net: Microchip encx24j600 driver

This ethernet driver supports the Micorchip enc424j600/626j600 Ethernet
controller over a SPI bus interface. This driver makes use of the regmap API to
optimize access to registers by caching registers where possible.

Datasheet:
http://ww1.microchip.com/downloads/en/DeviceDoc/39935b.pdf

Signed-off-by: Jon Ringle <jringle@gridpoint.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
Jon Ringle 2015-10-06 16:37:46 -04:00 committed by David S. Miller
parent 494f8eb9b6
commit d70e53262f
5 changed files with 2087 additions and 0 deletions

View File

@ -33,4 +33,13 @@ config ENC28J60_WRITEVERIFY
Enable the verify after the buffer write useful for debugging purpose.
If unsure, say N.
config ENCX24J600
tristate "ENCX24J600 support"
depends on SPI
---help---
Support for the Microchip ENC424J600 ethernet chip.
To compile this driver as a module, choose M here. The module will be
called enc424j600.
endif # NET_VENDOR_MICROCHIP

View File

@ -3,3 +3,4 @@
#
obj-$(CONFIG_ENC28J60) += enc28j60.o
obj-$(CONFIG_ENCX24J600) += encx24j600.o encx24j600-regmap.o

View File

@ -0,0 +1,513 @@
/**
* Register map access API - ENCX24J600 support
*
* Copyright 2015 Gridpoint
*
* Author: Jon Ringle <jringle@gridpoint.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/regmap.h>
#include <linux/spi/spi.h>
#include "encx24j600_hw.h"
static inline bool is_bits_set(int value, int mask)
{
return (value & mask) == mask;
}
static int encx24j600_switch_bank(struct encx24j600_context *ctx,
int bank)
{
int ret = 0;
int bank_opcode = BANK_SELECT(bank);
ret = spi_write(ctx->spi, &bank_opcode, 1);
if (ret == 0)
ctx->bank = bank;
return ret;
}
static int encx24j600_cmdn(struct encx24j600_context *ctx, u8 opcode,
const void *buf, size_t len)
{
struct spi_message m;
struct spi_transfer t[2] = { { .tx_buf = &opcode, .len = 1, },
{ .tx_buf = buf, .len = len }, };
spi_message_init(&m);
spi_message_add_tail(&t[0], &m);
spi_message_add_tail(&t[1], &m);
return spi_sync(ctx->spi, &m);
}
static void regmap_lock_mutex(void *context)
{
struct encx24j600_context *ctx = context;
mutex_lock(&ctx->mutex);
}
static void regmap_unlock_mutex(void *context)
{
struct encx24j600_context *ctx = context;
mutex_unlock(&ctx->mutex);
}
static int regmap_encx24j600_sfr_read(void *context, u8 reg, u8 *val,
size_t len)
{
struct encx24j600_context *ctx = context;
u8 banked_reg = reg & ADDR_MASK;
u8 bank = ((reg & BANK_MASK) >> BANK_SHIFT);
u8 cmd = RCRU;
int ret = 0;
int i = 0;
u8 tx_buf[2];
if (reg < 0x80) {
cmd = RCRCODE | banked_reg;
if ((banked_reg < 0x16) && (ctx->bank != bank))
ret = encx24j600_switch_bank(ctx, bank);
if (unlikely(ret))
return ret;
} else {
/* Translate registers that are more effecient using
* 3-byte SPI commands
*/
switch (reg) {
case EGPRDPT:
cmd = RGPRDPT; break;
case EGPWRPT:
cmd = RGPWRPT; break;
case ERXRDPT:
cmd = RRXRDPT; break;
case ERXWRPT:
cmd = RRXWRPT; break;
case EUDARDPT:
cmd = RUDARDPT; break;
case EUDAWRPT:
cmd = RUDAWRPT; break;
case EGPDATA:
case ERXDATA:
case EUDADATA:
default:
return -EINVAL;
}
}
tx_buf[i++] = cmd;
if (cmd == RCRU)
tx_buf[i++] = reg;
ret = spi_write_then_read(ctx->spi, tx_buf, i, val, len);
return ret;
}
static int regmap_encx24j600_sfr_update(struct encx24j600_context *ctx,
u8 reg, u8 *val, size_t len,
u8 unbanked_cmd, u8 banked_code)
{
u8 banked_reg = reg & ADDR_MASK;
u8 bank = ((reg & BANK_MASK) >> BANK_SHIFT);
u8 cmd = unbanked_cmd;
struct spi_message m;
struct spi_transfer t[3] = { { .tx_buf = &cmd, .len = sizeof(cmd), },
{ .tx_buf = &reg, .len = sizeof(reg), },
{ .tx_buf = val, .len = len }, };
if (reg < 0x80) {
int ret = 0;
cmd = banked_code | banked_reg;
if ((banked_reg < 0x16) && (ctx->bank != bank))
ret = encx24j600_switch_bank(ctx, bank);
if (unlikely(ret))
return ret;
} else {
/* Translate registers that are more effecient using
* 3-byte SPI commands
*/
switch (reg) {
case EGPRDPT:
cmd = WGPRDPT; break;
case EGPWRPT:
cmd = WGPWRPT; break;
case ERXRDPT:
cmd = WRXRDPT; break;
case ERXWRPT:
cmd = WRXWRPT; break;
case EUDARDPT:
cmd = WUDARDPT; break;
case EUDAWRPT:
cmd = WUDAWRPT; break;
case EGPDATA:
case ERXDATA:
case EUDADATA:
default:
return -EINVAL;
}
}
spi_message_init(&m);
spi_message_add_tail(&t[0], &m);
if (cmd == unbanked_cmd) {
t[1].tx_buf = &reg;
spi_message_add_tail(&t[1], &m);
}
spi_message_add_tail(&t[2], &m);
return spi_sync(ctx->spi, &m);
}
static int regmap_encx24j600_sfr_write(void *context, u8 reg, u8 *val,
size_t len)
{
struct encx24j600_context *ctx = context;
return regmap_encx24j600_sfr_update(ctx, reg, val, len, WCRU, WCRCODE);
}
static int regmap_encx24j600_sfr_set_bits(struct encx24j600_context *ctx,
u8 reg, u8 val)
{
return regmap_encx24j600_sfr_update(ctx, reg, &val, 1, BFSU, BFSCODE);
}
static int regmap_encx24j600_sfr_clr_bits(struct encx24j600_context *ctx,
u8 reg, u8 val)
{
return regmap_encx24j600_sfr_update(ctx, reg, &val, 1, BFCU, BFCCODE);
}
static int regmap_encx24j600_reg_update_bits(void *context, unsigned int reg,
unsigned int mask,
unsigned int val)
{
struct encx24j600_context *ctx = context;
int ret = 0;
unsigned int set_mask = mask & val;
unsigned int clr_mask = mask & ~val;
if ((reg >= 0x40 && reg < 0x6c) || reg >= 0x80)
return -EINVAL;
if (set_mask & 0xff)
ret = regmap_encx24j600_sfr_set_bits(ctx, reg, set_mask);
set_mask = (set_mask & 0xff00) >> 8;
if ((set_mask & 0xff) && (ret == 0))
ret = regmap_encx24j600_sfr_set_bits(ctx, reg + 1, set_mask);
if ((clr_mask & 0xff) && (ret == 0))
ret = regmap_encx24j600_sfr_clr_bits(ctx, reg, clr_mask);
clr_mask = (clr_mask & 0xff00) >> 8;
if ((clr_mask & 0xff) && (ret == 0))
ret = regmap_encx24j600_sfr_clr_bits(ctx, reg + 1, clr_mask);
return ret;
}
int regmap_encx24j600_spi_write(void *context, u8 reg, const u8 *data,
size_t count)
{
struct encx24j600_context *ctx = context;
if (reg < 0xc0)
return encx24j600_cmdn(ctx, reg, data, count);
else
/* SPI 1-byte command. Ignore data */
return spi_write(ctx->spi, &reg, 1);
}
EXPORT_SYMBOL_GPL(regmap_encx24j600_spi_write);
int regmap_encx24j600_spi_read(void *context, u8 reg, u8 *data, size_t count)
{
struct encx24j600_context *ctx = context;
if (reg == RBSEL && count > 1)
count = 1;
return spi_write_then_read(ctx->spi, &reg, sizeof(reg), data, count);
}
EXPORT_SYMBOL_GPL(regmap_encx24j600_spi_read);
static int regmap_encx24j600_write(void *context, const void *data,
size_t len)
{
u8 *dout = (u8 *)data;
u8 reg = dout[0];
++dout;
--len;
if (reg > 0xa0)
return regmap_encx24j600_spi_write(context, reg, dout, len);
if (len > 2)
return -EINVAL;
return regmap_encx24j600_sfr_write(context, reg, dout, len);
}
static int regmap_encx24j600_read(void *context,
const void *reg_buf, size_t reg_size,
void *val, size_t val_size)
{
u8 reg = *(const u8 *)reg_buf;
if (reg_size != 1) {
pr_err("%s: reg=%02x reg_size=%zu\n", __func__, reg, reg_size);
return -EINVAL;
}
if (reg > 0xa0)
return regmap_encx24j600_spi_read(context, reg, val, val_size);
if (val_size > 2) {
pr_err("%s: reg=%02x val_size=%zu\n", __func__, reg, val_size);
return -EINVAL;
}
return regmap_encx24j600_sfr_read(context, reg, val, val_size);
}
static bool encx24j600_regmap_readable(struct device *dev, unsigned int reg)
{
if ((reg < 0x36) ||
((reg >= 0x40) && (reg < 0x4c)) ||
((reg >= 0x52) && (reg < 0x56)) ||
((reg >= 0x60) && (reg < 0x66)) ||
((reg >= 0x68) && (reg < 0x80)) ||
((reg >= 0x86) && (reg < 0x92)) ||
(reg == 0xc8))
return true;
else
return false;
}
static bool encx24j600_regmap_writeable(struct device *dev, unsigned int reg)
{
if ((reg < 0x12) ||
((reg >= 0x14) && (reg < 0x1a)) ||
((reg >= 0x1c) && (reg < 0x36)) ||
((reg >= 0x40) && (reg < 0x4c)) ||
((reg >= 0x52) && (reg < 0x56)) ||
((reg >= 0x60) && (reg < 0x68)) ||
((reg >= 0x6c) && (reg < 0x80)) ||
((reg >= 0x86) && (reg < 0x92)) ||
((reg >= 0xc0) && (reg < 0xc8)) ||
((reg >= 0xca) && (reg < 0xf0)))
return true;
else
return false;
}
static bool encx24j600_regmap_volatile(struct device *dev, unsigned int reg)
{
switch (reg) {
case ERXHEAD:
case EDMACS:
case ETXSTAT:
case ETXWIRE:
case ECON1: /* Can be modified via single byte cmds */
case ECON2: /* Can be modified via single byte cmds */
case ESTAT:
case EIR: /* Can be modified via single byte cmds */
case MIRD:
case MISTAT:
return true;
default:
break;
}
return false;
}
static bool encx24j600_regmap_precious(struct device *dev, unsigned int reg)
{
/* single byte cmds are precious */
if (((reg >= 0xc0) && (reg < 0xc8)) ||
((reg >= 0xca) && (reg < 0xf0)))
return true;
else
return false;
}
static int regmap_encx24j600_phy_reg_read(void *context, unsigned int reg,
unsigned int *val)
{
struct encx24j600_context *ctx = context;
int ret;
unsigned int mistat;
reg = MIREGADR_VAL | (reg & PHREG_MASK);
ret = regmap_write(ctx->regmap, MIREGADR, reg);
if (unlikely(ret))
goto err_out;
ret = regmap_write(ctx->regmap, MICMD, MIIRD);
if (unlikely(ret))
goto err_out;
usleep_range(26, 100);
while ((ret = regmap_read(ctx->regmap, MISTAT, &mistat) != 0) &&
(mistat & BUSY))
cpu_relax();
if (unlikely(ret))
goto err_out;
ret = regmap_write(ctx->regmap, MICMD, 0);
if (unlikely(ret))
goto err_out;
ret = regmap_read(ctx->regmap, MIRD, val);
err_out:
if (ret)
pr_err("%s: error %d reading reg %02x\n", __func__, ret,
reg & PHREG_MASK);
return ret;
}
static int regmap_encx24j600_phy_reg_write(void *context, unsigned int reg,
unsigned int val)
{
struct encx24j600_context *ctx = context;
int ret;
unsigned int mistat;
reg = MIREGADR_VAL | (reg & PHREG_MASK);
ret = regmap_write(ctx->regmap, MIREGADR, reg);
if (unlikely(ret))
goto err_out;
ret = regmap_write(ctx->regmap, MIWR, val);
if (unlikely(ret))
goto err_out;
usleep_range(26, 100);
while ((ret = regmap_read(ctx->regmap, MISTAT, &mistat) != 0) &&
(mistat & BUSY))
cpu_relax();
err_out:
if (ret)
pr_err("%s: error %d writing reg %02x=%04x\n", __func__, ret,
reg & PHREG_MASK, val);
return ret;
}
static bool encx24j600_phymap_readable(struct device *dev, unsigned int reg)
{
switch (reg) {
case PHCON1:
case PHSTAT1:
case PHANA:
case PHANLPA:
case PHANE:
case PHCON2:
case PHSTAT2:
case PHSTAT3:
return true;
default:
return false;
}
}
static bool encx24j600_phymap_writeable(struct device *dev, unsigned int reg)
{
switch (reg) {
case PHCON1:
case PHCON2:
case PHANA:
return true;
case PHSTAT1:
case PHSTAT2:
case PHSTAT3:
case PHANLPA:
case PHANE:
default:
return false;
}
}
static bool encx24j600_phymap_volatile(struct device *dev, unsigned int reg)
{
switch (reg) {
case PHSTAT1:
case PHSTAT2:
case PHSTAT3:
case PHANLPA:
case PHANE:
case PHCON2:
return true;
default:
return false;
}
}
static struct regmap_config regcfg = {
.name = "reg",
.reg_bits = 8,
.val_bits = 16,
.max_register = 0xee,
.reg_stride = 2,
.cache_type = REGCACHE_RBTREE,
.val_format_endian = REGMAP_ENDIAN_LITTLE,
.readable_reg = encx24j600_regmap_readable,
.writeable_reg = encx24j600_regmap_writeable,
.volatile_reg = encx24j600_regmap_volatile,
.precious_reg = encx24j600_regmap_precious,
.lock = regmap_lock_mutex,
.unlock = regmap_unlock_mutex,
};
static struct regmap_bus regmap_encx24j600 = {
.write = regmap_encx24j600_write,
.read = regmap_encx24j600_read,
.reg_update_bits = regmap_encx24j600_reg_update_bits,
};
static struct regmap_config phycfg = {
.name = "phy",
.reg_bits = 8,
.val_bits = 16,
.max_register = 0x1f,
.cache_type = REGCACHE_RBTREE,
.val_format_endian = REGMAP_ENDIAN_LITTLE,
.readable_reg = encx24j600_phymap_readable,
.writeable_reg = encx24j600_phymap_writeable,
.volatile_reg = encx24j600_phymap_volatile,
};
static struct regmap_bus phymap_encx24j600 = {
.reg_write = regmap_encx24j600_phy_reg_write,
.reg_read = regmap_encx24j600_phy_reg_read,
};
void devm_regmap_init_encx24j600(struct device *dev,
struct encx24j600_context *ctx)
{
mutex_init(&ctx->mutex);
regcfg.lock_arg = ctx;
ctx->regmap = devm_regmap_init(dev, &regmap_encx24j600, ctx, &regcfg);
ctx->phymap = devm_regmap_init(dev, &phymap_encx24j600, ctx, &phycfg);
}
EXPORT_SYMBOL_GPL(devm_regmap_init_encx24j600);
MODULE_LICENSE("GPL");

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,437 @@
/**
* encx24j600_hw.h: Register definitions
*
*/
#ifndef _ENCX24J600_HW_H
#define _ENCX24J600_HW_H
struct encx24j600_context {
struct spi_device *spi;
struct regmap *regmap;
struct regmap *phymap;
struct mutex mutex; /* mutex to protect access to regmap */
int bank;
};
void devm_regmap_init_encx24j600(struct device *dev,
struct encx24j600_context *ctx);
/* Single-byte instructions */
#define BANK_SELECT(bank) (0xC0 | ((bank & (BANK_MASK >> BANK_SHIFT)) << 1))
#define B0SEL 0xC0 /* Bank 0 Select */
#define B1SEL 0xC2 /* Bank 1 Select */
#define B2SEL 0xC4 /* Bank 2 Select */
#define B3SEL 0xC6 /* Bank 3 Select */
#define SETETHRST 0xCA /* System Reset */
#define FCDISABLE 0xE0 /* Flow Control Disable */
#define FCSINGLE 0xE2 /* Flow Control Single */
#define FCMULTIPLE 0xE4 /* Flow Control Multiple */
#define FCCLEAR 0xE6 /* Flow Control Clear */
#define SETPKTDEC 0xCC /* Decrement Packet Counter */
#define DMASTOP 0xD2 /* DMA Stop */
#define DMACKSUM 0xD8 /* DMA Start Checksum */
#define DMACKSUMS 0xDA /* DMA Start Checksum with Seed */
#define DMACOPY 0xDC /* DMA Start Copy */
#define DMACOPYS 0xDE /* DMA Start Copy and Checksum with Seed */
#define SETTXRTS 0xD4 /* Request Packet Transmission */
#define ENABLERX 0xE8 /* Enable RX */
#define DISABLERX 0xEA /* Disable RX */
#define SETEIE 0xEC /* Enable Interrupts */
#define CLREIE 0xEE /* Disable Interrupts */
/* Two byte instructions */
#define RBSEL 0xC8 /* Read Bank Select */
/* Three byte instructions */
#define WGPRDPT 0x60 /* Write EGPRDPT */
#define RGPRDPT 0x62 /* Read EGPRDPT */
#define WRXRDPT 0x64 /* Write ERXRDPT */
#define RRXRDPT 0x66 /* Read ERXRDPT */
#define WUDARDPT 0x68 /* Write EUDARDPT */
#define RUDARDPT 0x6A /* Read EUDARDPT */
#define WGPWRPT 0x6C /* Write EGPWRPT */
#define RGPWRPT 0x6E /* Read EGPWRPT */
#define WRXWRPT 0x70 /* Write ERXWRPT */
#define RRXWRPT 0x72 /* Read ERXWRPT */
#define WUDAWRPT 0x74 /* Write EUDAWRPT */
#define RUDAWRPT 0x76 /* Read EUDAWRPT */
/* n byte instructions */
#define RCRCODE 0x00
#define WCRCODE 0x40
#define BFSCODE 0x80
#define BFCCODE 0xA0
#define RCR(addr) (RCRCODE | (addr & ADDR_MASK)) /* Read Control Register */
#define WCR(addr) (WCRCODE | (addr & ADDR_MASK)) /* Write Control Register */
#define RCRU 0x20 /* Read Control Register Unbanked */
#define WCRU 0x22 /* Write Control Register Unbanked */
#define BFS(addr) (BFSCODE | (addr & ADDR_MASK)) /* Bit Field Set */
#define BFC(addr) (BFCCODE | (addr & ADDR_MASK)) /* Bit Field Clear */
#define BFSU 0x24 /* Bit Field Set Unbanked */
#define BFCU 0x26 /* Bit Field Clear Unbanked */
#define RGPDATA 0x28 /* Read EGPDATA */
#define WGPDATA 0x2A /* Write EGPDATA */
#define RRXDATA 0x2C /* Read ERXDATA */
#define WRXDATA 0x2E /* Write ERXDATA */
#define RUDADATA 0x30 /* Read EUDADATA */
#define WUDADATA 0x32 /* Write EUDADATA */
#define SFR_REG_COUNT 0xA0
/* ENC424J600 Control Registers
* Control register definitions are a combination of address
* and bank number
* - Register address (bits 0-4)
* - Bank number (bits 5-6)
*/
#define ADDR_MASK 0x1F
#define BANK_MASK 0x60
#define BANK_SHIFT 5
/* All-bank registers */
#define EUDAST 0x16
#define EUDAND 0x18
#define ESTAT 0x1A
#define EIR 0x1C
#define ECON1 0x1E
/* Bank 0 registers */
#define ETXST (0x00 | 0x00)
#define ETXLEN (0x02 | 0x00)
#define ERXST (0x04 | 0x00)
#define ERXTAIL (0x06 | 0x00)
#define ERXHEAD (0x08 | 0x00)
#define EDMAST (0x0A | 0x00)
#define EDMALEN (0x0C | 0x00)
#define EDMADST (0x0E | 0x00)
#define EDMACS (0x10 | 0x00)
#define ETXSTAT (0x12 | 0x00)
#define ETXWIRE (0x14 | 0x00)
/* Bank 1 registers */
#define EHT1 (0x00 | 0x20)
#define EHT2 (0x02 | 0x20)
#define EHT3 (0x04 | 0x20)
#define EHT4 (0x06 | 0x20)
#define EPMM1 (0x08 | 0x20)
#define EPMM2 (0x0A | 0x20)
#define EPMM3 (0x0C | 0x20)
#define EPMM4 (0x0E | 0x20)
#define EPMCS (0x10 | 0x20)
#define EPMO (0x12 | 0x20)
#define ERXFCON (0x14 | 0x20)
/* Bank 2 registers */
#define MACON1 (0x00 | 0x40)
#define MACON2 (0x02 | 0x40)
#define MABBIPG (0x04 | 0x40)
#define MAIPG (0x06 | 0x40)
#define MACLCON (0x08 | 0x40)
#define MAMXFL (0x0A | 0x40)
#define MICMD (0x12 | 0x40)
#define MIREGADR (0x14 | 0x40)
/* Bank 3 registers */
#define MAADR3 (0x00 | 0x60)
#define MAADR2 (0x02 | 0x60)
#define MAADR1 (0x04 | 0x60)
#define MIWR (0x06 | 0x60)
#define MIRD (0x08 | 0x60)
#define MISTAT (0x0A | 0x60)
#define EPAUS (0x0C | 0x60)
#define ECON2 (0x0E | 0x60)
#define ERXWM (0x10 | 0x60)
#define EIE (0x12 | 0x60)
#define EIDLED (0x14 | 0x60)
/* Unbanked registers */
#define EGPDATA (0x00 | 0x80)
#define ERXDATA (0x02 | 0x80)
#define EUDADATA (0x04 | 0x80)
#define EGPRDPT (0x06 | 0x80)
#define EGPWRPT (0x08 | 0x80)
#define ERXRDPT (0x0A | 0x80)
#define ERXWRPT (0x0C | 0x80)
#define EUDARDPT (0x0E | 0x80)
#define EUDAWRPT (0x10 | 0x80)
/* Register bit definitions */
/* ESTAT */
#define INT (1 << 15)
#define FCIDLE (1 << 14)
#define RXBUSY (1 << 13)
#define CLKRDY (1 << 12)
#define PHYDPX (1 << 10)
#define PHYLNK (1 << 8)
/* EIR */
#define CRYPTEN (1 << 15)
#define MODEXIF (1 << 14)
#define HASHIF (1 << 13)
#define AESIF (1 << 12)
#define LINKIF (1 << 11)
#define PKTIF (1 << 6)
#define DMAIF (1 << 5)
#define TXIF (1 << 3)
#define TXABTIF (1 << 2)
#define RXABTIF (1 << 1)
#define PCFULIF (1 << 0)
/* ECON1 */
#define MODEXST (1 << 15)
#define HASHEN (1 << 14)
#define HASHOP (1 << 13)
#define HASHLST (1 << 12)
#define AESST (1 << 11)
#define AESOP1 (1 << 10)
#define AESOP0 (1 << 9)
#define PKTDEC (1 << 8)
#define FCOP1 (1 << 7)
#define FCOP0 (1 << 6)
#define DMAST (1 << 5)
#define DMACPY (1 << 4)
#define DMACSSD (1 << 3)
#define DMANOCS (1 << 2)
#define TXRTS (1 << 1)
#define RXEN (1 << 0)
/* ETXSTAT */
#define LATECOL (1 << 10)
#define MAXCOL (1 << 9)
#define EXDEFER (1 << 8)
#define ETXSTATL_DEFER (1 << 7)
#define CRCBAD (1 << 4)
#define COLCNT_MASK 0xF
/* ERXFCON */
#define HTEN (1 << 15)
#define MPEN (1 << 14)
#define NOTPM (1 << 12)
#define PMEN3 (1 << 11)
#define PMEN2 (1 << 10)
#define PMEN1 (1 << 9)
#define PMEN0 (1 << 8)
#define CRCEEN (1 << 7)
#define CRCEN (1 << 6)
#define RUNTEEN (1 << 5)
#define RUNTEN (1 << 4)
#define UCEN (1 << 3)
#define NOTMEEN (1 << 2)
#define MCEN (1 << 1)
#define BCEN (1 << 0)
/* MACON1 */
#define LOOPBK (1 << 4)
#define RXPAUS (1 << 2)
#define PASSALL (1 << 1)
/* MACON2 */
#define MACON2_DEFER (1 << 14)
#define BPEN (1 << 13)
#define NOBKOFF (1 << 12)
#define PADCFG2 (1 << 7)
#define PADCFG1 (1 << 6)
#define PADCFG0 (1 << 5)
#define TXCRCEN (1 << 4)
#define PHDREN (1 << 3)
#define HFRMEN (1 << 2)
#define MACON2_RSV1 (1 << 1)
#define FULDPX (1 << 0)
/* MAIPG */
/* value of the high byte is given by the reserved bits,
* value of the low byte is recomended setting of the
* IPG parameter.
*/
#define MAIPGH_VAL 0x0C
#define MAIPGL_VAL 0x12
/* MIREGADRH */
#define MIREGADR_VAL (1 << 8)
/* MIREGADRL */
#define PHREG_MASK 0x1F
/* MICMD */
#define MIISCAN (1 << 1)
#define MIIRD (1 << 0)
/* MISTAT */
#define NVALID (1 << 2)
#define SCAN (1 << 1)
#define BUSY (1 << 0)
/* ECON2 */
#define ETHEN (1 << 15)
#define STRCH (1 << 14)
#define TXMAC (1 << 13)
#define SHA1MD5 (1 << 12)
#define COCON3 (1 << 11)
#define COCON2 (1 << 10)
#define COCON1 (1 << 9)
#define COCON0 (1 << 8)
#define AUTOFC (1 << 7)
#define TXRST (1 << 6)
#define RXRST (1 << 5)
#define ETHRST (1 << 4)
#define MODLEN1 (1 << 3)
#define MODLEN0 (1 << 2)
#define AESLEN1 (1 << 1)
#define AESLEN0 (1 << 0)
/* EIE */
#define INTIE (1 << 15)
#define MODEXIE (1 << 14)
#define HASHIE (1 << 13)
#define AESIE (1 << 12)
#define LINKIE (1 << 11)
#define PKTIE (1 << 6)
#define DMAIE (1 << 5)
#define TXIE (1 << 3)
#define TXABTIE (1 << 2)
#define RXABTIE (1 << 1)
#define PCFULIE (1 << 0)
/* EIDLED */
#define LACFG3 (1 << 15)
#define LACFG2 (1 << 14)
#define LACFG1 (1 << 13)
#define LACFG0 (1 << 12)
#define LBCFG3 (1 << 11)
#define LBCFG2 (1 << 10)
#define LBCFG1 (1 << 9)
#define LBCFG0 (1 << 8)
#define DEVID_SHIFT 5
#define DEVID_MASK (0x7 << DEVID_SHIFT)
#define REVID_SHIFT 0
#define REVID_MASK (0x1F << REVID_SHIFT)
/* PHY registers */
#define PHCON1 0x00
#define PHSTAT1 0x01
#define PHANA 0x04
#define PHANLPA 0x05
#define PHANE 0x06
#define PHCON2 0x11
#define PHSTAT2 0x1B
#define PHSTAT3 0x1F
/* PHCON1 */
#define PRST (1 << 15)
#define PLOOPBK (1 << 14)
#define SPD100 (1 << 13)
#define ANEN (1 << 12)
#define PSLEEP (1 << 11)
#define RENEG (1 << 9)
#define PFULDPX (1 << 8)
/* PHSTAT1 */
#define FULL100 (1 << 14)
#define HALF100 (1 << 13)
#define FULL10 (1 << 12)
#define HALF10 (1 << 11)
#define ANDONE (1 << 5)
#define LRFAULT (1 << 4)
#define ANABLE (1 << 3)
#define LLSTAT (1 << 2)
#define EXTREGS (1 << 0)
/* PHSTAT2 */
#define PLRITY (1 << 4)
/* PHSTAT3 */
#define PHY3SPD100 (1 << 3)
#define PHY3DPX (1 << 4)
#define SPDDPX_SHIFT 2
#define SPDDPX_MASK (0x7 << SPDDPX_SHIFT)
/* PHANA */
/* Default value for PHY initialization*/
#define PHANA_DEFAULT 0x05E1
/* PHANE */
#define PDFLT (1 << 4)
#define LPARCD (1 << 1)
#define LPANABL (1 << 0)
#define EUDAST_TEST_VAL 0x1234
#define TSV_SIZE 7
#define ENCX24J600_DEV_ID 0x1
/* Configuration */
/* Led is on when the link is present and driven low
* temporarily when packet is TX'd or RX'd
*/
#define LED_A_SETTINGS 0xC
/* Led is on if the link is in 100 Mbps mode */
#define LED_B_SETTINGS 0x8
/* maximum ethernet frame length
* Currently not used as a limit anywhere
* (we're using the "huge frame enable" feature of
* enc424j600).
*/
#define MAX_FRAMELEN 1518
/* Size in bytes of the receive buffer in enc424j600.
* Must be word aligned (even).
*/
#define RX_BUFFER_SIZE (15 * MAX_FRAMELEN)
/* Start of the general purpose area in sram */
#define SRAM_GP_START 0x0
/* SRAM size */
#define SRAM_SIZE 0x6000
/* Start of the receive buffer */
#define ERXST_VAL (SRAM_SIZE - RX_BUFFER_SIZE)
#define RSV_RXLONGEVDROPEV 16
#define RSV_CARRIEREV 18
#define RSV_CRCERROR 20
#define RSV_LENCHECKERR 21
#define RSV_LENOUTOFRANGE 22
#define RSV_RXOK 23
#define RSV_RXMULTICAST 24
#define RSV_RXBROADCAST 25
#define RSV_DRIBBLENIBBLE 26
#define RSV_RXCONTROLFRAME 27
#define RSV_RXPAUSEFRAME 28
#define RSV_RXUNKNOWNOPCODE 29
#define RSV_RXTYPEVLAN 30
#define RSV_RUNTFILTERMATCH 31
#define RSV_NOTMEFILTERMATCH 32
#define RSV_HASHFILTERMATCH 33
#define RSV_MAGICPKTFILTERMATCH 34
#define RSV_PTRNMTCHFILTERMATCH 35
#define RSV_UNICASTFILTERMATCH 36
#define RSV_SIZE 8
#define RSV_BITMASK(x) (1 << ((x) - 16))
#define RSV_GETBIT(x, y) (((x) & RSV_BITMASK(y)) ? 1 : 0)
struct rsv {
u16 next_packet;
u16 len;
u32 rxstat;
};
/* Put RX buffer at 0 as suggested by the Errata datasheet */
#define RXSTART_INIT ERXST_VAL
#define RXEND_INIT 0x5FFF
int regmap_encx24j600_spi_write(void *context, u8 reg, const u8 *data,
size_t count);
int regmap_encx24j600_spi_read(void *context, u8 reg, u8 *data, size_t count);
#endif