powerpc/mm: Move THP headers around

We support THP only with book3s_64 and 64K page size. Move
THP details to hash64-64k.h to clarify the same.

Acked-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This commit is contained in:
Aneesh Kumar K.V 2015-12-01 09:06:53 +05:30 committed by Michael Ellerman
parent 26a344aea4
commit e34aa03ca4
6 changed files with 201 additions and 423 deletions

View File

@ -170,6 +170,132 @@ static inline int hugepd_ok(hugepd_t hpd)
#endif /* CONFIG_HUGETLB_PAGE */
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
extern unsigned long pmd_hugepage_update(struct mm_struct *mm,
unsigned long addr,
pmd_t *pmdp,
unsigned long clr,
unsigned long set);
static inline char *get_hpte_slot_array(pmd_t *pmdp)
{
/*
* The hpte hindex is stored in the pgtable whose address is in the
* second half of the PMD
*
* Order this load with the test for pmd_trans_huge in the caller
*/
smp_rmb();
return *(char **)(pmdp + PTRS_PER_PMD);
}
/*
* The linux hugepage PMD now include the pmd entries followed by the address
* to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits.
* [ 1 bit secondary | 3 bit hidx | 1 bit valid | 000]. We use one byte per
* each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and
* with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t.
*
* The last three bits are intentionally left to zero. This memory location
* are also used as normal page PTE pointers. So if we have any pointers
* left around while we collapse a hugepage, we need to make sure
* _PAGE_PRESENT bit of that is zero when we look at them
*/
static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
{
return (hpte_slot_array[index] >> 3) & 0x1;
}
static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
int index)
{
return hpte_slot_array[index] >> 4;
}
static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
unsigned int index, unsigned int hidx)
{
hpte_slot_array[index] = hidx << 4 | 0x1 << 3;
}
/*
*
* For core kernel code by design pmd_trans_huge is never run on any hugetlbfs
* page. The hugetlbfs page table walking and mangling paths are totally
* separated form the core VM paths and they're differentiated by
* VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run.
*
* pmd_trans_huge() is defined as false at build time if
* CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build
* time in such case.
*
* For ppc64 we need to differntiate from explicit hugepages from THP, because
* for THP we also track the subpage details at the pmd level. We don't do
* that for explicit huge pages.
*
*/
static inline int pmd_trans_huge(pmd_t pmd)
{
/*
* leaf pte for huge page, bottom two bits != 00
*/
return (pmd_val(pmd) & 0x3) && (pmd_val(pmd) & _PAGE_THP_HUGE);
}
static inline int pmd_trans_splitting(pmd_t pmd)
{
if (pmd_trans_huge(pmd))
return pmd_val(pmd) & _PAGE_SPLITTING;
return 0;
}
static inline int pmd_large(pmd_t pmd)
{
/*
* leaf pte for huge page, bottom two bits != 00
*/
return ((pmd_val(pmd) & 0x3) != 0x0);
}
static inline pmd_t pmd_mknotpresent(pmd_t pmd)
{
return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
}
static inline pmd_t pmd_mksplitting(pmd_t pmd)
{
return __pmd(pmd_val(pmd) | _PAGE_SPLITTING);
}
#define __HAVE_ARCH_PMD_SAME
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
{
return (((pmd_val(pmd_a) ^ pmd_val(pmd_b)) & ~_PAGE_HPTEFLAGS) == 0);
}
static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
unsigned long addr, pmd_t *pmdp)
{
unsigned long old;
if ((pmd_val(*pmdp) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
return 0;
old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
return ((old & _PAGE_ACCESSED) != 0);
}
#define __HAVE_ARCH_PMDP_SET_WRPROTECT
static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp)
{
if ((pmd_val(*pmdp) & _PAGE_RW) == 0)
return;
pmd_hugepage_update(mm, addr, pmdp, _PAGE_RW, 0);
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#endif /* __ASSEMBLY__ */
#endif /* _ASM_POWERPC_BOOK3S_64_HASH_64K_H */

View File

@ -2,6 +2,55 @@
#define _ASM_POWERPC_BOOK3S_64_HASH_H
#ifdef __KERNEL__
/*
* Common bits between 4K and 64K pages in a linux-style PTE.
* These match the bits in the (hardware-defined) PowerPC PTE as closely
* as possible. Additional bits may be defined in pgtable-hash64-*.h
*
* Note: We only support user read/write permissions. Supervisor always
* have full read/write to pages above PAGE_OFFSET (pages below that
* always use the user access permissions).
*
* We could create separate kernel read-only if we used the 3 PP bits
* combinations that newer processors provide but we currently don't.
*/
#define _PAGE_PRESENT 0x00001 /* software: pte contains a translation */
#define _PAGE_USER 0x00002 /* matches one of the PP bits */
#define _PAGE_BIT_SWAP_TYPE 2
#define _PAGE_EXEC 0x00004 /* No execute on POWER4 and newer (we invert) */
#define _PAGE_GUARDED 0x00008
/* We can derive Memory coherence from _PAGE_NO_CACHE */
#define _PAGE_COHERENT 0x0
#define _PAGE_NO_CACHE 0x00020 /* I: cache inhibit */
#define _PAGE_WRITETHRU 0x00040 /* W: cache write-through */
#define _PAGE_DIRTY 0x00080 /* C: page changed */
#define _PAGE_ACCESSED 0x00100 /* R: page referenced */
#define _PAGE_RW 0x00200 /* software: user write access allowed */
#define _PAGE_HASHPTE 0x00400 /* software: pte has an associated HPTE */
#define _PAGE_BUSY 0x00800 /* software: PTE & hash are busy */
#define _PAGE_F_GIX 0x07000 /* full page: hidx bits */
#define _PAGE_F_GIX_SHIFT 12
#define _PAGE_F_SECOND 0x08000 /* Whether to use secondary hash or not */
#define _PAGE_SPECIAL 0x10000 /* software: special page */
/*
* THP pages can't be special. So use the _PAGE_SPECIAL
*/
#define _PAGE_SPLITTING _PAGE_SPECIAL
/*
* We need to differentiate between explicit huge page and THP huge
* page, since THP huge page also need to track real subpage details
*/
#define _PAGE_THP_HUGE _PAGE_4K_PFN
/*
* set of bits not changed in pmd_modify.
*/
#define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | \
_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPLITTING | \
_PAGE_THP_HUGE)
#ifdef CONFIG_PPC_64K_PAGES
#include <asm/book3s/64/hash-64k.h>
#else
@ -57,36 +106,6 @@
#define HAVE_ARCH_UNMAPPED_AREA
#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
#endif /* CONFIG_PPC_MM_SLICES */
/*
* Common bits between 4K and 64K pages in a linux-style PTE.
* These match the bits in the (hardware-defined) PowerPC PTE as closely
* as possible. Additional bits may be defined in pgtable-hash64-*.h
*
* Note: We only support user read/write permissions. Supervisor always
* have full read/write to pages above PAGE_OFFSET (pages below that
* always use the user access permissions).
*
* We could create separate kernel read-only if we used the 3 PP bits
* combinations that newer processors provide but we currently don't.
*/
#define _PAGE_PRESENT 0x00001 /* software: pte contains a translation */
#define _PAGE_USER 0x00002 /* matches one of the PP bits */
#define _PAGE_BIT_SWAP_TYPE 2
#define _PAGE_EXEC 0x00004 /* No execute on POWER4 and newer (we invert) */
#define _PAGE_GUARDED 0x00008
/* We can derive Memory coherence from _PAGE_NO_CACHE */
#define _PAGE_COHERENT 0x0
#define _PAGE_NO_CACHE 0x00020 /* I: cache inhibit */
#define _PAGE_WRITETHRU 0x00040 /* W: cache write-through */
#define _PAGE_DIRTY 0x00080 /* C: page changed */
#define _PAGE_ACCESSED 0x00100 /* R: page referenced */
#define _PAGE_RW 0x00200 /* software: user write access allowed */
#define _PAGE_HASHPTE 0x00400 /* software: pte has an associated HPTE */
#define _PAGE_BUSY 0x00800 /* software: PTE & hash are busy */
#define _PAGE_F_GIX 0x07000 /* full page: hidx bits */
#define _PAGE_F_GIX_SHIFT 12
#define _PAGE_F_SECOND 0x08000 /* Whether to use secondary hash or not */
#define _PAGE_SPECIAL 0x10000 /* software: special page */
/* No separate kernel read-only */
#define _PAGE_KERNEL_RW (_PAGE_RW | _PAGE_DIRTY) /* user access blocked by key */
@ -105,24 +124,6 @@
/* Hash table based platforms need atomic updates of the linux PTE */
#define PTE_ATOMIC_UPDATES 1
/*
* THP pages can't be special. So use the _PAGE_SPECIAL
*/
#define _PAGE_SPLITTING _PAGE_SPECIAL
/*
* We need to differentiate between explicit huge page and THP huge
* page, since THP huge page also need to track real subpage details
*/
#define _PAGE_THP_HUGE _PAGE_4K_PFN
/*
* set of bits not changed in pmd_modify.
*/
#define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | \
_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPLITTING | \
_PAGE_THP_HUGE)
#define _PTE_NONE_MASK _PAGE_HPTEFLAGS
/*
* The mask convered by the RPN must be a ULL on 32-bit platforms with
@ -231,11 +232,6 @@
extern void hpte_need_flush(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, unsigned long pte, int huge);
extern unsigned long pmd_hugepage_update(struct mm_struct *mm,
unsigned long addr,
pmd_t *pmdp,
unsigned long clr,
unsigned long set);
extern unsigned long htab_convert_pte_flags(unsigned long pteflags);
/* Atomic PTE updates */
static inline unsigned long pte_update(struct mm_struct *mm,
@ -361,127 +357,6 @@ static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry)
#define __HAVE_ARCH_PTE_SAME
#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
static inline char *get_hpte_slot_array(pmd_t *pmdp)
{
/*
* The hpte hindex is stored in the pgtable whose address is in the
* second half of the PMD
*
* Order this load with the test for pmd_trans_huge in the caller
*/
smp_rmb();
return *(char **)(pmdp + PTRS_PER_PMD);
}
/*
* The linux hugepage PMD now include the pmd entries followed by the address
* to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits.
* [ 1 bit secondary | 3 bit hidx | 1 bit valid | 000]. We use one byte per
* each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and
* with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t.
*
* The last three bits are intentionally left to zero. This memory location
* are also used as normal page PTE pointers. So if we have any pointers
* left around while we collapse a hugepage, we need to make sure
* _PAGE_PRESENT bit of that is zero when we look at them
*/
static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
{
return (hpte_slot_array[index] >> 3) & 0x1;
}
static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
int index)
{
return hpte_slot_array[index] >> 4;
}
static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
unsigned int index, unsigned int hidx)
{
hpte_slot_array[index] = hidx << 4 | 0x1 << 3;
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
*
* For core kernel code by design pmd_trans_huge is never run on any hugetlbfs
* page. The hugetlbfs page table walking and mangling paths are totally
* separated form the core VM paths and they're differentiated by
* VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run.
*
* pmd_trans_huge() is defined as false at build time if
* CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build
* time in such case.
*
* For ppc64 we need to differntiate from explicit hugepages from THP, because
* for THP we also track the subpage details at the pmd level. We don't do
* that for explicit huge pages.
*
*/
static inline int pmd_trans_huge(pmd_t pmd)
{
/*
* leaf pte for huge page, bottom two bits != 00
*/
return (pmd_val(pmd) & 0x3) && (pmd_val(pmd) & _PAGE_THP_HUGE);
}
static inline int pmd_trans_splitting(pmd_t pmd)
{
if (pmd_trans_huge(pmd))
return pmd_val(pmd) & _PAGE_SPLITTING;
return 0;
}
#endif
static inline int pmd_large(pmd_t pmd)
{
/*
* leaf pte for huge page, bottom two bits != 00
*/
return ((pmd_val(pmd) & 0x3) != 0x0);
}
static inline pmd_t pmd_mknotpresent(pmd_t pmd)
{
return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
}
static inline pmd_t pmd_mksplitting(pmd_t pmd)
{
return __pmd(pmd_val(pmd) | _PAGE_SPLITTING);
}
#define __HAVE_ARCH_PMD_SAME
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
{
return (((pmd_val(pmd_a) ^ pmd_val(pmd_b)) & ~_PAGE_HPTEFLAGS) == 0);
}
static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
unsigned long addr, pmd_t *pmdp)
{
unsigned long old;
if ((pmd_val(*pmdp) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
return 0;
old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
return ((old & _PAGE_ACCESSED) != 0);
}
#define __HAVE_ARCH_PMDP_SET_WRPROTECT
static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp)
{
if ((pmd_val(*pmdp) & _PAGE_RW) == 0)
return;
pmd_hugepage_update(mm, addr, pmdp, _PAGE_RW, 0);
}
/* Generic accessors to PTE bits */
static inline int pte_write(pte_t pte) { return !!(pte_val(pte) & _PAGE_RW);}
static inline int pte_dirty(pte_t pte) { return !!(pte_val(pte) & _PAGE_DIRTY); }

View File

@ -154,6 +154,11 @@ static inline void pmd_clear(pmd_t *pmdp)
*pmdp = __pmd(0);
}
static inline pte_t pmd_pte(pmd_t pmd)
{
return __pte(pmd_val(pmd));
}
#define pmd_none(pmd) (!pmd_val(pmd))
#define pmd_bad(pmd) (!is_kernel_addr(pmd_val(pmd)) \
|| (pmd_val(pmd) & PMD_BAD_BITS))
@ -389,252 +394,4 @@ void pgtable_cache_add(unsigned shift, void (*ctor)(void *));
void pgtable_cache_init(void);
#endif /* __ASSEMBLY__ */
/*
* THP pages can't be special. So use the _PAGE_SPECIAL
*/
#define _PAGE_SPLITTING _PAGE_SPECIAL
/*
* We need to differentiate between explicit huge page and THP huge
* page, since THP huge page also need to track real subpage details
*/
#define _PAGE_THP_HUGE _PAGE_4K_PFN
/*
* set of bits not changed in pmd_modify.
*/
#define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | \
_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPLITTING | \
_PAGE_THP_HUGE)
#ifndef __ASSEMBLY__
/*
* The linux hugepage PMD now include the pmd entries followed by the address
* to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits.
* [ 1 bit secondary | 3 bit hidx | 1 bit valid | 000]. We use one byte per
* each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and
* with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t.
*
* The last three bits are intentionally left to zero. This memory location
* are also used as normal page PTE pointers. So if we have any pointers
* left around while we collapse a hugepage, we need to make sure
* _PAGE_PRESENT bit of that is zero when we look at them
*/
static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
{
return (hpte_slot_array[index] >> 3) & 0x1;
}
static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
int index)
{
return hpte_slot_array[index] >> 4;
}
static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
unsigned int index, unsigned int hidx)
{
hpte_slot_array[index] = hidx << 4 | 0x1 << 3;
}
struct page *realmode_pfn_to_page(unsigned long pfn);
static inline char *get_hpte_slot_array(pmd_t *pmdp)
{
/*
* The hpte hindex is stored in the pgtable whose address is in the
* second half of the PMD
*
* Order this load with the test for pmd_trans_huge in the caller
*/
smp_rmb();
return *(char **)(pmdp + PTRS_PER_PMD);
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
extern void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp, unsigned long old_pmd);
extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp, pmd_t pmd);
extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
pmd_t *pmd);
/*
*
* For core kernel code by design pmd_trans_huge is never run on any hugetlbfs
* page. The hugetlbfs page table walking and mangling paths are totally
* separated form the core VM paths and they're differentiated by
* VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run.
*
* pmd_trans_huge() is defined as false at build time if
* CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build
* time in such case.
*
* For ppc64 we need to differntiate from explicit hugepages from THP, because
* for THP we also track the subpage details at the pmd level. We don't do
* that for explicit huge pages.
*
*/
static inline int pmd_trans_huge(pmd_t pmd)
{
/*
* leaf pte for huge page, bottom two bits != 00
*/
return (pmd_val(pmd) & 0x3) && (pmd_val(pmd) & _PAGE_THP_HUGE);
}
static inline int pmd_trans_splitting(pmd_t pmd)
{
if (pmd_trans_huge(pmd))
return pmd_val(pmd) & _PAGE_SPLITTING;
return 0;
}
extern int has_transparent_hugepage(void);
#else
static inline void hpte_do_hugepage_flush(struct mm_struct *mm,
unsigned long addr, pmd_t *pmdp,
unsigned long old_pmd)
{
WARN(1, "%s called with THP disabled\n", __func__);
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
static inline int pmd_large(pmd_t pmd)
{
/*
* leaf pte for huge page, bottom two bits != 00
*/
return ((pmd_val(pmd) & 0x3) != 0x0);
}
static inline pte_t pmd_pte(pmd_t pmd)
{
return __pte(pmd_val(pmd));
}
static inline pmd_t pte_pmd(pte_t pte)
{
return __pmd(pte_val(pte));
}
static inline pte_t *pmdp_ptep(pmd_t *pmd)
{
return (pte_t *)pmd;
}
#define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd))
#define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
#define pmd_young(pmd) pte_young(pmd_pte(pmd))
#define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
#define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
#define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
#define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
#define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
#define __HAVE_ARCH_PMD_WRITE
#define pmd_write(pmd) pte_write(pmd_pte(pmd))
static inline pmd_t pmd_mkhuge(pmd_t pmd)
{
/* Do nothing, mk_pmd() does this part. */
return pmd;
}
static inline pmd_t pmd_mknotpresent(pmd_t pmd)
{
return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
}
static inline pmd_t pmd_mksplitting(pmd_t pmd)
{
return __pmd(pmd_val(pmd) | _PAGE_SPLITTING);
}
#define __HAVE_ARCH_PMD_SAME
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
{
return (((pmd_val(pmd_a) ^ pmd_val(pmd_b)) & ~_PAGE_HPTEFLAGS) == 0);
}
#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
extern int pmdp_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp,
pmd_t entry, int dirty);
extern unsigned long pmd_hugepage_update(struct mm_struct *mm,
unsigned long addr,
pmd_t *pmdp,
unsigned long clr,
unsigned long set);
static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
unsigned long addr, pmd_t *pmdp)
{
unsigned long old;
if ((pmd_val(*pmdp) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
return 0;
old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
return ((old & _PAGE_ACCESSED) != 0);
}
#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp);
#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp);
#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
extern pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
unsigned long addr, pmd_t *pmdp);
#define __HAVE_ARCH_PMDP_SET_WRPROTECT
static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp)
{
if ((pmd_val(*pmdp) & _PAGE_RW) == 0)
return;
pmd_hugepage_update(mm, addr, pmdp, _PAGE_RW, 0);
}
#define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
extern void pmdp_splitting_flush(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp);
extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp);
#define pmdp_collapse_flush pmdp_collapse_flush
#define __HAVE_ARCH_PGTABLE_DEPOSIT
extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
pgtable_t pgtable);
#define __HAVE_ARCH_PGTABLE_WITHDRAW
extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
#define __HAVE_ARCH_PMDP_INVALIDATE
extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
pmd_t *pmdp);
#define pmd_move_must_withdraw pmd_move_must_withdraw
struct spinlock;
static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
struct spinlock *old_pmd_ptl)
{
/*
* Archs like ppc64 use pgtable to store per pmd
* specific information. So when we switch the pmd,
* we should also withdraw and deposit the pgtable
*/
return true;
}
#endif /* __ASSEMBLY__ */
#endif /* _ASM_POWERPC_NOHASH_64_PGTABLE_H */

View File

@ -429,6 +429,7 @@ static void native_hpte_invalidate(unsigned long slot, unsigned long vpn,
local_irq_restore(flags);
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void native_hugepage_invalidate(unsigned long vsid,
unsigned long addr,
unsigned char *hpte_slot_array,
@ -482,6 +483,15 @@ static void native_hugepage_invalidate(unsigned long vsid,
}
local_irq_restore(flags);
}
#else
static void native_hugepage_invalidate(unsigned long vsid,
unsigned long addr,
unsigned char *hpte_slot_array,
int psize, int ssize, int local)
{
WARN(1, "%s called without THP support\n", __func__);
}
#endif
static inline int __hpte_actual_psize(unsigned int lp, int psize)
{

View File

@ -359,7 +359,7 @@ struct page *pud_page(pud_t pud)
struct page *pmd_page(pmd_t pmd)
{
if (pmd_trans_huge(pmd) || pmd_huge(pmd))
return pfn_to_page(pmd_pfn(pmd));
return pte_page(pmd_pte(pmd));
return virt_to_page(pmd_page_vaddr(pmd));
}

View File

@ -396,6 +396,7 @@ static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn,
BUG_ON(lpar_rc != H_SUCCESS);
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
* Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need
* to make sure that we avoid bouncing the hypervisor tlbie lock.
@ -494,6 +495,15 @@ static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
__pSeries_lpar_hugepage_invalidate(slot_array, vpn_array,
index, psize, ssize);
}
#else
static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
unsigned long addr,
unsigned char *hpte_slot_array,
int psize, int ssize, int local)
{
WARN(1, "%s called without THP support\n", __func__);
}
#endif
static void pSeries_lpar_hpte_removebolted(unsigned long ea,
int psize, int ssize)