flow: structurize flow cache

Group all per-cpu data to one structure instead of having many
globals. Also prepare the internals so that we can have multiple
instances of the flow cache if needed.

Only the kmem_cache is left as a global as all flow caches share
the same element size, and benefit from using a common cache.

Signed-off-by: Timo Teras <timo.teras@iki.fi>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
Timo Teräs 2010-03-31 00:17:06 +00:00 committed by David S. Miller
parent ea2dea9dac
commit d7997fe1f4
1 changed files with 118 additions and 103 deletions

View File

@ -35,104 +35,105 @@ struct flow_cache_entry {
atomic_t *object_ref; atomic_t *object_ref;
}; };
atomic_t flow_cache_genid = ATOMIC_INIT(0); struct flow_cache_percpu {
struct flow_cache_entry ** hash_table;
static u32 flow_hash_shift; int hash_count;
#define flow_hash_size (1 << flow_hash_shift) u32 hash_rnd;
static DEFINE_PER_CPU(struct flow_cache_entry **, flow_tables) = { NULL }; int hash_rnd_recalc;
struct tasklet_struct flush_tasklet;
#define flow_table(cpu) (per_cpu(flow_tables, cpu))
static struct kmem_cache *flow_cachep __read_mostly;
static int flow_lwm, flow_hwm;
struct flow_percpu_info {
int hash_rnd_recalc;
u32 hash_rnd;
int count;
}; };
static DEFINE_PER_CPU(struct flow_percpu_info, flow_hash_info) = { 0 };
#define flow_hash_rnd_recalc(cpu) \
(per_cpu(flow_hash_info, cpu).hash_rnd_recalc)
#define flow_hash_rnd(cpu) \
(per_cpu(flow_hash_info, cpu).hash_rnd)
#define flow_count(cpu) \
(per_cpu(flow_hash_info, cpu).count)
static struct timer_list flow_hash_rnd_timer;
#define FLOW_HASH_RND_PERIOD (10 * 60 * HZ)
struct flow_flush_info { struct flow_flush_info {
atomic_t cpuleft; struct flow_cache * cache;
struct completion completion; atomic_t cpuleft;
struct completion completion;
}; };
static DEFINE_PER_CPU(struct tasklet_struct, flow_flush_tasklets) = { NULL };
#define flow_flush_tasklet(cpu) (&per_cpu(flow_flush_tasklets, cpu)) struct flow_cache {
u32 hash_shift;
unsigned long order;
struct flow_cache_percpu * percpu;
struct notifier_block hotcpu_notifier;
int low_watermark;
int high_watermark;
struct timer_list rnd_timer;
};
atomic_t flow_cache_genid = ATOMIC_INIT(0);
static struct flow_cache flow_cache_global;
static struct kmem_cache *flow_cachep;
#define flow_cache_hash_size(cache) (1 << (cache)->hash_shift)
#define FLOW_HASH_RND_PERIOD (10 * 60 * HZ)
static void flow_cache_new_hashrnd(unsigned long arg) static void flow_cache_new_hashrnd(unsigned long arg)
{ {
struct flow_cache *fc = (void *) arg;
int i; int i;
for_each_possible_cpu(i) for_each_possible_cpu(i)
flow_hash_rnd_recalc(i) = 1; per_cpu_ptr(fc->percpu, i)->hash_rnd_recalc = 1;
flow_hash_rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD; fc->rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD;
add_timer(&flow_hash_rnd_timer); add_timer(&fc->rnd_timer);
} }
static void flow_entry_kill(int cpu, struct flow_cache_entry *fle) static void flow_entry_kill(struct flow_cache *fc,
struct flow_cache_percpu *fcp,
struct flow_cache_entry *fle)
{ {
if (fle->object) if (fle->object)
atomic_dec(fle->object_ref); atomic_dec(fle->object_ref);
kmem_cache_free(flow_cachep, fle); kmem_cache_free(flow_cachep, fle);
flow_count(cpu)--; fcp->hash_count--;
} }
static void __flow_cache_shrink(int cpu, int shrink_to) static void __flow_cache_shrink(struct flow_cache *fc,
struct flow_cache_percpu *fcp,
int shrink_to)
{ {
struct flow_cache_entry *fle, **flp; struct flow_cache_entry *fle, **flp;
int i; int i;
for (i = 0; i < flow_hash_size; i++) { for (i = 0; i < flow_cache_hash_size(fc); i++) {
int k = 0; int k = 0;
flp = &flow_table(cpu)[i]; flp = &fcp->hash_table[i];
while ((fle = *flp) != NULL && k < shrink_to) { while ((fle = *flp) != NULL && k < shrink_to) {
k++; k++;
flp = &fle->next; flp = &fle->next;
} }
while ((fle = *flp) != NULL) { while ((fle = *flp) != NULL) {
*flp = fle->next; *flp = fle->next;
flow_entry_kill(cpu, fle); flow_entry_kill(fc, fcp, fle);
} }
} }
} }
static void flow_cache_shrink(int cpu) static void flow_cache_shrink(struct flow_cache *fc,
struct flow_cache_percpu *fcp)
{ {
int shrink_to = flow_lwm / flow_hash_size; int shrink_to = fc->low_watermark / flow_cache_hash_size(fc);
__flow_cache_shrink(cpu, shrink_to); __flow_cache_shrink(fc, fcp, shrink_to);
} }
static void flow_new_hash_rnd(int cpu) static void flow_new_hash_rnd(struct flow_cache *fc,
struct flow_cache_percpu *fcp)
{ {
get_random_bytes(&flow_hash_rnd(cpu), sizeof(u32)); get_random_bytes(&fcp->hash_rnd, sizeof(u32));
flow_hash_rnd_recalc(cpu) = 0; fcp->hash_rnd_recalc = 0;
__flow_cache_shrink(fc, fcp, 0);
__flow_cache_shrink(cpu, 0);
} }
static u32 flow_hash_code(struct flowi *key, int cpu) static u32 flow_hash_code(struct flow_cache *fc,
struct flow_cache_percpu *fcp,
struct flowi *key)
{ {
u32 *k = (u32 *) key; u32 *k = (u32 *) key;
return (jhash2(k, (sizeof(*key) / sizeof(u32)), flow_hash_rnd(cpu)) & return (jhash2(k, (sizeof(*key) / sizeof(u32)), fcp->hash_rnd)
(flow_hash_size - 1)); & (flow_cache_hash_size(fc) - 1));
} }
#if (BITS_PER_LONG == 64) #if (BITS_PER_LONG == 64)
@ -168,24 +169,25 @@ static int flow_key_compare(struct flowi *key1, struct flowi *key2)
void *flow_cache_lookup(struct net *net, struct flowi *key, u16 family, u8 dir, void *flow_cache_lookup(struct net *net, struct flowi *key, u16 family, u8 dir,
flow_resolve_t resolver) flow_resolve_t resolver)
{ {
struct flow_cache *fc = &flow_cache_global;
struct flow_cache_percpu *fcp;
struct flow_cache_entry *fle, **head; struct flow_cache_entry *fle, **head;
unsigned int hash; unsigned int hash;
int cpu;
local_bh_disable(); local_bh_disable();
cpu = smp_processor_id(); fcp = per_cpu_ptr(fc->percpu, smp_processor_id());
fle = NULL; fle = NULL;
/* Packet really early in init? Making flow_cache_init a /* Packet really early in init? Making flow_cache_init a
* pre-smp initcall would solve this. --RR */ * pre-smp initcall would solve this. --RR */
if (!flow_table(cpu)) if (!fcp->hash_table)
goto nocache; goto nocache;
if (flow_hash_rnd_recalc(cpu)) if (fcp->hash_rnd_recalc)
flow_new_hash_rnd(cpu); flow_new_hash_rnd(fc, fcp);
hash = flow_hash_code(key, cpu); hash = flow_hash_code(fc, fcp, key);
head = &flow_table(cpu)[hash]; head = &fcp->hash_table[hash];
for (fle = *head; fle; fle = fle->next) { for (fle = *head; fle; fle = fle->next) {
if (fle->family == family && if (fle->family == family &&
fle->dir == dir && fle->dir == dir &&
@ -204,8 +206,8 @@ void *flow_cache_lookup(struct net *net, struct flowi *key, u16 family, u8 dir,
} }
if (!fle) { if (!fle) {
if (flow_count(cpu) > flow_hwm) if (fcp->hash_count > fc->high_watermark)
flow_cache_shrink(cpu); flow_cache_shrink(fc, fcp);
fle = kmem_cache_alloc(flow_cachep, GFP_ATOMIC); fle = kmem_cache_alloc(flow_cachep, GFP_ATOMIC);
if (fle) { if (fle) {
@ -215,7 +217,7 @@ void *flow_cache_lookup(struct net *net, struct flowi *key, u16 family, u8 dir,
fle->dir = dir; fle->dir = dir;
memcpy(&fle->key, key, sizeof(*key)); memcpy(&fle->key, key, sizeof(*key));
fle->object = NULL; fle->object = NULL;
flow_count(cpu)++; fcp->hash_count++;
} }
} }
@ -249,14 +251,15 @@ nocache:
static void flow_cache_flush_tasklet(unsigned long data) static void flow_cache_flush_tasklet(unsigned long data)
{ {
struct flow_flush_info *info = (void *)data; struct flow_flush_info *info = (void *)data;
struct flow_cache *fc = info->cache;
struct flow_cache_percpu *fcp;
int i; int i;
int cpu;
cpu = smp_processor_id(); fcp = per_cpu_ptr(fc->percpu, smp_processor_id());
for (i = 0; i < flow_hash_size; i++) { for (i = 0; i < flow_cache_hash_size(fc); i++) {
struct flow_cache_entry *fle; struct flow_cache_entry *fle;
fle = flow_table(cpu)[i]; fle = fcp->hash_table[i];
for (; fle; fle = fle->next) { for (; fle; fle = fle->next) {
unsigned genid = atomic_read(&flow_cache_genid); unsigned genid = atomic_read(&flow_cache_genid);
@ -272,7 +275,6 @@ static void flow_cache_flush_tasklet(unsigned long data)
complete(&info->completion); complete(&info->completion);
} }
static void flow_cache_flush_per_cpu(void *) __attribute__((__unused__));
static void flow_cache_flush_per_cpu(void *data) static void flow_cache_flush_per_cpu(void *data)
{ {
struct flow_flush_info *info = data; struct flow_flush_info *info = data;
@ -280,8 +282,7 @@ static void flow_cache_flush_per_cpu(void *data)
struct tasklet_struct *tasklet; struct tasklet_struct *tasklet;
cpu = smp_processor_id(); cpu = smp_processor_id();
tasklet = &per_cpu_ptr(info->cache->percpu, cpu)->flush_tasklet;
tasklet = flow_flush_tasklet(cpu);
tasklet->data = (unsigned long)info; tasklet->data = (unsigned long)info;
tasklet_schedule(tasklet); tasklet_schedule(tasklet);
} }
@ -294,6 +295,7 @@ void flow_cache_flush(void)
/* Don't want cpus going down or up during this. */ /* Don't want cpus going down or up during this. */
get_online_cpus(); get_online_cpus();
mutex_lock(&flow_flush_sem); mutex_lock(&flow_flush_sem);
info.cache = &flow_cache_global;
atomic_set(&info.cpuleft, num_online_cpus()); atomic_set(&info.cpuleft, num_online_cpus());
init_completion(&info.completion); init_completion(&info.completion);
@ -307,62 +309,75 @@ void flow_cache_flush(void)
put_online_cpus(); put_online_cpus();
} }
static void __init flow_cache_cpu_prepare(int cpu) static void __init flow_cache_cpu_prepare(struct flow_cache *fc,
struct flow_cache_percpu *fcp)
{ {
struct tasklet_struct *tasklet; fcp->hash_table = (struct flow_cache_entry **)
unsigned long order; __get_free_pages(GFP_KERNEL|__GFP_ZERO, fc->order);
if (!fcp->hash_table)
panic("NET: failed to allocate flow cache order %lu\n", fc->order);
for (order = 0; fcp->hash_rnd_recalc = 1;
(PAGE_SIZE << order) < fcp->hash_count = 0;
(sizeof(struct flow_cache_entry *)*flow_hash_size); tasklet_init(&fcp->flush_tasklet, flow_cache_flush_tasklet, 0);
order++)
/* NOTHING */;
flow_table(cpu) = (struct flow_cache_entry **)
__get_free_pages(GFP_KERNEL|__GFP_ZERO, order);
if (!flow_table(cpu))
panic("NET: failed to allocate flow cache order %lu\n", order);
flow_hash_rnd_recalc(cpu) = 1;
flow_count(cpu) = 0;
tasklet = flow_flush_tasklet(cpu);
tasklet_init(tasklet, flow_cache_flush_tasklet, 0);
} }
static int flow_cache_cpu(struct notifier_block *nfb, static int flow_cache_cpu(struct notifier_block *nfb,
unsigned long action, unsigned long action,
void *hcpu) void *hcpu)
{ {
struct flow_cache *fc = container_of(nfb, struct flow_cache, hotcpu_notifier);
int cpu = (unsigned long) hcpu;
struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, cpu);
if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
__flow_cache_shrink((unsigned long)hcpu, 0); __flow_cache_shrink(fc, fcp, 0);
return NOTIFY_OK; return NOTIFY_OK;
} }
static int __init flow_cache_init(void) static int flow_cache_init(struct flow_cache *fc)
{ {
unsigned long order;
int i; int i;
flow_cachep = kmem_cache_create("flow_cache", fc->hash_shift = 10;
sizeof(struct flow_cache_entry), fc->low_watermark = 2 * flow_cache_hash_size(fc);
0, SLAB_PANIC, fc->high_watermark = 4 * flow_cache_hash_size(fc);
NULL);
flow_hash_shift = 10;
flow_lwm = 2 * flow_hash_size;
flow_hwm = 4 * flow_hash_size;
setup_timer(&flow_hash_rnd_timer, flow_cache_new_hashrnd, 0); for (order = 0;
flow_hash_rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD; (PAGE_SIZE << order) <
add_timer(&flow_hash_rnd_timer); (sizeof(struct flow_cache_entry *)*flow_cache_hash_size(fc));
order++)
/* NOTHING */;
fc->order = order;
fc->percpu = alloc_percpu(struct flow_cache_percpu);
setup_timer(&fc->rnd_timer, flow_cache_new_hashrnd,
(unsigned long) fc);
fc->rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD;
add_timer(&fc->rnd_timer);
for_each_possible_cpu(i) for_each_possible_cpu(i)
flow_cache_cpu_prepare(i); flow_cache_cpu_prepare(fc, per_cpu_ptr(fc->percpu, i));
fc->hotcpu_notifier = (struct notifier_block){
.notifier_call = flow_cache_cpu,
};
register_hotcpu_notifier(&fc->hotcpu_notifier);
hotcpu_notifier(flow_cache_cpu, 0);
return 0; return 0;
} }
module_init(flow_cache_init); static int __init flow_cache_init_global(void)
{
flow_cachep = kmem_cache_create("flow_cache",
sizeof(struct flow_cache_entry),
0, SLAB_PANIC, NULL);
return flow_cache_init(&flow_cache_global);
}
module_init(flow_cache_init_global);
EXPORT_SYMBOL(flow_cache_genid); EXPORT_SYMBOL(flow_cache_genid);
EXPORT_SYMBOL(flow_cache_lookup); EXPORT_SYMBOL(flow_cache_lookup);