diff --git a/include/linux/freelist.h b/include/linux/freelist.h new file mode 100644 index 000000000000..fc1842b96469 --- /dev/null +++ b/include/linux/freelist.h @@ -0,0 +1,129 @@ +/* SPDX-License-Identifier: GPL-2.0-only OR BSD-2-Clause */ +#ifndef FREELIST_H +#define FREELIST_H + +#include + +/* + * Copyright: cameron@moodycamel.com + * + * A simple CAS-based lock-free free list. Not the fastest thing in the world + * under heavy contention, but simple and correct (assuming nodes are never + * freed until after the free list is destroyed), and fairly speedy under low + * contention. + * + * Adapted from: https://moodycamel.com/blog/2014/solving-the-aba-problem-for-lock-free-free-lists + */ + +struct freelist_node { + atomic_t refs; + struct freelist_node *next; +}; + +struct freelist_head { + struct freelist_node *head; +}; + +#define REFS_ON_FREELIST 0x80000000 +#define REFS_MASK 0x7FFFFFFF + +static inline void __freelist_add(struct freelist_node *node, struct freelist_head *list) +{ + /* + * Since the refcount is zero, and nobody can increase it once it's + * zero (except us, and we run only one copy of this method per node at + * a time, i.e. the single thread case), then we know we can safely + * change the next pointer of the node; however, once the refcount is + * back above zero, then other threads could increase it (happens under + * heavy contention, when the refcount goes to zero in between a load + * and a refcount increment of a node in try_get, then back up to + * something non-zero, then the refcount increment is done by the other + * thread) -- so if the CAS to add the node to the actual list fails, + * decrese the refcount and leave the add operation to the next thread + * who puts the refcount back to zero (which could be us, hence the + * loop). + */ + struct freelist_node *head = READ_ONCE(list->head); + + for (;;) { + WRITE_ONCE(node->next, head); + atomic_set_release(&node->refs, 1); + + if (!try_cmpxchg_release(&list->head, &head, node)) { + /* + * Hmm, the add failed, but we can only try again when + * the refcount goes back to zero. + */ + if (atomic_fetch_add_release(REFS_ON_FREELIST - 1, &node->refs) == 1) + continue; + } + return; + } +} + +static inline void freelist_add(struct freelist_node *node, struct freelist_head *list) +{ + /* + * We know that the should-be-on-freelist bit is 0 at this point, so + * it's safe to set it using a fetch_add. + */ + if (!atomic_fetch_add_release(REFS_ON_FREELIST, &node->refs)) { + /* + * Oh look! We were the last ones referencing this node, and we + * know we want to add it to the free list, so let's do it! + */ + __freelist_add(node, list); + } +} + +static inline struct freelist_node *freelist_try_get(struct freelist_head *list) +{ + struct freelist_node *prev, *next, *head = smp_load_acquire(&list->head); + unsigned int refs; + + while (head) { + prev = head; + refs = atomic_read(&head->refs); + if ((refs & REFS_MASK) == 0 || + !atomic_try_cmpxchg_acquire(&head->refs, &refs, refs+1)) { + head = smp_load_acquire(&list->head); + continue; + } + + /* + * Good, reference count has been incremented (it wasn't at + * zero), which means we can read the next and not worry about + * it changing between now and the time we do the CAS. + */ + next = READ_ONCE(head->next); + if (try_cmpxchg_acquire(&list->head, &head, next)) { + /* + * Yay, got the node. This means it was on the list, + * which means should-be-on-freelist must be false no + * matter the refcount (because nobody else knows it's + * been taken off yet, it can't have been put back on). + */ + WARN_ON_ONCE(atomic_read(&head->refs) & REFS_ON_FREELIST); + + /* + * Decrease refcount twice, once for our ref, and once + * for the list's ref. + */ + atomic_fetch_add(-2, &head->refs); + + return head; + } + + /* + * OK, the head must have changed on us, but we still need to decrement + * the refcount we increased. + */ + refs = atomic_fetch_add(-1, &prev->refs); + if (refs == REFS_ON_FREELIST + 1) + __freelist_add(prev, list); + } + + return NULL; +} + +#endif /* FREELIST_H */