[MIPS] Cleanup hazard handling.
Mostly based on patch by Chris Dearman and cleanups from Yoichi. Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
This commit is contained in:
parent
da79e827d4
commit
d7d86aa88a
|
@ -11,253 +11,54 @@
|
|||
#define _ASM_HAZARDS_H
|
||||
|
||||
|
||||
#ifdef __ASSEMBLY__
|
||||
|
||||
.macro _ssnop
|
||||
sll $0, $0, 1
|
||||
.endm
|
||||
|
||||
.macro _ehb
|
||||
sll $0, $0, 3
|
||||
.endm
|
||||
|
||||
/*
|
||||
* RM9000 hazards. When the JTLB is updated by tlbwi or tlbwr, a subsequent
|
||||
* use of the JTLB for instructions should not occur for 4 cpu cycles and use
|
||||
* for data translations should not occur for 3 cpu cycles.
|
||||
*/
|
||||
#ifdef CONFIG_CPU_RM9000
|
||||
|
||||
.macro mtc0_tlbw_hazard
|
||||
.set push
|
||||
.set mips32
|
||||
_ssnop; _ssnop; _ssnop; _ssnop
|
||||
.set pop
|
||||
.endm
|
||||
|
||||
.macro tlbw_eret_hazard
|
||||
.set push
|
||||
.set mips32
|
||||
_ssnop; _ssnop; _ssnop; _ssnop
|
||||
.set pop
|
||||
.endm
|
||||
|
||||
#ifdef __ASSEMBLER__
|
||||
#define ASMMACRO(name, code...) .macro name; code; .endm
|
||||
#else
|
||||
|
||||
/*
|
||||
* The taken branch will result in a two cycle penalty for the two killed
|
||||
* instructions on R4000 / R4400. Other processors only have a single cycle
|
||||
* hazard so this is nice trick to have an optimal code for a range of
|
||||
* processors.
|
||||
*/
|
||||
.macro mtc0_tlbw_hazard
|
||||
b . + 8
|
||||
.endm
|
||||
#define ASMMACRO(name, code...) \
|
||||
__asm__(".macro " #name "; " #code "; .endm"); \
|
||||
\
|
||||
static inline void name(void) \
|
||||
{ \
|
||||
__asm__ __volatile__ (#name); \
|
||||
}
|
||||
|
||||
.macro tlbw_eret_hazard
|
||||
.endm
|
||||
#endif
|
||||
|
||||
ASMMACRO(_ssnop,
|
||||
sll $0, $0, 1
|
||||
)
|
||||
|
||||
ASMMACRO(_ehb,
|
||||
sll $0, $0, 3
|
||||
)
|
||||
|
||||
/*
|
||||
* mtc0->mfc0 hazard
|
||||
* The 24K has a 2 cycle mtc0/mfc0 execution hazard.
|
||||
* It is a MIPS32R2 processor so ehb will clear the hazard.
|
||||
* TLB hazards
|
||||
*/
|
||||
#if defined(CONFIG_CPU_MIPSR2)
|
||||
|
||||
/*
|
||||
* MIPSR2 defines ehb for hazard avoidance
|
||||
*/
|
||||
|
||||
#ifdef CONFIG_CPU_MIPSR2
|
||||
/*
|
||||
* Use a macro for ehb unless explicit support for MIPSR2 is enabled
|
||||
*/
|
||||
|
||||
#define irq_enable_hazard \
|
||||
ASMMACRO(mtc0_tlbw_hazard,
|
||||
_ehb
|
||||
)
|
||||
ASMMACRO(tlbw_use_hazard,
|
||||
_ehb
|
||||
)
|
||||
ASMMACRO(tlb_probe_hazard,
|
||||
_ehb
|
||||
)
|
||||
ASMMACRO(irq_enable_hazard,
|
||||
)
|
||||
ASMMACRO(irq_disable_hazard,
|
||||
_ehb
|
||||
|
||||
#define irq_disable_hazard \
|
||||
_ehb
|
||||
|
||||
#elif defined(CONFIG_CPU_R10000) || defined(CONFIG_CPU_RM9000)
|
||||
|
||||
/*
|
||||
* R10000 rocks - all hazards handled in hardware, so this becomes a nobrainer.
|
||||
*/
|
||||
|
||||
#define irq_enable_hazard
|
||||
|
||||
#define irq_disable_hazard
|
||||
|
||||
#else
|
||||
|
||||
/*
|
||||
* Classic MIPS needs 1 - 3 nops or ssnops
|
||||
*/
|
||||
#define irq_enable_hazard
|
||||
#define irq_disable_hazard \
|
||||
_ssnop; _ssnop; _ssnop
|
||||
|
||||
#endif
|
||||
|
||||
#else /* __ASSEMBLY__ */
|
||||
|
||||
__asm__(
|
||||
" .macro _ssnop \n"
|
||||
" sll $0, $0, 1 \n"
|
||||
" .endm \n"
|
||||
" \n"
|
||||
" .macro _ehb \n"
|
||||
" sll $0, $0, 3 \n"
|
||||
" .endm \n");
|
||||
|
||||
#ifdef CONFIG_CPU_RM9000
|
||||
|
||||
/*
|
||||
* RM9000 hazards. When the JTLB is updated by tlbwi or tlbwr, a subsequent
|
||||
* use of the JTLB for instructions should not occur for 4 cpu cycles and use
|
||||
* for data translations should not occur for 3 cpu cycles.
|
||||
*/
|
||||
|
||||
#define mtc0_tlbw_hazard() \
|
||||
__asm__ __volatile__( \
|
||||
" .set mips32 \n" \
|
||||
" _ssnop \n" \
|
||||
" _ssnop \n" \
|
||||
" _ssnop \n" \
|
||||
" _ssnop \n" \
|
||||
" .set mips0 \n")
|
||||
|
||||
#define tlbw_use_hazard() \
|
||||
__asm__ __volatile__( \
|
||||
" .set mips32 \n" \
|
||||
" _ssnop \n" \
|
||||
" _ssnop \n" \
|
||||
" _ssnop \n" \
|
||||
" _ssnop \n" \
|
||||
" .set mips0 \n")
|
||||
|
||||
#else
|
||||
|
||||
/*
|
||||
* Overkill warning ...
|
||||
*/
|
||||
#define mtc0_tlbw_hazard() \
|
||||
__asm__ __volatile__( \
|
||||
" .set noreorder \n" \
|
||||
" nop \n" \
|
||||
" nop \n" \
|
||||
" nop \n" \
|
||||
" nop \n" \
|
||||
" nop \n" \
|
||||
" nop \n" \
|
||||
" .set reorder \n")
|
||||
|
||||
#define tlbw_use_hazard() \
|
||||
__asm__ __volatile__( \
|
||||
" .set noreorder \n" \
|
||||
" nop \n" \
|
||||
" nop \n" \
|
||||
" nop \n" \
|
||||
" nop \n" \
|
||||
" nop \n" \
|
||||
" nop \n" \
|
||||
" .set reorder \n")
|
||||
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Interrupt enable/disable hazards
|
||||
* Some processors have hazards when modifying
|
||||
* the status register to change the interrupt state
|
||||
*/
|
||||
|
||||
#ifdef CONFIG_CPU_MIPSR2
|
||||
|
||||
__asm__(" .macro irq_enable_hazard \n"
|
||||
" _ehb \n"
|
||||
" .endm \n"
|
||||
" \n"
|
||||
" .macro irq_disable_hazard \n"
|
||||
" _ehb \n"
|
||||
" .endm \n");
|
||||
|
||||
#elif defined(CONFIG_CPU_R10000) || defined(CONFIG_CPU_RM9000)
|
||||
|
||||
/*
|
||||
* R10000 rocks - all hazards handled in hardware, so this becomes a nobrainer.
|
||||
*/
|
||||
|
||||
__asm__(
|
||||
" .macro irq_enable_hazard \n"
|
||||
" .endm \n"
|
||||
" \n"
|
||||
" .macro irq_disable_hazard \n"
|
||||
" .endm \n");
|
||||
|
||||
#else
|
||||
|
||||
/*
|
||||
* Default for classic MIPS processors. Assume worst case hazards but don't
|
||||
* care about the irq_enable_hazard - sooner or later the hardware will
|
||||
* enable it and we don't care when exactly.
|
||||
*/
|
||||
|
||||
__asm__(
|
||||
" # \n"
|
||||
" # There is a hazard but we do not care \n"
|
||||
" # \n"
|
||||
" .macro\tirq_enable_hazard \n"
|
||||
" .endm \n"
|
||||
" \n"
|
||||
" .macro\tirq_disable_hazard \n"
|
||||
" _ssnop \n"
|
||||
" _ssnop \n"
|
||||
" _ssnop \n"
|
||||
" .endm \n");
|
||||
|
||||
#endif
|
||||
|
||||
#define irq_enable_hazard() \
|
||||
__asm__ __volatile__("irq_enable_hazard")
|
||||
#define irq_disable_hazard() \
|
||||
__asm__ __volatile__("irq_disable_hazard")
|
||||
|
||||
|
||||
/*
|
||||
* Back-to-back hazards -
|
||||
*
|
||||
* What is needed to separate a move to cp0 from a subsequent read from the
|
||||
* same cp0 register?
|
||||
*/
|
||||
#ifdef CONFIG_CPU_MIPSR2
|
||||
|
||||
__asm__(" .macro back_to_back_c0_hazard \n"
|
||||
" _ehb \n"
|
||||
" .endm \n");
|
||||
|
||||
#elif defined(CONFIG_CPU_R10000) || defined(CONFIG_CPU_RM9000) || \
|
||||
defined(CONFIG_CPU_SB1)
|
||||
|
||||
__asm__(" .macro back_to_back_c0_hazard \n"
|
||||
" .endm \n");
|
||||
|
||||
#else
|
||||
|
||||
__asm__(" .macro back_to_back_c0_hazard \n"
|
||||
" .set noreorder \n"
|
||||
" _ssnop \n"
|
||||
" _ssnop \n"
|
||||
" _ssnop \n"
|
||||
" .set reorder \n"
|
||||
" .endm");
|
||||
|
||||
#endif
|
||||
|
||||
#define back_to_back_c0_hazard() \
|
||||
__asm__ __volatile__("back_to_back_c0_hazard")
|
||||
|
||||
|
||||
/*
|
||||
* Instruction execution hazard
|
||||
*/
|
||||
#ifdef CONFIG_CPU_MIPSR2
|
||||
)
|
||||
ASMMACRO(back_to_back_c0_hazard,
|
||||
_ehb
|
||||
)
|
||||
/*
|
||||
* gcc has a tradition of misscompiling the previous construct using the
|
||||
* address of a label as argument to inline assembler. Gas otoh has the
|
||||
|
@ -279,12 +80,101 @@ do { \
|
|||
: "=r" (tmp)); \
|
||||
} while (0)
|
||||
|
||||
#else
|
||||
#elif defined(CONFIG_CPU_R10000)
|
||||
|
||||
/*
|
||||
* R10000 rocks - all hazards handled in hardware, so this becomes a nobrainer.
|
||||
*/
|
||||
|
||||
ASMMACRO(mtc0_tlbw_hazard,
|
||||
)
|
||||
ASMMACRO(tlbw_use_hazard,
|
||||
)
|
||||
ASMMACRO(tlb_probe_hazard,
|
||||
)
|
||||
ASMMACRO(irq_enable_hazard,
|
||||
)
|
||||
ASMMACRO(irq_disable_hazard,
|
||||
)
|
||||
ASMMACRO(back_to_back_c0_hazard,
|
||||
)
|
||||
#define instruction_hazard() do { } while (0)
|
||||
|
||||
#elif defined(CONFIG_CPU_RM9000)
|
||||
|
||||
/*
|
||||
* RM9000 hazards. When the JTLB is updated by tlbwi or tlbwr, a subsequent
|
||||
* use of the JTLB for instructions should not occur for 4 cpu cycles and use
|
||||
* for data translations should not occur for 3 cpu cycles.
|
||||
*/
|
||||
|
||||
ASMMACRO(mtc0_tlbw_hazard,
|
||||
_ssnop; _ssnop; _ssnop; _ssnop
|
||||
)
|
||||
ASMMACRO(tlbw_use_hazard,
|
||||
_ssnop; _ssnop; _ssnop; _ssnop
|
||||
)
|
||||
ASMMACRO(tlb_probe_hazard,
|
||||
_ssnop; _ssnop; _ssnop; _ssnop
|
||||
)
|
||||
ASMMACRO(irq_enable_hazard,
|
||||
)
|
||||
ASMMACRO(irq_disable_hazard,
|
||||
)
|
||||
ASMMACRO(back_to_back_c0_hazard,
|
||||
)
|
||||
#define instruction_hazard() do { } while (0)
|
||||
|
||||
#elif defined(CONFIG_CPU_SB1)
|
||||
|
||||
/*
|
||||
* Mostly like R4000 for historic reasons
|
||||
*/
|
||||
ASMMACRO(mtc0_tlbw_hazard,
|
||||
)
|
||||
ASMMACRO(tlbw_use_hazard,
|
||||
)
|
||||
ASMMACRO(tlb_probe_hazard,
|
||||
)
|
||||
ASMMACRO(irq_enable_hazard,
|
||||
)
|
||||
ASMMACRO(irq_disable_hazard,
|
||||
_ssnop; _ssnop; _ssnop
|
||||
)
|
||||
ASMMACRO(back_to_back_c0_hazard,
|
||||
)
|
||||
#define instruction_hazard() do { } while (0)
|
||||
|
||||
#else
|
||||
|
||||
/*
|
||||
* Finally the catchall case for all other processors including R4000, R4400,
|
||||
* R4600, R4700, R5000, RM7000, NEC VR41xx etc.
|
||||
*
|
||||
* The taken branch will result in a two cycle penalty for the two killed
|
||||
* instructions on R4000 / R4400. Other processors only have a single cycle
|
||||
* hazard so this is nice trick to have an optimal code for a range of
|
||||
* processors.
|
||||
*/
|
||||
ASMMACRO(mtc0_tlbw_hazard,
|
||||
nop
|
||||
)
|
||||
ASMMACRO(tlbw_use_hazard,
|
||||
nop; nop; nop
|
||||
)
|
||||
ASMMACRO(tlb_probe_hazard,
|
||||
nop; nop; nop
|
||||
)
|
||||
ASMMACRO(irq_enable_hazard,
|
||||
)
|
||||
ASMMACRO(irq_disable_hazard,
|
||||
nop; nop; nop
|
||||
)
|
||||
ASMMACRO(back_to_back_c0_hazard,
|
||||
_ssnop; _ssnop; _ssnop;
|
||||
)
|
||||
#define instruction_hazard() do { } while (0)
|
||||
|
||||
#endif
|
||||
|
||||
extern void mips_ihb(void);
|
||||
|
||||
#endif /* __ASSEMBLY__ */
|
||||
|
||||
#endif /* _ASM_HAZARDS_H */
|
||||
|
|
Loading…
Reference in New Issue