||||||
#include <linux/module.h>
|
#include <linux/module.h>
|
||||||
#include <linux/mtd/nand_ecc.h>
|
#include <linux/mtd/nand_ecc.h>
|
||||||
|
#else
|
||||||
|
typedef uint32_t unsigned long
|
||||||
|
struct mtd_info {
|
||||||
|
int dummy;
|
||||||
|
};
|
||||||
|
#define EXPORT_SYMBOL(x) /* x */
|
||||||
|
|
||||||
|
#define MODULE_LICENSE(x) /* x */
|
||||||
|
#define MODULE_AUTHOR(x) /* x */
|
||||||
|
#define MODULE_DESCRIPTION(x) /* x */
|
||||||
|
#endif
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Pre-calculated 256-way 1 byte column parity
|
* invparity is a 256 byte table that contains the odd parity
|
||||||
|
* for each byte. So if the number of bits in a byte is even,
|
||||||
|
* the array element is 1, and when the number of bits is odd
|
||||||
|
* the array eleemnt is 0.
|
||||||
*/
|
*/
|
||||||
static const u_char nand_ecc_precalc_table[] = {
|
static const char invparity[256] = {
|
||||||
0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00,
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
||||||
0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
||||||
0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
||||||
0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
||||||
0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
||||||
0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
||||||
0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
||||||
0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
||||||
0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
||||||
0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
||||||
0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
||||||
0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
||||||
0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
||||||
0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
||||||
0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
||||||
0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
|
||||||
|
};
|
||||||
|
|
||||||
|
/*
|
||||||
|
* bitsperbyte contains the number of bits per byte
|
||||||
|
* this is only used for testing and repairing parity
|
||||||
|
* (a precalculated value slightly improves performance)
|
||||||
|
*/
|
||||||
|
static const char bitsperbyte[256] = {
|
||||||
|
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
|
||||||
|
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
|
||||||
|
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
|
||||||
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
|
||||||
|
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
|
||||||
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
|
||||||
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
|
||||||
|
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
|
||||||
|
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
|
||||||
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
|
||||||
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
|
||||||
|
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
|
||||||
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
|
||||||
|
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
|
||||||
|
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
|
||||||
|
4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8,
|
||||||
|
};
|
||||||
|
|
||||||
|
/*
|
||||||
|
* addressbits is a lookup table to filter out the bits from the xor-ed
|
||||||
|
* ecc data that identify the faulty location.
|
||||||
|
* this is only used for repairing parity
|
||||||
|
* see the comments in nand_correct_data for more details
|
||||||
|
*/
|
||||||
|
static const char addressbits[256] = {
|
||||||
|
0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
|
||||||
|
0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
|
||||||
|
0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
|
||||||
|
0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
|
||||||
|
0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
|
||||||
|
0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
|
||||||
|
0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
|
||||||
|
0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
|
||||||
|
0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
|
||||||
|
0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
|
||||||
|
0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
|
||||||
|
0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
|
||||||
|
0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
|
||||||
|
0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
|
||||||
|
0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
|
||||||
|
0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
|
||||||
|
0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
|
||||||
|
0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
|
||||||
|
0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
|
||||||
|
0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
|
||||||
|
0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
|
||||||
|
0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
|
||||||
|
0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
|
||||||
|
0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
|
||||||
|
0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
|
||||||
|
0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
|
||||||
|
0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
|
||||||
|
0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
|
||||||
|
0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
|
||||||
|
0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
|
||||||
|
0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
|
||||||
|
0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f
|
||||||
};
|
};
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256-byte block
|
* nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256-byte block
|
||||||
* @mtd: MTD block structure
|
* @mtd: MTD block structure (unused)
|
||||||
* @dat: raw data
|
* @dat: raw data
|
||||||
* @ecc_code: buffer for ECC
|
* @ecc_code: buffer for ECC
|
||||||
*/
|
*/
|
||||||
int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
|
int nand_calculate_ecc(struct mtd_info *mtd, const unsigned char *buf,
|
||||||
u_char *ecc_code)
|
unsigned char *code)
|
||||||
{
|
{
|
||||||
uint8_t idx, reg1, reg2, reg3, tmp1, tmp2;
|
|
||||||
int i;
|
int i;
|
||||||
|
const uint32_t *bp = (uint32_t *)buf;
|
||||||
|
uint32_t cur; /* current value in buffer */
|
||||||
|
/* rp0..rp15 are the various accumulated parities (per byte) */
|
||||||
|
uint32_t rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
|
||||||
|
uint32_t rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15;
|
||||||
|
uint32_t par; /* the cumulative parity for all data */
|
||||||
|
uint32_t tmppar; /* the cumulative parity for this iteration;
|
||||||
|
for rp12 and rp14 at the end of the loop */
|
||||||
|
|
||||||
/* Initialize variables */
|
par = 0;
|
||||||
reg1 = reg2 = reg3 = 0;
|
rp4 = 0;
|
||||||
|
rp6 = 0;
|
||||||
|
rp8 = 0;
|
||||||
|
rp10 = 0;
|
||||||
|
rp12 = 0;
|
||||||
|
rp14 = 0;
|
||||||
|
|
||||||
/* Build up column parity */
|
/*
|
||||||
for(i = 0; i < 256; i++) {
|
* The loop is unrolled a number of times;
|
||||||
/* Get CP0 - CP5 from table */
|
* This avoids if statements to decide on which rp value to update
|
||||||
idx = nand_ecc_precalc_table[*dat++];
|
* Also we process the data by longwords.
|
||||||
reg1 ^= (idx & 0x3f);
|
* Note: passing unaligned data might give a performance penalty.
|
||||||
|
* It is assumed that the buffers are aligned.
|
||||||
|
* tmppar is the cumulative sum of this iteration.
|
||||||
|
* needed for calculating rp12, rp14 and par
|
||||||
|
* also used as a performance improvement for rp6, rp8 and rp10
|
||||||
|
*/
|
||||||
|
for (i = 0; i < 4; i++) {
|
||||||
|
cur = *bp++;
|
||||||
|
tmppar = cur;
|
||||||
|
rp4 ^= cur;
|
||||||
|
cur = *bp++;
|
||||||
|
tmppar ^= cur;
|
||||||
|
rp6 ^= tmppar;
|
||||||
|
cur = *bp++;
|
||||||
|
tmppar ^= cur;
|
||||||
|
rp4 ^= cur;
|
||||||
|
cur = *bp++;
|
||||||
|
tmppar ^= cur;
|
||||||
|
rp8 ^= tmppar;
|
||||||
|
|
||||||
/* All bit XOR = 1 ? */
|
cur = *bp++;
|
||||||
if (idx & 0x40) {
|
tmppar ^= cur;
|
||||||
reg3 ^= (uint8_t) i;
|
rp4 ^= cur;
|
||||||
reg2 ^= ~((uint8_t) i);
|
rp6 ^= cur;
|
||||||
}
|
cur = *bp++;
|
||||||
|
tmppar ^= cur;
|
||||||
|
rp6 ^= cur;
|
||||||
|
cur = *bp++;
|
||||||
|
tmppar ^= cur;
|
||||||
|
rp4 ^= cur;
|
||||||
|
cur = *bp++;
|
||||||
|
tmppar ^= cur;
|
||||||
|
rp10 ^= tmppar;
|
||||||
|
|
||||||
|
cur = *bp++;
|
||||||
|
tmppar ^= cur;
|
||||||
|
rp4 ^= cur;
|
||||||
|
rp6 ^= cur;
|
||||||
|
rp8 ^= cur;
|
||||||
|
cur = *bp++;
|
||||||
|
tmppar ^= cur;
|
||||||
|
rp6 ^= cur;
|
||||||
|
rp8 ^= cur;
|
||||||
|
cur = *bp++;
|
||||||
|
tmppar ^= cur;
|
||||||
|
rp4 ^= cur;
|
||||||
|
rp8 ^= cur;
|
||||||
|
cur = *bp++;
|
||||||
|
tmppar ^= cur;
|
||||||
|
rp8 ^= cur;
|
||||||
|
|
||||||
|
cur = *bp++;
|
||||||
|
tmppar ^= cur;
|
||||||
|
rp4 ^= cur;
|
||||||
|
rp6 ^= cur;
|
||||||
|
cur = *bp++;
|
||||||
|
tmppar ^= cur;
|
||||||
|
rp6 ^= cur;
|
||||||
|
cur = *bp++;
|
||||||
|
tmppar ^= cur;
|
||||||
|
rp4 ^= cur;
|
||||||
|
cur = *bp++;
|
||||||
|
tmppar ^= cur;
|
||||||
|
|
||||||
|
par ^= tmppar;
|
||||||
|
if ((i & 0x1) == 0)
|
||||||
|
rp12 ^= tmppar;
|
||||||
|
if ((i & 0x2) == 0)
|
||||||
|
rp14 ^= tmppar;
|
||||||
}
|
}
|
||||||
|
|
||||||
/* Create non-inverted ECC code from line parity */
|
/*
|
||||||
tmp1 = (reg3 & 0x80) >> 0; /* B7 -> B7 */
|
* handle the fact that we use longword operations
|
||||||
tmp1 |= (reg2 & 0x80) >> 1; /* B7 -> B6 */
|
* we'll bring rp4..rp14 back to single byte entities by shifting and
|
||||||
tmp1 |= (reg3 & 0x40) >> 1; /* B6 -> B5 */
|
* xoring first fold the upper and lower 16 bits,
|
||||||
tmp1 |= (reg2 & 0x40) >> 2; /* B6 -> B4 */
|
* then the upper and lower 8 bits.
|
||||||
tmp1 |= (reg3 & 0x20) >> 2; /* B5 -> B3 */
|
*/
|
||||||
tmp1 |= (reg2 & 0x20) >> 3; /* B5 -> B2 */
|
rp4 ^= (rp4 >> 16);
|
||||||
tmp1 |= (reg3 & 0x10) >> 3; /* B4 -> B1 */
|
rp4 ^= (rp4 >> 8);
|
||||||
tmp1 |= (reg2 & 0x10) >> 4; /* B4 -> B0 */
|
rp4 &= 0xff;
|
||||||
|
rp6 ^= (rp6 >> 16);
|
||||||
|
rp6 ^= (rp6 >> 8);
|
||||||
|
rp6 &= 0xff;
|
||||||
|
rp8 ^= (rp8 >> 16);
|
||||||
|
rp8 ^= (rp8 >> 8);
|
||||||
|
rp8 &= 0xff;
|
||||||
|
rp10 ^= (rp10 >> 16);
|
||||||
|
rp10 ^= (rp10 >> 8);
|
||||||
|
rp10 &= 0xff;
|
||||||
|
rp12 ^= (rp12 >> 16);
|
||||||
|
rp12 ^= (rp12 >> 8);
|
||||||
|
rp12 &= 0xff;
|
||||||
|
rp14 ^= (rp14 >> 16);
|
||||||
|
rp14 ^= (rp14 >> 8);
|
||||||
|
rp14 &= 0xff;
|
||||||
|
|
||||||
tmp2 = (reg3 & 0x08) << 4; /* B3 -> B7 */
|
/*
|
||||||
tmp2 |= (reg2 & 0x08) << 3; /* B3 -> B6 */
|
* we also need to calculate the row parity for rp0..rp3
|
||||||
tmp2 |= (reg3 & 0x04) << 3; /* B2 -> B5 */
|
* This is present in par, because par is now
|
||||||
tmp2 |= (reg2 & 0x04) << 2; /* B2 -> B4 */
|
* rp3 rp3 rp2 rp2
|
||||||
tmp2 |= (reg3 & 0x02) << 2; /* B1 -> B3 */
|
* as well as
|
||||||
tmp2 |= (reg2 & 0x02) << 1; /* B1 -> B2 */
|
* rp1 rp0 rp1 rp0
|
||||||
tmp2 |= (reg3 & 0x01) << 1; /* B0 -> B1 */
|
* First calculate rp2 and rp3
|
||||||
tmp2 |= (reg2 & 0x01) << 0; /* B7 -> B0 */
|
* (and yes: rp2 = (par ^ rp3) & 0xff; but doing that did not
|
||||||
|
* give a performance improvement)
|
||||||
|
*/
|
||||||
|
rp3 = (par >> 16);
|
||||||
|
rp3 ^= (rp3 >> 8);
|
||||||
|
rp3 &= 0xff;
|
||||||
|
rp2 = par & 0xffff;
|
||||||
|
rp2 ^= (rp2 >> 8);
|
||||||
|
rp2 &= 0xff;
|
||||||
|
|
||||||
/* Calculate final ECC code */
|
/* reduce par to 16 bits then calculate rp1 and rp0 */
|
||||||
|
par ^= (par >> 16);
|
||||||
|
rp1 = (par >> 8) & 0xff;
|
||||||
|
rp0 = (par & 0xff);
|
||||||
|
|
||||||
|
/* finally reduce par to 8 bits */
|
||||||
|
par ^= (par >> 8);
|
||||||
|
par &= 0xff;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* and calculate rp5..rp15
|
||||||
|
* note that par = rp4 ^ rp5 and due to the commutative property
|
||||||
|
* of the ^ operator we can say:
|
||||||
|
* rp5 = (par ^ rp4);
|
||||||
|
* The & 0xff seems superfluous, but benchmarking learned that
|
||||||
|
* leaving it out gives slightly worse results. No idea why, probably
|
||||||
|
* it has to do with the way the pipeline in pentium is organized.
|
||||||
|
*/
|
||||||
|
rp5 = (par ^ rp4) & 0xff;
|
||||||
|
rp7 = (par ^ rp6) & 0xff;
|
||||||
|
rp9 = (par ^ rp8) & 0xff;
|
||||||
|
rp11 = (par ^ rp10) & 0xff;
|
||||||
|
rp13 = (par ^ rp12) & 0xff;
|
||||||
|
rp15 = (par ^ rp14) & 0xff;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Finally calculate the ecc bits.
|
||||||
|
* Again here it might seem that there are performance optimisations
|
||||||
|
* possible, but benchmarks showed that on the system this is developed
|
||||||
|
* the code below is the fastest
|
||||||
|
*/
|
||||||
#ifdef CONFIG_MTD_NAND_ECC_SMC
|
#ifdef CONFIG_MTD_NAND_ECC_SMC
|
||||||
ecc_code[0] = ~tmp2;
|
code[0] =
|
||||||
ecc_code[1] = ~tmp1;
|
(invparity[rp7] << 7) |
|
||||||
|
(invparity[rp6] << 6) |
|
||||||
|
(invparity[rp5] << 5) |
|
||||||
|
(invparity[rp4] << 4) |
|
||||||
|
(invparity[rp3] << 3) |
|
||||||
|
(invparity[rp2] << 2) |
|
||||||
|
(invparity[rp1] << 1) |
|
||||||
|
(invparity[rp0]);
|
||||||
|
code[1] =
|
||||||
|
(invparity[rp15] << 7) |
|
||||||
|
(invparity[rp14] << 6) |
|
||||||
|
(invparity[rp13] << 5) |
|
||||||
|
(invparity[rp12] << 4) |
|
||||||
|
(invparity[rp11] << 3) |
|
||||||
|
(invparity[rp10] << 2) |
|
||||||
|
(invparity[rp9] << 1) |
|
||||||
|
(invparity[rp8]);
|
||||||
#else
|
#else
|
||||||
ecc_code[0] = ~tmp1;
|
code[1] =
|
||||||
ecc_code[1] = ~tmp2;
|
(invparity[rp7] << 7) |
|
||||||
|
(invparity[rp6] << 6) |
|
||||||
|
(invparity[rp5] << 5) |
|
||||||
|
(invparity[rp4] << 4) |
|
||||||
|
(invparity[rp3] << 3) |
|
||||||
|
(invparity[rp2] << 2) |
|
||||||
|
(invparity[rp1] << 1) |
|
||||||
|
(invparity[rp0]);
|
||||||
|
code[0] =
|
||||||
|
(invparity[rp15] << 7) |
|
||||||
|
(invparity[rp14] << 6) |
|
||||||
|
(invparity[rp13] << 5) |
|
||||||
|
(invparity[rp12] << 4) |
|
||||||
|
(invparity[rp11] << 3) |
|
||||||
|
(invparity[rp10] << 2) |
|
||||||
|
(invparity[rp9] << 1) |
|
||||||
|
(invparity[rp8]);
|
||||||
#endif
|
#endif
|
||||||
ecc_code[2] = ((~reg1) << 2) | 0x03;
|
code[2] =
|
||||||
|
(invparity[par & 0xf0] << 7) |
|
||||||
|
(invparity[par & 0x0f] << 6) |
|
||||||
|
(invparity[par & 0xcc] << 5) |
|
||||||
|
(invparity[par & 0x33] << 4) |
|
||||||
|
(invparity[par & 0xaa] << 3) |
|
||||||
|
(invparity[par & 0x55] << 2) |
|
||||||
|
3;
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
EXPORT_SYMBOL(nand_calculate_ecc);
|
EXPORT_SYMBOL(nand_calculate_ecc);
|
||||||
|
|
||||||
static inline int countbits(uint32_t byte)
|
|
||||||
{
|
|
||||||
int res = 0;
|
|
||||||
|
|
||||||
for (;byte; byte >>= 1)
|
|
||||||
res += byte & 0x01;
|
|
||||||
return res;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* nand_correct_data - [NAND Interface] Detect and correct bit error(s)
|
* nand_correct_data - [NAND Interface] Detect and correct bit error(s)
|
||||||
* @mtd: MTD block structure
|
* @mtd: MTD block structure (unused)
|
||||||
* @dat: raw data read from the chip
|
* @dat: raw data read from the chip
|
||||||
* @read_ecc: ECC from the chip
|
* @read_ecc: ECC from the chip
|
||||||
* @calc_ecc: the ECC calculated from raw data
|
* @calc_ecc: the ECC calculated from raw data
|
||||||
*
|
*
|
||||||
* Detect and correct a 1 bit error for 256 byte block
|
* Detect and correct a 1 bit error for 256 byte block
|
||||||
*/
|
*/
|
||||||
int nand_correct_data(struct mtd_info *mtd, u_char *dat,
|
int nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
|
||||||
u_char *read_ecc, u_char *calc_ecc)
|
unsigned char *read_ecc, unsigned char *calc_ecc)
|
||||||
{
|
{
|
||||||
uint8_t s0, s1, s2;
|
int nr_bits;
|
||||||
|
unsigned char b0, b1, b2;
|
||||||
|
unsigned char byte_addr, bit_addr;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* b0 to b2 indicate which bit is faulty (if any)
|
||||||
|
* we might need the xor result more than once,
|
||||||
|
* so keep them in a local var
|
||||||
|
*/
|
||||||
#ifdef CONFIG_MTD_NAND_ECC_SMC
|
#ifdef CONFIG_MTD_NAND_ECC_SMC
|
||||||
s0 = calc_ecc[0] ^ read_ecc[0];
|
b0 = read_ecc[0] ^ calc_ecc[0];
|
||||||
s1 = calc_ecc[1] ^ read_ecc[1];
|
b1 = read_ecc[1] ^ calc_ecc[1];
|
||||||
s2 = calc_ecc[2] ^ read_ecc[2];
|
|
||||||
#else
|
#else
|
||||||
s1 = calc_ecc[0] ^ read_ecc[0];
|
b0 = read_ecc[1] ^ calc_ecc[1];
|
||||||
s0 = calc_ecc[1] ^ read_ecc[1];
|
b1 = read_ecc[0] ^ calc_ecc[0];
|
||||||
s2 = calc_ecc[2] ^ read_ecc[2];
|
|
||||||
#endif
|
#endif
|
||||||
if ((s0 | s1 | s2) == 0)
|
b2 = read_ecc[2] ^ calc_ecc[2];
|
||||||
return 0;
|
|
||||||
|
|
||||||
/* Check for a single bit error */
|
/* check if there are any bitfaults */
|
||||||
if( ((s0 ^ (s0 >> 1)) & 0x55) == 0x55 &&
|
|
||||||
((s1 ^ (s1 >> 1)) & 0x55) == 0x55 &&
|
|
||||||
((s2 ^ (s2 >> 1)) & 0x54) == 0x54) {
|
|
||||||
|
|
||||||
uint32_t byteoffs, bitnum;
|
/* count nr of bits; use table lookup, faster than calculating it */
|
||||||
|
nr_bits = bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2];
|
||||||
|
|
||||||
byteoffs = (s1 << 0) & 0x80;
|
/* repeated if statements are slightly more efficient than switch ... */
|
||||||
byteoffs |= (s1 << 1) & 0x40;
|
/* ordered in order of likelihood */
|
||||||
byteoffs |= (s1 << 2) & 0x20;
|
if (nr_bits == 0)
|
||||||
byteoffs |= (s1 << 3) & 0x10;
|
return (0); /* no error */
|
||||||
|
if (nr_bits == 11) { /* correctable error */
|
||||||
byteoffs |= (s0 >> 4) & 0x08;
|
/*
|
||||||
byteoffs |= (s0 >> 3) & 0x04;
|
* rp15/13/11/9/7/5/3/1 indicate which byte is the faulty byte
|
||||||
byteoffs |= (s0 >> 2) & 0x02;
|
* cp 5/3/1 indicate the faulty bit.
|
||||||
byteoffs |= (s0 >> 1) & 0x01;
|
* A lookup table (called addressbits) is used to filter
|
||||||
|
* the bits from the byte they are in.
|
||||||
bitnum = (s2 >> 5) & 0x04;
|
* A marginal optimisation is possible by having three
|
||||||
bitnum |= (s2 >> 4) & 0x02;
|
* different lookup tables.
|
||||||
bitnum |= (s2 >> 3) & 0x01;
|
* One as we have now (for b0), one for b2
|
||||||
|
* (that would avoid the >> 1), and one for b1 (with all values
|
||||||
dat[byteoffs] ^= (1 << bitnum);
|
* << 4). However it was felt that introducing two more tables
|
||||||
|
* hardly justify the gain.
|
||||||
return 1;
|
*
|
||||||
|
* The b2 shift is there to get rid of the lowest two bits.
|
||||||
|
* We could also do addressbits[b2] >> 1 but for the
|
||||||
|
* performace it does not make any difference
|
||||||
|
*/
|
||||||
|
byte_addr = (addressbits[b1] << 4) + addressbits[b0];
|
||||||
|
bit_addr = addressbits[b2 >> 2];
|
||||||
|
/* flip the bit */
|
||||||
|
buf[byte_addr] ^= (1 << bit_addr);
|
||||||
|
return (1);
|
||||||
}
|
}
|
||||||
|
if (nr_bits == 1)
|
||||||
if(countbits(s0 | ((uint32_t)s1 << 8) | ((uint32_t)s2 <<16)) == 1)
|
return (1); /* error in ecc data; no action needed */
|
||||||
return 1;
|
return -1;
|
||||||
|
|
||||||
return -EBADMSG;
|
|
||||||
}
|
}
|
||||||
EXPORT_SYMBOL(nand_correct_data);
|
EXPORT_SYMBOL(nand_correct_data);
|
||||||
|
|
||||||
MODULE_LICENSE("GPL");
|
MODULE_LICENSE("GPL");
|
||||||
MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
|
MODULE_AUTHOR("Frans Meulenbroeks <fransmeulenbroeks@gmail.com>");
|
||||||
MODULE_DESCRIPTION("Generic NAND ECC support");
|
MODULE_DESCRIPTION("Generic NAND ECC support");
|
||||||
|
|
Loading…
Reference in New Issue