Merge tag 'drm-intel-next-fixes-2015-08-16' of git://anongit.freedesktop.org/drm-intel into drm-next

Bunch more fixes for 4.3, most of it skl fallout. It's not quite all yet,
there's still a few more patches pending to enable DDI-E correctly on skl.
Also included the dpms atomic work from Maarten since atomic is just a
pain and not including would cause piles of conflicts right from the
start.

* tag 'drm-intel-next-fixes-2015-08-16' of git://anongit.freedesktop.org/drm-intel: (67 commits)
  drm/i915: Per-DDI I_boost override
  drm/i915/skl: WaIgnoreDDIAStrap is forever, always init DDI A
  drm/i915: fix checksum write for automated test reply
  drm/i915: Contain the WA_REG macro
  drm/i915: Remove the failed context from the fpriv->context_idr
  drm/i915: Report IOMMU enabled status for GPU hangs
  drm/i915: Check idle to active before processing CSQ
  drm/i915: Set alternate aux for DDI-E
  drm/i915: Set power domain for DDI-E
  drm/i915: fix stolen bios_reserved checks
  drm/i915: Use masked write for Context Status Buffer Pointer
  drm/i915/skl WaDisableSbeCacheDispatchPortSharing
  drm/i915: Spam less on dp aux send/receive problems
  drm/i915: Handle return value in intel_pin_and_fence_fb_obj, v2.
  drm/i915: Only update mode related state if a modeset happened.
  drm/i915: Remove connectors_active.
  drm/i915: Remove connectors_active from intel_dp.c, v2.
  drm/i915: Remove connectors_active from sanitization, v2.
  drm/i915: Get rid of dpms handling.
  drm/i915: Make crtc checking use the atomic state, v2.
  ...
This commit is contained in:
Dave Airlie 2015-08-17 14:14:34 +10:00
commit d3638ac429
43 changed files with 2038 additions and 1451 deletions

View File

@ -3982,7 +3982,6 @@ int num_ioctls;</synopsis>
<title>Interrupt Handling</title>
!Pdrivers/gpu/drm/i915/i915_irq.c interrupt handling
!Fdrivers/gpu/drm/i915/i915_irq.c intel_irq_init intel_irq_init_hw intel_hpd_init
!Fdrivers/gpu/drm/i915/i915_irq.c intel_irq_fini
!Fdrivers/gpu/drm/i915/i915_irq.c intel_runtime_pm_disable_interrupts
!Fdrivers/gpu/drm/i915/i915_irq.c intel_runtime_pm_enable_interrupts
</sect2>
@ -4197,6 +4196,23 @@ int num_ioctls;</synopsis>
<title>Global GTT views</title>
!Pdrivers/gpu/drm/i915/i915_gem_gtt.c Global GTT views
!Idrivers/gpu/drm/i915/i915_gem_gtt.c
</sect2>
<sect2>
<title>GTT Fences and Swizzling</title>
!Idrivers/gpu/drm/i915/i915_gem_fence.c
<sect3>
<title>Global GTT Fence Handling</title>
!Pdrivers/gpu/drm/i915/i915_gem_fence.c fence register handling
</sect3>
<sect3>
<title>Hardware Tiling and Swizzling Details</title>
!Pdrivers/gpu/drm/i915/i915_gem_fence.c tiling swizzling details
</sect3>
</sect2>
<sect2>
<title>Object Tiling IOCTLs</title>
!Idrivers/gpu/drm/i915/i915_gem_tiling.c
!Pdrivers/gpu/drm/i915/i915_gem_tiling.c buffer object tiling
</sect2>
<sect2>
<title>Buffer Object Eviction</title>

View File

@ -6,12 +6,13 @@
# core driver code
i915-y := i915_drv.o \
i915_irq.o \
i915_params.o \
i915_suspend.o \
i915_sysfs.o \
intel_csr.o \
intel_pm.o \
intel_runtime_pm.o \
intel_csr.o
intel_runtime_pm.o
i915-$(CONFIG_COMPAT) += i915_ioc32.o
i915-$(CONFIG_DEBUG_FS) += i915_debugfs.o
@ -20,21 +21,20 @@ i915-$(CONFIG_DEBUG_FS) += i915_debugfs.o
i915-y += i915_cmd_parser.o \
i915_gem_batch_pool.o \
i915_gem_context.o \
i915_gem_render_state.o \
i915_gem_debug.o \
i915_gem_dmabuf.o \
i915_gem_evict.o \
i915_gem_execbuffer.o \
i915_gem_fence.o \
i915_gem_gtt.o \
i915_gem.o \
i915_gem_render_state.o \
i915_gem_shrinker.o \
i915_gem_stolen.o \
i915_gem_tiling.o \
i915_gem_userptr.o \
i915_gpu_error.o \
i915_irq.o \
i915_trace_points.o \
intel_hotplug.o \
intel_lrc.o \
intel_mocs.o \
intel_ringbuffer.o \
@ -48,11 +48,14 @@ i915-y += intel_renderstate_gen6.o \
# modesetting core code
i915-y += intel_audio.o \
intel_atomic.o \
intel_atomic_plane.o \
intel_bios.o \
intel_display.o \
intel_fbc.o \
intel_fifo_underrun.o \
intel_frontbuffer.o \
intel_hotplug.o \
intel_modes.o \
intel_overlay.o \
intel_psr.o \
@ -68,15 +71,13 @@ i915-y += dvo_ch7017.o \
dvo_ns2501.o \
dvo_sil164.o \
dvo_tfp410.o \
intel_atomic.o \
intel_atomic_plane.o \
intel_crt.o \
intel_ddi.o \
intel_dp.o \
intel_dp_mst.o \
intel_dp.o \
intel_dsi.o \
intel_dsi_pll.o \
intel_dsi_panel_vbt.o \
intel_dsi_pll.o \
intel_dvo.o \
intel_hdmi.o \
intel_i2c.o \

View File

@ -151,8 +151,8 @@ static const struct drm_i915_cmd_descriptor render_cmds[] = {
CMD( MI_ARB_ON_OFF, SMI, F, 1, R ),
CMD( MI_PREDICATE, SMI, F, 1, S ),
CMD( MI_TOPOLOGY_FILTER, SMI, F, 1, S ),
CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ),
CMD( MI_SET_APPID, SMI, F, 1, S ),
CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ),
CMD( MI_SET_CONTEXT, SMI, !F, 0xFF, R ),
CMD( MI_URB_CLEAR, SMI, !F, 0xFF, S ),
CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3F, B,
@ -564,7 +564,7 @@ static bool validate_cmds_sorted(struct intel_engine_cs *ring,
for (j = 0; j < table->count; j++) {
const struct drm_i915_cmd_descriptor *desc =
&table->table[i];
&table->table[j];
u32 curr = desc->cmd.value & desc->cmd.mask;
if (curr < previous) {

View File

@ -3645,74 +3645,40 @@ static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
return 0;
}
static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *crtc =
to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
struct intel_crtc_state *pipe_config;
struct drm_atomic_state *state;
int ret = 0;
drm_modeset_lock_all(dev);
pipe_config = to_intel_crtc_state(crtc->base.state);
state = drm_atomic_state_alloc(dev);
if (!state) {
ret = -ENOMEM;
goto out;
}
/*
* If we use the eDP transcoder we need to make sure that we don't
* bypass the pfit, since otherwise the pipe CRC source won't work. Only
* relevant on hsw with pipe A when using the always-on power well
* routing.
*/
state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
pipe_config = intel_atomic_get_crtc_state(state, crtc);
if (IS_ERR(pipe_config)) {
ret = PTR_ERR(pipe_config);
goto out;
}
pipe_config->pch_pfit.force_thru = enable;
if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
!pipe_config->pch_pfit.enabled) {
bool active = pipe_config->base.active;
pipe_config->pch_pfit.enabled != enable)
pipe_config->base.connectors_changed = true;
if (active) {
intel_crtc_control(&crtc->base, false);
pipe_config = to_intel_crtc_state(crtc->base.state);
}
pipe_config->pch_pfit.force_thru = true;
intel_display_power_get(dev_priv,
POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
if (active)
intel_crtc_control(&crtc->base, true);
}
drm_modeset_unlock_all(dev);
}
static void hsw_undo_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *crtc =
to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
struct intel_crtc_state *pipe_config;
drm_modeset_lock_all(dev);
/*
* If we use the eDP transcoder we need to make sure that we don't
* bypass the pfit, since otherwise the pipe CRC source won't work. Only
* relevant on hsw with pipe A when using the always-on power well
* routing.
*/
pipe_config = to_intel_crtc_state(crtc->base.state);
if (pipe_config->pch_pfit.force_thru) {
bool active = pipe_config->base.active;
if (active) {
intel_crtc_control(&crtc->base, false);
pipe_config = to_intel_crtc_state(crtc->base.state);
}
pipe_config->pch_pfit.force_thru = false;
intel_display_power_put(dev_priv,
POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
if (active)
intel_crtc_control(&crtc->base, true);
}
ret = drm_atomic_commit(state);
out:
drm_modeset_unlock_all(dev);
WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
if (ret)
drm_atomic_state_free(state);
}
static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
@ -3732,7 +3698,7 @@ static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
break;
case INTEL_PIPE_CRC_SOURCE_PF:
if (IS_HASWELL(dev) && pipe == PIPE_A)
hsw_trans_edp_pipe_A_crc_wa(dev);
hsw_trans_edp_pipe_A_crc_wa(dev, true);
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
break;
@ -3844,7 +3810,7 @@ static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
else if (IS_VALLEYVIEW(dev))
vlv_undo_pipe_scramble_reset(dev, pipe);
else if (IS_HASWELL(dev) && pipe == PIPE_A)
hsw_undo_trans_edp_pipe_A_crc_wa(dev);
hsw_trans_edp_pipe_A_crc_wa(dev, false);
hsw_enable_ips(crtc);
}
@ -4030,24 +3996,14 @@ static ssize_t i915_displayport_test_active_write(struct file *file,
{
char *input_buffer;
int status = 0;
struct seq_file *m;
struct drm_device *dev;
struct drm_connector *connector;
struct list_head *connector_list;
struct intel_dp *intel_dp;
int val = 0;
m = file->private_data;
if (!m) {
status = -ENODEV;
return status;
}
dev = m->private;
dev = ((struct seq_file *)file->private_data)->private;
if (!dev) {
status = -ENODEV;
return status;
}
connector_list = &dev->mode_config.connector_list;
if (len == 0)
@ -4071,9 +4027,7 @@ static ssize_t i915_displayport_test_active_write(struct file *file,
DRM_MODE_CONNECTOR_DisplayPort)
continue;
if (connector->connector_type ==
DRM_MODE_CONNECTOR_DisplayPort &&
connector->status == connector_status_connected &&
if (connector->status == connector_status_connected &&
connector->encoder != NULL) {
intel_dp = enc_to_intel_dp(connector->encoder);
status = kstrtoint(input_buffer, 10, &val);
@ -4105,9 +4059,6 @@ static int i915_displayport_test_active_show(struct seq_file *m, void *data)
struct list_head *connector_list = &dev->mode_config.connector_list;
struct intel_dp *intel_dp;
if (!dev)
return -ENODEV;
list_for_each_entry(connector, connector_list, head) {
if (connector->connector_type !=
@ -4152,9 +4103,6 @@ static int i915_displayport_test_data_show(struct seq_file *m, void *data)
struct list_head *connector_list = &dev->mode_config.connector_list;
struct intel_dp *intel_dp;
if (!dev)
return -ENODEV;
list_for_each_entry(connector, connector_list, head) {
if (connector->connector_type !=
@ -4194,9 +4142,6 @@ static int i915_displayport_test_type_show(struct seq_file *m, void *data)
struct list_head *connector_list = &dev->mode_config.connector_list;
struct intel_dp *intel_dp;
if (!dev)
return -ENODEV;
list_for_each_entry(connector, connector_list, head) {
if (connector->connector_type !=

View File

@ -1274,13 +1274,3 @@ const struct drm_ioctl_desc i915_ioctls[] = {
};
int i915_max_ioctl = ARRAY_SIZE(i915_ioctls);
/*
* This is really ugly: Because old userspace abused the linux agp interface to
* manage the gtt, we need to claim that all intel devices are agp. For
* otherwise the drm core refuses to initialize the agp support code.
*/
int i915_driver_device_is_agp(struct drm_device *dev)
{
return 1;
}

View File

@ -935,8 +935,6 @@ static int i915_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
if (PCI_FUNC(pdev->devfn))
return -ENODEV;
driver.driver_features &= ~(DRIVER_USE_AGP);
return drm_get_pci_dev(pdev, ent, &driver);
}
@ -1491,7 +1489,15 @@ static int intel_runtime_suspend(struct device *device)
* FIXME: We really should find a document that references the arguments
* used below!
*/
if (IS_HASWELL(dev)) {
if (IS_BROADWELL(dev)) {
/*
* On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
* being detected, and the call we do at intel_runtime_resume()
* won't be able to restore them. Since PCI_D3hot matches the
* actual specification and appears to be working, use it.
*/
intel_opregion_notify_adapter(dev, PCI_D3hot);
} else {
/*
* current versions of firmware which depend on this opregion
* notification have repurposed the D1 definition to mean
@ -1500,16 +1506,6 @@ static int intel_runtime_suspend(struct device *device)
* the suspend path.
*/
intel_opregion_notify_adapter(dev, PCI_D1);
} else {
/*
* On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
* being detected, and the call we do at intel_runtime_resume()
* won't be able to restore them. Since PCI_D3hot matches the
* actual specification and appears to be working, use it. Let's
* assume the other non-Haswell platforms will stay the same as
* Broadwell.
*/
intel_opregion_notify_adapter(dev, PCI_D3hot);
}
assert_forcewakes_inactive(dev_priv);
@ -1649,7 +1645,6 @@ static struct drm_driver driver = {
* deal with them for Intel hardware.
*/
.driver_features =
DRIVER_USE_AGP |
DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
DRIVER_RENDER,
.load = i915_driver_load,
@ -1664,7 +1659,6 @@ static struct drm_driver driver = {
.suspend = i915_suspend_legacy,
.resume = i915_resume_legacy,
.device_is_agp = i915_driver_device_is_agp,
#if defined(CONFIG_DEBUG_FS)
.debugfs_init = i915_debugfs_init,
.debugfs_cleanup = i915_debugfs_cleanup,

View File

@ -56,7 +56,7 @@
#define DRIVER_NAME "i915"
#define DRIVER_DESC "Intel Graphics"
#define DRIVER_DATE "20150717"
#define DRIVER_DATE "20150731"
#undef WARN_ON
/* Many gcc seem to no see through this and fall over :( */
@ -206,11 +206,11 @@ enum intel_display_power_domain {
enum hpd_pin {
HPD_NONE = 0,
HPD_PORT_A = HPD_NONE, /* PORT_A is internal */
HPD_TV = HPD_NONE, /* TV is known to be unreliable */
HPD_CRT,
HPD_SDVO_B,
HPD_SDVO_C,
HPD_PORT_A,
HPD_PORT_B,
HPD_PORT_C,
HPD_PORT_D,
@ -484,6 +484,7 @@ struct drm_i915_error_state {
struct timeval time;
char error_msg[128];
int iommu;
u32 reset_count;
u32 suspend_count;
@ -742,7 +743,7 @@ enum csr_state {
struct intel_csr {
const char *fw_path;
__be32 *dmc_payload;
uint32_t *dmc_payload;
uint32_t dmc_fw_size;
uint32_t mmio_count;
uint32_t mmioaddr[8];
@ -894,6 +895,7 @@ enum fb_op_origin {
ORIGIN_CPU,
ORIGIN_CS,
ORIGIN_FLIP,
ORIGIN_DIRTYFB,
};
struct i915_fbc {
@ -1408,6 +1410,11 @@ enum modeset_restore {
MODESET_SUSPENDED,
};
#define DP_AUX_A 0x40
#define DP_AUX_B 0x10
#define DP_AUX_C 0x20
#define DP_AUX_D 0x30
struct ddi_vbt_port_info {
/*
* This is an index in the HDMI/DVI DDI buffer translation table.
@ -1420,6 +1427,11 @@ struct ddi_vbt_port_info {
uint8_t supports_dvi:1;
uint8_t supports_hdmi:1;
uint8_t supports_dp:1;
uint8_t alternate_aux_channel;
uint8_t dp_boost_level;
uint8_t hdmi_boost_level;
};
enum psr_lines_to_wait {
@ -2610,6 +2622,8 @@ struct i915_params {
bool reset;
bool disable_display;
bool disable_vtd_wa;
bool enable_guc_submission;
int guc_log_level;
int use_mmio_flip;
int mmio_debug;
bool verbose_state_checks;
@ -2626,7 +2640,6 @@ extern void i915_driver_preclose(struct drm_device *dev,
struct drm_file *file);
extern void i915_driver_postclose(struct drm_device *dev,
struct drm_file *file);
extern int i915_driver_device_is_agp(struct drm_device * dev);
#ifdef CONFIG_COMPAT
extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
unsigned long arg);
@ -2646,7 +2659,7 @@ void intel_hpd_irq_handler(struct drm_device *dev, u32 pin_mask, u32 long_mask);
void intel_hpd_init(struct drm_i915_private *dev_priv);
void intel_hpd_init_work(struct drm_i915_private *dev_priv);
void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
enum port intel_hpd_pin_to_port(enum hpd_pin pin);
bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port);
/* i915_irq.c */
void i915_queue_hangcheck(struct drm_device *dev);
@ -2758,6 +2771,8 @@ void i915_gem_object_init(struct drm_i915_gem_object *obj,
const struct drm_i915_gem_object_ops *ops);
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
size_t size);
struct drm_i915_gem_object *i915_gem_object_create_from_data(
struct drm_device *dev, const void *data, size_t size);
void i915_init_vm(struct drm_i915_private *dev_priv,
struct i915_address_space *vm);
void i915_gem_free_object(struct drm_gem_object *obj);
@ -2864,11 +2879,6 @@ static inline bool i915_gem_request_completed(struct drm_i915_gem_request *req,
int __must_check i915_gem_get_seqno(struct drm_device *dev, u32 *seqno);
int __must_check i915_gem_set_seqno(struct drm_device *dev, u32 seqno);
int __must_check i915_gem_object_get_fence(struct drm_i915_gem_object *obj);
int __must_check i915_gem_object_put_fence(struct drm_i915_gem_object *obj);
bool i915_gem_object_pin_fence(struct drm_i915_gem_object *obj);
void i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj);
struct drm_i915_gem_request *
i915_gem_find_active_request(struct intel_engine_cs *ring);
@ -2966,8 +2976,6 @@ struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
struct drm_gem_object *gem_obj, int flags);
void i915_gem_restore_fences(struct drm_device *dev);
unsigned long
i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
const struct i915_ggtt_view *view);
@ -3062,6 +3070,19 @@ i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
i915_gem_object_ggtt_unpin_view(obj, &i915_ggtt_view_normal);
}
/* i915_gem_fence.c */
int __must_check i915_gem_object_get_fence(struct drm_i915_gem_object *obj);
int __must_check i915_gem_object_put_fence(struct drm_i915_gem_object *obj);
bool i915_gem_object_pin_fence(struct drm_i915_gem_object *obj);
void i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj);
void i915_gem_restore_fences(struct drm_device *dev);
void i915_gem_detect_bit_6_swizzle(struct drm_device *dev);
void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj);
void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj);
/* i915_gem_context.c */
int __must_check i915_gem_context_init(struct drm_device *dev);
void i915_gem_context_fini(struct drm_device *dev);
@ -3154,10 +3175,6 @@ static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_objec
obj->tiling_mode != I915_TILING_NONE;
}
void i915_gem_detect_bit_6_swizzle(struct drm_device *dev);
void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj);
void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj);
/* i915_gem_debug.c */
#if WATCH_LISTS
int i915_verify_lists(struct drm_device *dev);

View File

@ -46,11 +46,6 @@ static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
static void i915_gem_write_fence(struct drm_device *dev, int reg,
struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
struct drm_i915_fence_reg *fence,
bool enable);
static bool cpu_cache_is_coherent(struct drm_device *dev,
enum i915_cache_level level)
@ -66,18 +61,6 @@ static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
return obj->pin_display;
}
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
if (obj->tiling_mode)
i915_gem_release_mmap(obj);
/* As we do not have an associated fence register, we will force
* a tiling change if we ever need to acquire one.
*/
obj->fence_dirty = false;
obj->fence_reg = I915_FENCE_REG_NONE;
}
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
size_t size)
@ -2402,6 +2385,13 @@ i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
if (obj->active)
return;
/* Bump our place on the bound list to keep it roughly in LRU order
* so that we don't steal from recently used but inactive objects
* (unless we are forced to ofc!)
*/
list_move_tail(&obj->global_list,
&to_i915(obj->base.dev)->mm.bound_list);
list_for_each_entry(vma, &obj->vma_list, vma_link) {
if (!list_empty(&vma->mm_list))
list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
@ -2793,27 +2783,6 @@ static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
}
}
void i915_gem_restore_fences(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int i;
for (i = 0; i < dev_priv->num_fence_regs; i++) {
struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
/*
* Commit delayed tiling changes if we have an object still
* attached to the fence, otherwise just clear the fence.
*/
if (reg->obj) {
i915_gem_object_update_fence(reg->obj, reg,
reg->obj->tiling_mode);
} else {
i915_gem_write_fence(dev, i, NULL);
}
}
}
void i915_gem_reset(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
@ -3340,343 +3309,6 @@ int i915_gpu_idle(struct drm_device *dev)
return 0;
}
static void i965_write_fence_reg(struct drm_device *dev, int reg,
struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int fence_reg;
int fence_pitch_shift;
if (INTEL_INFO(dev)->gen >= 6) {
fence_reg = FENCE_REG_SANDYBRIDGE_0;
fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
} else {
fence_reg = FENCE_REG_965_0;
fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
}
fence_reg += reg * 8;
/* To w/a incoherency with non-atomic 64-bit register updates,
* we split the 64-bit update into two 32-bit writes. In order
* for a partial fence not to be evaluated between writes, we
* precede the update with write to turn off the fence register,
* and only enable the fence as the last step.
*
* For extra levels of paranoia, we make sure each step lands
* before applying the next step.
*/
I915_WRITE(fence_reg, 0);
POSTING_READ(fence_reg);
if (obj) {
u32 size = i915_gem_obj_ggtt_size(obj);
uint64_t val;
/* Adjust fence size to match tiled area */
if (obj->tiling_mode != I915_TILING_NONE) {
uint32_t row_size = obj->stride *
(obj->tiling_mode == I915_TILING_Y ? 32 : 8);
size = (size / row_size) * row_size;
}
val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
0xfffff000) << 32;
val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
if (obj->tiling_mode == I915_TILING_Y)
val |= 1 << I965_FENCE_TILING_Y_SHIFT;
val |= I965_FENCE_REG_VALID;
I915_WRITE(fence_reg + 4, val >> 32);
POSTING_READ(fence_reg + 4);
I915_WRITE(fence_reg + 0, val);
POSTING_READ(fence_reg);
} else {
I915_WRITE(fence_reg + 4, 0);
POSTING_READ(fence_reg + 4);
}
}
static void i915_write_fence_reg(struct drm_device *dev, int reg,
struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 val;
if (obj) {
u32 size = i915_gem_obj_ggtt_size(obj);
int pitch_val;
int tile_width;
WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
(size & -size) != size ||
(i915_gem_obj_ggtt_offset(obj) & (size - 1)),
"object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
tile_width = 128;
else
tile_width = 512;
/* Note: pitch better be a power of two tile widths */
pitch_val = obj->stride / tile_width;
pitch_val = ffs(pitch_val) - 1;
val = i915_gem_obj_ggtt_offset(obj);
if (obj->tiling_mode == I915_TILING_Y)
val |= 1 << I830_FENCE_TILING_Y_SHIFT;
val |= I915_FENCE_SIZE_BITS(size);
val |= pitch_val << I830_FENCE_PITCH_SHIFT;
val |= I830_FENCE_REG_VALID;
} else
val = 0;
if (reg < 8)
reg = FENCE_REG_830_0 + reg * 4;
else
reg = FENCE_REG_945_8 + (reg - 8) * 4;
I915_WRITE(reg, val);
POSTING_READ(reg);
}
static void i830_write_fence_reg(struct drm_device *dev, int reg,
struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t val;
if (obj) {
u32 size = i915_gem_obj_ggtt_size(obj);
uint32_t pitch_val;
WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
(size & -size) != size ||
(i915_gem_obj_ggtt_offset(obj) & (size - 1)),
"object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
i915_gem_obj_ggtt_offset(obj), size);
pitch_val = obj->stride / 128;
pitch_val = ffs(pitch_val) - 1;
val = i915_gem_obj_ggtt_offset(obj);
if (obj->tiling_mode == I915_TILING_Y)
val |= 1 << I830_FENCE_TILING_Y_SHIFT;
val |= I830_FENCE_SIZE_BITS(size);
val |= pitch_val << I830_FENCE_PITCH_SHIFT;
val |= I830_FENCE_REG_VALID;
} else
val = 0;
I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
POSTING_READ(FENCE_REG_830_0 + reg * 4);
}
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}
static void i915_gem_write_fence(struct drm_device *dev, int reg,
struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/* Ensure that all CPU reads are completed before installing a fence
* and all writes before removing the fence.
*/
if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
mb();
WARN(obj && (!obj->stride || !obj->tiling_mode),
"bogus fence setup with stride: 0x%x, tiling mode: %i\n",
obj->stride, obj->tiling_mode);
if (IS_GEN2(dev))
i830_write_fence_reg(dev, reg, obj);
else if (IS_GEN3(dev))
i915_write_fence_reg(dev, reg, obj);
else if (INTEL_INFO(dev)->gen >= 4)
i965_write_fence_reg(dev, reg, obj);
/* And similarly be paranoid that no direct access to this region
* is reordered to before the fence is installed.
*/
if (i915_gem_object_needs_mb(obj))
mb();
}
static inline int fence_number(struct drm_i915_private *dev_priv,
struct drm_i915_fence_reg *fence)
{
return fence - dev_priv->fence_regs;
}
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
struct drm_i915_fence_reg *fence,
bool enable)
{
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
int reg = fence_number(dev_priv, fence);
i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
if (enable) {
obj->fence_reg = reg;
fence->obj = obj;
list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
} else {
obj->fence_reg = I915_FENCE_REG_NONE;
fence->obj = NULL;
list_del_init(&fence->lru_list);
}
obj->fence_dirty = false;
}
static int
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
{
if (obj->last_fenced_req) {
int ret = i915_wait_request(obj->last_fenced_req);
if (ret)
return ret;
i915_gem_request_assign(&obj->last_fenced_req, NULL);
}
return 0;
}
int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
struct drm_i915_fence_reg *fence;
int ret;
ret = i915_gem_object_wait_fence(obj);
if (ret)
return ret;
if (obj->fence_reg == I915_FENCE_REG_NONE)
return 0;
fence = &dev_priv->fence_regs[obj->fence_reg];
if (WARN_ON(fence->pin_count))
return -EBUSY;
i915_gem_object_fence_lost(obj);
i915_gem_object_update_fence(obj, fence, false);
return 0;
}
static struct drm_i915_fence_reg *
i915_find_fence_reg(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_fence_reg *reg, *avail;
int i;
/* First try to find a free reg */
avail = NULL;
for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
reg = &dev_priv->fence_regs[i];
if (!reg->obj)
return reg;
if (!reg->pin_count)
avail = reg;
}
if (avail == NULL)
goto deadlock;
/* None available, try to steal one or wait for a user to finish */
list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
if (reg->pin_count)
continue;
return reg;
}
deadlock:
/* Wait for completion of pending flips which consume fences */
if (intel_has_pending_fb_unpin(dev))
return ERR_PTR(-EAGAIN);
return ERR_PTR(-EDEADLK);
}
/**
* i915_gem_object_get_fence - set up fencing for an object
* @obj: object to map through a fence reg
*
* When mapping objects through the GTT, userspace wants to be able to write
* to them without having to worry about swizzling if the object is tiled.
* This function walks the fence regs looking for a free one for @obj,
* stealing one if it can't find any.
*
* It then sets up the reg based on the object's properties: address, pitch
* and tiling format.
*
* For an untiled surface, this removes any existing fence.
*/
int
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
{
struct drm_device *dev = obj->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
bool enable = obj->tiling_mode != I915_TILING_NONE;
struct drm_i915_fence_reg *reg;
int ret;
/* Have we updated the tiling parameters upon the object and so
* will need to serialise the write to the associated fence register?
*/
if (obj->fence_dirty) {
ret = i915_gem_object_wait_fence(obj);
if (ret)
return ret;
}
/* Just update our place in the LRU if our fence is getting reused. */
if (obj->fence_reg != I915_FENCE_REG_NONE) {
reg = &dev_priv->fence_regs[obj->fence_reg];
if (!obj->fence_dirty) {
list_move_tail(&reg->lru_list,
&dev_priv->mm.fence_list);
return 0;
}
} else if (enable) {
if (WARN_ON(!obj->map_and_fenceable))
return -EINVAL;
reg = i915_find_fence_reg(dev);
if (IS_ERR(reg))
return PTR_ERR(reg);
if (reg->obj) {
struct drm_i915_gem_object *old = reg->obj;
ret = i915_gem_object_wait_fence(old);
if (ret)
return ret;
i915_gem_object_fence_lost(old);
}
} else
return 0;
i915_gem_object_update_fence(obj, reg, enable);
return 0;
}
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
unsigned long cache_level)
{
@ -4476,32 +4108,6 @@ i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
--vma->pin_count;
}
bool
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
{
if (obj->fence_reg != I915_FENCE_REG_NONE) {
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
WARN_ON(!ggtt_vma ||
dev_priv->fence_regs[obj->fence_reg].pin_count >
ggtt_vma->pin_count);
dev_priv->fence_regs[obj->fence_reg].pin_count++;
return true;
} else
return false;
}
void
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
{
if (obj->fence_reg != I915_FENCE_REG_NONE) {
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
dev_priv->fence_regs[obj->fence_reg].pin_count--;
}
}
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
@ -5477,3 +5083,43 @@ bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
return false;
}
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
const void *data, size_t size)
{
struct drm_i915_gem_object *obj;
struct sg_table *sg;
size_t bytes;
int ret;
obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
if (IS_ERR_OR_NULL(obj))
return obj;
ret = i915_gem_object_set_to_cpu_domain(obj, true);
if (ret)
goto fail;
ret = i915_gem_object_get_pages(obj);
if (ret)
goto fail;
i915_gem_object_pin_pages(obj);
sg = obj->pages;
bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
i915_gem_object_unpin_pages(obj);
if (WARN_ON(bytes != size)) {
DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
ret = -EFAULT;
goto fail;
}
return obj;
fail:
drm_gem_object_unreference(&obj->base);
return ERR_PTR(ret);
}

View File

@ -287,6 +287,7 @@ err_unpin:
if (is_global_default_ctx && ctx->legacy_hw_ctx.rcs_state)
i915_gem_object_ggtt_unpin(ctx->legacy_hw_ctx.rcs_state);
err_destroy:
idr_remove(&file_priv->context_idr, ctx->user_handle);
i915_gem_context_unreference(ctx);
return ERR_PTR(ret);
}

View File

@ -0,0 +1,787 @@
/*
* Copyright © 2008-2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
/**
* DOC: fence register handling
*
* Important to avoid confusions: "fences" in the i915 driver are not execution
* fences used to track command completion but hardware detiler objects which
* wrap a given range of the global GTT. Each platform has only a fairly limited
* set of these objects.
*
* Fences are used to detile GTT memory mappings. They're also connected to the
* hardware frontbuffer render tracking and hence interract with frontbuffer
* conmpression. Furthermore on older platforms fences are required for tiled
* objects used by the display engine. They can also be used by the render
* engine - they're required for blitter commands and are optional for render
* commands. But on gen4+ both display (with the exception of fbc) and rendering
* have their own tiling state bits and don't need fences.
*
* Also note that fences only support X and Y tiling and hence can't be used for
* the fancier new tiling formats like W, Ys and Yf.
*
* Finally note that because fences are such a restricted resource they're
* dynamically associated with objects. Furthermore fence state is committed to
* the hardware lazily to avoid unecessary stalls on gen2/3. Therefore code must
* explictly call i915_gem_object_get_fence() to synchronize fencing status
* for cpu access. Also note that some code wants an unfenced view, for those
* cases the fence can be removed forcefully with i915_gem_object_put_fence().
*
* Internally these functions will synchronize with userspace access by removing
* CPU ptes into GTT mmaps (not the GTT ptes themselves) as needed.
*/
static void i965_write_fence_reg(struct drm_device *dev, int reg,
struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int fence_reg;
int fence_pitch_shift;
if (INTEL_INFO(dev)->gen >= 6) {
fence_reg = FENCE_REG_SANDYBRIDGE_0;
fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
} else {
fence_reg = FENCE_REG_965_0;
fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
}
fence_reg += reg * 8;
/* To w/a incoherency with non-atomic 64-bit register updates,
* we split the 64-bit update into two 32-bit writes. In order
* for a partial fence not to be evaluated between writes, we
* precede the update with write to turn off the fence register,
* and only enable the fence as the last step.
*
* For extra levels of paranoia, we make sure each step lands
* before applying the next step.
*/
I915_WRITE(fence_reg, 0);
POSTING_READ(fence_reg);
if (obj) {
u32 size = i915_gem_obj_ggtt_size(obj);
uint64_t val;
/* Adjust fence size to match tiled area */
if (obj->tiling_mode != I915_TILING_NONE) {
uint32_t row_size = obj->stride *
(obj->tiling_mode == I915_TILING_Y ? 32 : 8);
size = (size / row_size) * row_size;
}
val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
0xfffff000) << 32;
val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
if (obj->tiling_mode == I915_TILING_Y)
val |= 1 << I965_FENCE_TILING_Y_SHIFT;
val |= I965_FENCE_REG_VALID;
I915_WRITE(fence_reg + 4, val >> 32);
POSTING_READ(fence_reg + 4);
I915_WRITE(fence_reg + 0, val);
POSTING_READ(fence_reg);
} else {
I915_WRITE(fence_reg + 4, 0);
POSTING_READ(fence_reg + 4);
}
}
static void i915_write_fence_reg(struct drm_device *dev, int reg,
struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 val;
if (obj) {
u32 size = i915_gem_obj_ggtt_size(obj);
int pitch_val;
int tile_width;
WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
(size & -size) != size ||
(i915_gem_obj_ggtt_offset(obj) & (size - 1)),
"object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
tile_width = 128;
else
tile_width = 512;
/* Note: pitch better be a power of two tile widths */
pitch_val = obj->stride / tile_width;
pitch_val = ffs(pitch_val) - 1;
val = i915_gem_obj_ggtt_offset(obj);
if (obj->tiling_mode == I915_TILING_Y)
val |= 1 << I830_FENCE_TILING_Y_SHIFT;
val |= I915_FENCE_SIZE_BITS(size);
val |= pitch_val << I830_FENCE_PITCH_SHIFT;
val |= I830_FENCE_REG_VALID;
} else
val = 0;
if (reg < 8)
reg = FENCE_REG_830_0 + reg * 4;
else
reg = FENCE_REG_945_8 + (reg - 8) * 4;
I915_WRITE(reg, val);
POSTING_READ(reg);
}
static void i830_write_fence_reg(struct drm_device *dev, int reg,
struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t val;
if (obj) {
u32 size = i915_gem_obj_ggtt_size(obj);
uint32_t pitch_val;
WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
(size & -size) != size ||
(i915_gem_obj_ggtt_offset(obj) & (size - 1)),
"object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
i915_gem_obj_ggtt_offset(obj), size);
pitch_val = obj->stride / 128;
pitch_val = ffs(pitch_val) - 1;
val = i915_gem_obj_ggtt_offset(obj);
if (obj->tiling_mode == I915_TILING_Y)
val |= 1 << I830_FENCE_TILING_Y_SHIFT;
val |= I830_FENCE_SIZE_BITS(size);
val |= pitch_val << I830_FENCE_PITCH_SHIFT;
val |= I830_FENCE_REG_VALID;
} else
val = 0;
I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
POSTING_READ(FENCE_REG_830_0 + reg * 4);
}
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}
static void i915_gem_write_fence(struct drm_device *dev, int reg,
struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/* Ensure that all CPU reads are completed before installing a fence
* and all writes before removing the fence.
*/
if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
mb();
WARN(obj && (!obj->stride || !obj->tiling_mode),
"bogus fence setup with stride: 0x%x, tiling mode: %i\n",
obj->stride, obj->tiling_mode);
if (IS_GEN2(dev))
i830_write_fence_reg(dev, reg, obj);
else if (IS_GEN3(dev))
i915_write_fence_reg(dev, reg, obj);
else if (INTEL_INFO(dev)->gen >= 4)
i965_write_fence_reg(dev, reg, obj);
/* And similarly be paranoid that no direct access to this region
* is reordered to before the fence is installed.
*/
if (i915_gem_object_needs_mb(obj))
mb();
}
static inline int fence_number(struct drm_i915_private *dev_priv,
struct drm_i915_fence_reg *fence)
{
return fence - dev_priv->fence_regs;
}
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
struct drm_i915_fence_reg *fence,
bool enable)
{
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
int reg = fence_number(dev_priv, fence);
i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
if (enable) {
obj->fence_reg = reg;
fence->obj = obj;
list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
} else {
obj->fence_reg = I915_FENCE_REG_NONE;
fence->obj = NULL;
list_del_init(&fence->lru_list);
}
obj->fence_dirty = false;
}
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
if (obj->tiling_mode)
i915_gem_release_mmap(obj);
/* As we do not have an associated fence register, we will force
* a tiling change if we ever need to acquire one.
*/
obj->fence_dirty = false;
obj->fence_reg = I915_FENCE_REG_NONE;
}
static int
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
{
if (obj->last_fenced_req) {
int ret = i915_wait_request(obj->last_fenced_req);
if (ret)
return ret;
i915_gem_request_assign(&obj->last_fenced_req, NULL);
}
return 0;
}
/**
* i915_gem_object_put_fence - force-remove fence for an object
* @obj: object to map through a fence reg
*
* This function force-removes any fence from the given object, which is useful
* if the kernel wants to do untiled GTT access.
*
* Returns:
*
* 0 on success, negative error code on failure.
*/
int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
struct drm_i915_fence_reg *fence;
int ret;
ret = i915_gem_object_wait_fence(obj);
if (ret)
return ret;
if (obj->fence_reg == I915_FENCE_REG_NONE)
return 0;
fence = &dev_priv->fence_regs[obj->fence_reg];
if (WARN_ON(fence->pin_count))
return -EBUSY;
i915_gem_object_fence_lost(obj);
i915_gem_object_update_fence(obj, fence, false);
return 0;
}
static struct drm_i915_fence_reg *
i915_find_fence_reg(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_fence_reg *reg, *avail;
int i;
/* First try to find a free reg */
avail = NULL;
for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
reg = &dev_priv->fence_regs[i];
if (!reg->obj)
return reg;
if (!reg->pin_count)
avail = reg;
}
if (avail == NULL)
goto deadlock;
/* None available, try to steal one or wait for a user to finish */
list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
if (reg->pin_count)
continue;
return reg;
}
deadlock:
/* Wait for completion of pending flips which consume fences */
if (intel_has_pending_fb_unpin(dev))
return ERR_PTR(-EAGAIN);
return ERR_PTR(-EDEADLK);
}
/**
* i915_gem_object_get_fence - set up fencing for an object
* @obj: object to map through a fence reg
*
* When mapping objects through the GTT, userspace wants to be able to write
* to them without having to worry about swizzling if the object is tiled.
* This function walks the fence regs looking for a free one for @obj,
* stealing one if it can't find any.
*
* It then sets up the reg based on the object's properties: address, pitch
* and tiling format.
*
* For an untiled surface, this removes any existing fence.
*
* Returns:
*
* 0 on success, negative error code on failure.
*/
int
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
{
struct drm_device *dev = obj->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
bool enable = obj->tiling_mode != I915_TILING_NONE;
struct drm_i915_fence_reg *reg;
int ret;
/* Have we updated the tiling parameters upon the object and so
* will need to serialise the write to the associated fence register?
*/
if (obj->fence_dirty) {
ret = i915_gem_object_wait_fence(obj);
if (ret)
return ret;
}
/* Just update our place in the LRU if our fence is getting reused. */
if (obj->fence_reg != I915_FENCE_REG_NONE) {
reg = &dev_priv->fence_regs[obj->fence_reg];
if (!obj->fence_dirty) {
list_move_tail(&reg->lru_list,
&dev_priv->mm.fence_list);
return 0;
}
} else if (enable) {
if (WARN_ON(!obj->map_and_fenceable))
return -EINVAL;
reg = i915_find_fence_reg(dev);
if (IS_ERR(reg))
return PTR_ERR(reg);
if (reg->obj) {
struct drm_i915_gem_object *old = reg->obj;
ret = i915_gem_object_wait_fence(old);
if (ret)
return ret;
i915_gem_object_fence_lost(old);
}
} else
return 0;
i915_gem_object_update_fence(obj, reg, enable);
return 0;
}
/**
* i915_gem_object_pin_fence - pin fencing state
* @obj: object to pin fencing for
*
* This pins the fencing state (whether tiled or untiled) to make sure the
* object is ready to be used as a scanout target. Fencing status must be
* synchronize first by calling i915_gem_object_get_fence():
*
* The resulting fence pin reference must be released again with
* i915_gem_object_unpin_fence().
*
* Returns:
*
* True if the object has a fence, false otherwise.
*/
bool
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
{
if (obj->fence_reg != I915_FENCE_REG_NONE) {
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
WARN_ON(!ggtt_vma ||
dev_priv->fence_regs[obj->fence_reg].pin_count >
ggtt_vma->pin_count);
dev_priv->fence_regs[obj->fence_reg].pin_count++;
return true;
} else
return false;
}
/**
* i915_gem_object_unpin_fence - unpin fencing state
* @obj: object to unpin fencing for
*
* This releases the fence pin reference acquired through
* i915_gem_object_pin_fence. It will handle both objects with and without an
* attached fence correctly, callers do not need to distinguish this.
*/
void
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
{
if (obj->fence_reg != I915_FENCE_REG_NONE) {
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
dev_priv->fence_regs[obj->fence_reg].pin_count--;
}
}
/**
* i915_gem_restore_fences - restore fence state
* @dev: DRM device
*
* Restore the hw fence state to match the software tracking again, to be called
* after a gpu reset and on resume.
*/
void i915_gem_restore_fences(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int i;
for (i = 0; i < dev_priv->num_fence_regs; i++) {
struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
/*
* Commit delayed tiling changes if we have an object still
* attached to the fence, otherwise just clear the fence.
*/
if (reg->obj) {
i915_gem_object_update_fence(reg->obj, reg,
reg->obj->tiling_mode);
} else {
i915_gem_write_fence(dev, i, NULL);
}
}
}
/**
* DOC: tiling swizzling details
*
* The idea behind tiling is to increase cache hit rates by rearranging
* pixel data so that a group of pixel accesses are in the same cacheline.
* Performance improvement from doing this on the back/depth buffer are on
* the order of 30%.
*
* Intel architectures make this somewhat more complicated, though, by
* adjustments made to addressing of data when the memory is in interleaved
* mode (matched pairs of DIMMS) to improve memory bandwidth.
* For interleaved memory, the CPU sends every sequential 64 bytes
* to an alternate memory channel so it can get the bandwidth from both.
*
* The GPU also rearranges its accesses for increased bandwidth to interleaved
* memory, and it matches what the CPU does for non-tiled. However, when tiled
* it does it a little differently, since one walks addresses not just in the
* X direction but also Y. So, along with alternating channels when bit
* 6 of the address flips, it also alternates when other bits flip -- Bits 9
* (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
* are common to both the 915 and 965-class hardware.
*
* The CPU also sometimes XORs in higher bits as well, to improve
* bandwidth doing strided access like we do so frequently in graphics. This
* is called "Channel XOR Randomization" in the MCH documentation. The result
* is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
* decode.
*
* All of this bit 6 XORing has an effect on our memory management,
* as we need to make sure that the 3d driver can correctly address object
* contents.
*
* If we don't have interleaved memory, all tiling is safe and no swizzling is
* required.
*
* When bit 17 is XORed in, we simply refuse to tile at all. Bit
* 17 is not just a page offset, so as we page an objet out and back in,
* individual pages in it will have different bit 17 addresses, resulting in
* each 64 bytes being swapped with its neighbor!
*
* Otherwise, if interleaved, we have to tell the 3d driver what the address
* swizzling it needs to do is, since it's writing with the CPU to the pages
* (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
* pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
* required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
* to match what the GPU expects.
*/
/**
* i915_gem_detect_bit_6_swizzle - detect bit 6 swizzling pattern
* @dev: DRM device
*
* Detects bit 6 swizzling of address lookup between IGD access and CPU
* access through main memory.
*/
void
i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
if (INTEL_INFO(dev)->gen >= 8 || IS_VALLEYVIEW(dev)) {
/*
* On BDW+, swizzling is not used. We leave the CPU memory
* controller in charge of optimizing memory accesses without
* the extra address manipulation GPU side.
*
* VLV and CHV don't have GPU swizzling.
*/
swizzle_x = I915_BIT_6_SWIZZLE_NONE;
swizzle_y = I915_BIT_6_SWIZZLE_NONE;
} else if (INTEL_INFO(dev)->gen >= 6) {
if (dev_priv->preserve_bios_swizzle) {
if (I915_READ(DISP_ARB_CTL) &
DISP_TILE_SURFACE_SWIZZLING) {
swizzle_x = I915_BIT_6_SWIZZLE_9_10;
swizzle_y = I915_BIT_6_SWIZZLE_9;
} else {
swizzle_x = I915_BIT_6_SWIZZLE_NONE;
swizzle_y = I915_BIT_6_SWIZZLE_NONE;
}
} else {
uint32_t dimm_c0, dimm_c1;
dimm_c0 = I915_READ(MAD_DIMM_C0);
dimm_c1 = I915_READ(MAD_DIMM_C1);
dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
/* Enable swizzling when the channels are populated
* with identically sized dimms. We don't need to check
* the 3rd channel because no cpu with gpu attached
* ships in that configuration. Also, swizzling only
* makes sense for 2 channels anyway. */
if (dimm_c0 == dimm_c1) {
swizzle_x = I915_BIT_6_SWIZZLE_9_10;
swizzle_y = I915_BIT_6_SWIZZLE_9;
} else {
swizzle_x = I915_BIT_6_SWIZZLE_NONE;
swizzle_y = I915_BIT_6_SWIZZLE_NONE;
}
}
} else if (IS_GEN5(dev)) {
/* On Ironlake whatever DRAM config, GPU always do
* same swizzling setup.
*/
swizzle_x = I915_BIT_6_SWIZZLE_9_10;
swizzle_y = I915_BIT_6_SWIZZLE_9;
} else if (IS_GEN2(dev)) {
/* As far as we know, the 865 doesn't have these bit 6
* swizzling issues.
*/
swizzle_x = I915_BIT_6_SWIZZLE_NONE;
swizzle_y = I915_BIT_6_SWIZZLE_NONE;
} else if (IS_MOBILE(dev) || (IS_GEN3(dev) && !IS_G33(dev))) {
uint32_t dcc;
/* On 9xx chipsets, channel interleave by the CPU is
* determined by DCC. For single-channel, neither the CPU
* nor the GPU do swizzling. For dual channel interleaved,
* the GPU's interleave is bit 9 and 10 for X tiled, and bit
* 9 for Y tiled. The CPU's interleave is independent, and
* can be based on either bit 11 (haven't seen this yet) or
* bit 17 (common).
*/
dcc = I915_READ(DCC);
switch (dcc & DCC_ADDRESSING_MODE_MASK) {
case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
swizzle_x = I915_BIT_6_SWIZZLE_NONE;
swizzle_y = I915_BIT_6_SWIZZLE_NONE;
break;
case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
if (dcc & DCC_CHANNEL_XOR_DISABLE) {
/* This is the base swizzling by the GPU for
* tiled buffers.
*/
swizzle_x = I915_BIT_6_SWIZZLE_9_10;
swizzle_y = I915_BIT_6_SWIZZLE_9;
} else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
/* Bit 11 swizzling by the CPU in addition. */
swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
swizzle_y = I915_BIT_6_SWIZZLE_9_11;
} else {
/* Bit 17 swizzling by the CPU in addition. */
swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
swizzle_y = I915_BIT_6_SWIZZLE_9_17;
}
break;
}
/* check for L-shaped memory aka modified enhanced addressing */
if (IS_GEN4(dev)) {
uint32_t ddc2 = I915_READ(DCC2);
if (!(ddc2 & DCC2_MODIFIED_ENHANCED_DISABLE))
dev_priv->quirks |= QUIRK_PIN_SWIZZLED_PAGES;
}
if (dcc == 0xffffffff) {
DRM_ERROR("Couldn't read from MCHBAR. "
"Disabling tiling.\n");
swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
}
} else {
/* The 965, G33, and newer, have a very flexible memory
* configuration. It will enable dual-channel mode
* (interleaving) on as much memory as it can, and the GPU
* will additionally sometimes enable different bit 6
* swizzling for tiled objects from the CPU.
*
* Here's what I found on the G965:
* slot fill memory size swizzling
* 0A 0B 1A 1B 1-ch 2-ch
* 512 0 0 0 512 0 O
* 512 0 512 0 16 1008 X
* 512 0 0 512 16 1008 X
* 0 512 0 512 16 1008 X
* 1024 1024 1024 0 2048 1024 O
*
* We could probably detect this based on either the DRB
* matching, which was the case for the swizzling required in
* the table above, or from the 1-ch value being less than
* the minimum size of a rank.
*/
if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) {
swizzle_x = I915_BIT_6_SWIZZLE_NONE;
swizzle_y = I915_BIT_6_SWIZZLE_NONE;
} else {
swizzle_x = I915_BIT_6_SWIZZLE_9_10;
swizzle_y = I915_BIT_6_SWIZZLE_9;
}
}
dev_priv->mm.bit_6_swizzle_x = swizzle_x;
dev_priv->mm.bit_6_swizzle_y = swizzle_y;
}
/*
* Swap every 64 bytes of this page around, to account for it having a new
* bit 17 of its physical address and therefore being interpreted differently
* by the GPU.
*/
static void
i915_gem_swizzle_page(struct page *page)
{
char temp[64];
char *vaddr;
int i;
vaddr = kmap(page);
for (i = 0; i < PAGE_SIZE; i += 128) {
memcpy(temp, &vaddr[i], 64);
memcpy(&vaddr[i], &vaddr[i + 64], 64);
memcpy(&vaddr[i + 64], temp, 64);
}
kunmap(page);
}
/**
* i915_gem_object_do_bit_17_swizzle - fixup bit 17 swizzling
* @obj: i915 GEM buffer object
*
* This function fixes up the swizzling in case any page frame number for this
* object has changed in bit 17 since that state has been saved with
* i915_gem_object_save_bit_17_swizzle().
*
* This is called when pinning backing storage again, since the kernel is free
* to move unpinned backing storage around (either by directly moving pages or
* by swapping them out and back in again).
*/
void
i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj)
{
struct sg_page_iter sg_iter;
int i;
if (obj->bit_17 == NULL)
return;
i = 0;
for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
struct page *page = sg_page_iter_page(&sg_iter);
char new_bit_17 = page_to_phys(page) >> 17;
if ((new_bit_17 & 0x1) !=
(test_bit(i, obj->bit_17) != 0)) {
i915_gem_swizzle_page(page);
set_page_dirty(page);
}
i++;
}
}
/**
* i915_gem_object_save_bit_17_swizzle - save bit 17 swizzling
* @obj: i915 GEM buffer object
*
* This function saves the bit 17 of each page frame number so that swizzling
* can be fixed up later on with i915_gem_object_do_bit_17_swizzle(). This must
* be called before the backing storage can be unpinned.
*/
void
i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj)
{
struct sg_page_iter sg_iter;
int page_count = obj->base.size >> PAGE_SHIFT;
int i;
if (obj->bit_17 == NULL) {
obj->bit_17 = kcalloc(BITS_TO_LONGS(page_count),
sizeof(long), GFP_KERNEL);
if (obj->bit_17 == NULL) {
DRM_ERROR("Failed to allocate memory for bit 17 "
"record\n");
return;
}
}
i = 0;
for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
if (page_to_phys(sg_page_iter_page(&sg_iter)) & (1 << 17))
__set_bit(i, obj->bit_17);
else
__clear_bit(i, obj->bit_17);
i++;
}
}

View File

@ -73,6 +73,24 @@ free_gem:
return ret;
}
/*
* Macro to add commands to auxiliary batch.
* This macro only checks for page overflow before inserting the commands,
* this is sufficient as the null state generator makes the final batch
* with two passes to build command and state separately. At this point
* the size of both are known and it compacts them by relocating the state
* right after the commands taking care of aligment so we should sufficient
* space below them for adding new commands.
*/
#define OUT_BATCH(batch, i, val) \
do { \
if (WARN_ON((i) >= PAGE_SIZE / sizeof(u32))) { \
ret = -ENOSPC; \
goto err_out; \
} \
(batch)[(i)++] = (val); \
} while(0)
static int render_state_setup(struct render_state *so)
{
const struct intel_renderstate_rodata *rodata = so->rodata;
@ -96,8 +114,10 @@ static int render_state_setup(struct render_state *so)
s = lower_32_bits(r);
if (so->gen >= 8) {
if (i + 1 >= rodata->batch_items ||
rodata->batch[i + 1] != 0)
return -EINVAL;
rodata->batch[i + 1] != 0) {
ret = -EINVAL;
goto err_out;
}
d[i++] = s;
s = upper_32_bits(r);
@ -108,6 +128,21 @@ static int render_state_setup(struct render_state *so)
d[i++] = s;
}
while (i % CACHELINE_DWORDS)
OUT_BATCH(d, i, MI_NOOP);
so->aux_batch_offset = i * sizeof(u32);
OUT_BATCH(d, i, MI_BATCH_BUFFER_END);
so->aux_batch_size = (i * sizeof(u32)) - so->aux_batch_offset;
/*
* Since we are sending length, we need to strictly conform to
* all requirements. For Gen2 this must be a multiple of 8.
*/
so->aux_batch_size = ALIGN(so->aux_batch_size, 8);
kunmap(page);
ret = i915_gem_object_set_to_gtt_domain(so->obj, false);
@ -120,8 +155,14 @@ static int render_state_setup(struct render_state *so)
}
return 0;
err_out:
kunmap(page);
return ret;
}
#undef OUT_BATCH
void i915_gem_render_state_fini(struct render_state *so)
{
i915_gem_object_ggtt_unpin(so->obj);
@ -170,6 +211,16 @@ int i915_gem_render_state_init(struct drm_i915_gem_request *req)
if (ret)
goto out;
if (so.aux_batch_size > 8) {
ret = req->ring->dispatch_execbuffer(req,
(so.ggtt_offset +
so.aux_batch_offset),
so.aux_batch_size,
I915_DISPATCH_SECURE);
if (ret)
goto out;
}
i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
out:

View File

@ -37,6 +37,8 @@ struct render_state {
struct drm_i915_gem_object *obj;
u64 ggtt_offset;
int gen;
u32 aux_batch_size;
u32 aux_batch_offset;
};
int i915_gem_render_state_init(struct drm_i915_gem_request *req);

View File

@ -186,11 +186,103 @@ void i915_gem_cleanup_stolen(struct drm_device *dev)
drm_mm_takedown(&dev_priv->mm.stolen);
}
static void gen6_get_stolen_reserved(struct drm_i915_private *dev_priv,
unsigned long *base, unsigned long *size)
{
uint32_t reg_val = I915_READ(GEN6_STOLEN_RESERVED);
*base = reg_val & GEN6_STOLEN_RESERVED_ADDR_MASK;
switch (reg_val & GEN6_STOLEN_RESERVED_SIZE_MASK) {
case GEN6_STOLEN_RESERVED_1M:
*size = 1024 * 1024;
break;
case GEN6_STOLEN_RESERVED_512K:
*size = 512 * 1024;
break;
case GEN6_STOLEN_RESERVED_256K:
*size = 256 * 1024;
break;
case GEN6_STOLEN_RESERVED_128K:
*size = 128 * 1024;
break;
default:
*size = 1024 * 1024;
MISSING_CASE(reg_val & GEN6_STOLEN_RESERVED_SIZE_MASK);
}
}
static void gen7_get_stolen_reserved(struct drm_i915_private *dev_priv,
unsigned long *base, unsigned long *size)
{
uint32_t reg_val = I915_READ(GEN6_STOLEN_RESERVED);
*base = reg_val & GEN7_STOLEN_RESERVED_ADDR_MASK;
switch (reg_val & GEN7_STOLEN_RESERVED_SIZE_MASK) {
case GEN7_STOLEN_RESERVED_1M:
*size = 1024 * 1024;
break;
case GEN7_STOLEN_RESERVED_256K:
*size = 256 * 1024;
break;
default:
*size = 1024 * 1024;
MISSING_CASE(reg_val & GEN7_STOLEN_RESERVED_SIZE_MASK);
}
}
static void gen8_get_stolen_reserved(struct drm_i915_private *dev_priv,
unsigned long *base, unsigned long *size)
{
uint32_t reg_val = I915_READ(GEN6_STOLEN_RESERVED);
*base = reg_val & GEN6_STOLEN_RESERVED_ADDR_MASK;
switch (reg_val & GEN8_STOLEN_RESERVED_SIZE_MASK) {
case GEN8_STOLEN_RESERVED_1M:
*size = 1024 * 1024;
break;
case GEN8_STOLEN_RESERVED_2M:
*size = 2 * 1024 * 1024;
break;
case GEN8_STOLEN_RESERVED_4M:
*size = 4 * 1024 * 1024;
break;
case GEN8_STOLEN_RESERVED_8M:
*size = 8 * 1024 * 1024;
break;
default:
*size = 8 * 1024 * 1024;
MISSING_CASE(reg_val & GEN8_STOLEN_RESERVED_SIZE_MASK);
}
}
static void bdw_get_stolen_reserved(struct drm_i915_private *dev_priv,
unsigned long *base, unsigned long *size)
{
uint32_t reg_val = I915_READ(GEN6_STOLEN_RESERVED);
unsigned long stolen_top;
stolen_top = dev_priv->mm.stolen_base + dev_priv->gtt.stolen_size;
*base = reg_val & GEN6_STOLEN_RESERVED_ADDR_MASK;
/* On these platforms, the register doesn't have a size field, so the
* size is the distance between the base and the top of the stolen
* memory. We also have the genuine case where base is zero and there's
* nothing reserved. */
if (*base == 0)
*size = 0;
else
*size = stolen_top - *base;
}
int i915_gem_init_stolen(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 tmp;
int bios_reserved = 0;
unsigned long reserved_total, reserved_base, reserved_size;
unsigned long stolen_top;
mutex_init(&dev_priv->mm.stolen_lock);
@ -208,26 +300,61 @@ int i915_gem_init_stolen(struct drm_device *dev)
if (dev_priv->mm.stolen_base == 0)
return 0;
DRM_DEBUG_KMS("found %zd bytes of stolen memory at %08lx\n",
dev_priv->gtt.stolen_size, dev_priv->mm.stolen_base);
stolen_top = dev_priv->mm.stolen_base + dev_priv->gtt.stolen_size;
if (INTEL_INFO(dev)->gen >= 8) {
tmp = I915_READ(GEN7_BIOS_RESERVED);
tmp >>= GEN8_BIOS_RESERVED_SHIFT;
tmp &= GEN8_BIOS_RESERVED_MASK;
bios_reserved = (1024*1024) << tmp;
} else if (IS_GEN7(dev)) {
tmp = I915_READ(GEN7_BIOS_RESERVED);
bios_reserved = tmp & GEN7_BIOS_RESERVED_256K ?
256*1024 : 1024*1024;
switch (INTEL_INFO(dev_priv)->gen) {
case 2:
case 3:
case 4:
case 5:
/* Assume the gen6 maximum for the older platforms. */
reserved_size = 1024 * 1024;
reserved_base = stolen_top - reserved_size;
break;
case 6:
gen6_get_stolen_reserved(dev_priv, &reserved_base,
&reserved_size);
break;
case 7:
gen7_get_stolen_reserved(dev_priv, &reserved_base,
&reserved_size);
break;
default:
if (IS_BROADWELL(dev_priv) || IS_SKYLAKE(dev_priv))
bdw_get_stolen_reserved(dev_priv, &reserved_base,
&reserved_size);
else
gen8_get_stolen_reserved(dev_priv, &reserved_base,
&reserved_size);
break;
}
if (WARN_ON(bios_reserved > dev_priv->gtt.stolen_size))
/* It is possible for the reserved base to be zero, but the register
* field for size doesn't have a zero option. */
if (reserved_base == 0) {
reserved_size = 0;
reserved_base = stolen_top;
}
if (reserved_base < dev_priv->mm.stolen_base ||
reserved_base + reserved_size > stolen_top) {
DRM_DEBUG_KMS("Stolen reserved area [0x%08lx - 0x%08lx] outside stolen memory [0x%08lx - 0x%08lx]\n",
reserved_base, reserved_base + reserved_size,
dev_priv->mm.stolen_base, stolen_top);
return 0;
}
/* It is possible for the reserved area to end before the end of stolen
* memory, so just consider the start. */
reserved_total = stolen_top - reserved_base;
DRM_DEBUG_KMS("Memory reserved for graphics device: %luK, usable: %luK\n",
dev_priv->gtt.stolen_size >> 10,
(dev_priv->gtt.stolen_size - reserved_total) >> 10);
/* Basic memrange allocator for stolen space */
drm_mm_init(&dev_priv->mm.stolen, 0, dev_priv->gtt.stolen_size -
bios_reserved);
reserved_total);
return 0;
}

View File

@ -31,201 +31,32 @@
#include <drm/i915_drm.h>
#include "i915_drv.h"
/** @file i915_gem_tiling.c
*
* Support for managing tiling state of buffer objects.
*
* The idea behind tiling is to increase cache hit rates by rearranging
* pixel data so that a group of pixel accesses are in the same cacheline.
* Performance improvement from doing this on the back/depth buffer are on
* the order of 30%.
*
* Intel architectures make this somewhat more complicated, though, by
* adjustments made to addressing of data when the memory is in interleaved
* mode (matched pairs of DIMMS) to improve memory bandwidth.
* For interleaved memory, the CPU sends every sequential 64 bytes
* to an alternate memory channel so it can get the bandwidth from both.
*
* The GPU also rearranges its accesses for increased bandwidth to interleaved
* memory, and it matches what the CPU does for non-tiled. However, when tiled
* it does it a little differently, since one walks addresses not just in the
* X direction but also Y. So, along with alternating channels when bit
* 6 of the address flips, it also alternates when other bits flip -- Bits 9
* (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
* are common to both the 915 and 965-class hardware.
*
* The CPU also sometimes XORs in higher bits as well, to improve
* bandwidth doing strided access like we do so frequently in graphics. This
* is called "Channel XOR Randomization" in the MCH documentation. The result
* is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
* decode.
*
* All of this bit 6 XORing has an effect on our memory management,
* as we need to make sure that the 3d driver can correctly address object
* contents.
*
* If we don't have interleaved memory, all tiling is safe and no swizzling is
* required.
*
* When bit 17 is XORed in, we simply refuse to tile at all. Bit
* 17 is not just a page offset, so as we page an objet out and back in,
* individual pages in it will have different bit 17 addresses, resulting in
* each 64 bytes being swapped with its neighbor!
*
* Otherwise, if interleaved, we have to tell the 3d driver what the address
* swizzling it needs to do is, since it's writing with the CPU to the pages
* (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
* pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
* required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
* to match what the GPU expects.
*/
/**
* Detects bit 6 swizzling of address lookup between IGD access and CPU
* access through main memory.
* DOC: buffer object tiling
*
* i915_gem_set_tiling() and i915_gem_get_tiling() is the userspace interface to
* declare fence register requirements.
*
* In principle GEM doesn't care at all about the internal data layout of an
* object, and hence it also doesn't care about tiling or swizzling. There's two
* exceptions:
*
* - For X and Y tiling the hardware provides detilers for CPU access, so called
* fences. Since there's only a limited amount of them the kernel must manage
* these, and therefore userspace must tell the kernel the object tiling if it
* wants to use fences for detiling.
* - On gen3 and gen4 platforms have a swizzling pattern for tiled objects which
* depends upon the physical page frame number. When swapping such objects the
* page frame number might change and the kernel must be able to fix this up
* and hence now the tiling. Note that on a subset of platforms with
* asymmetric memory channel population the swizzling pattern changes in an
* unknown way, and for those the kernel simply forbids swapping completely.
*
* Since neither of this applies for new tiling layouts on modern platforms like
* W, Ys and Yf tiling GEM only allows object tiling to be set to X or Y tiled.
* Anything else can be handled in userspace entirely without the kernel's
* invovlement.
*/
void
i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
if (INTEL_INFO(dev)->gen >= 8 || IS_VALLEYVIEW(dev)) {
/*
* On BDW+, swizzling is not used. We leave the CPU memory
* controller in charge of optimizing memory accesses without
* the extra address manipulation GPU side.
*
* VLV and CHV don't have GPU swizzling.
*/
swizzle_x = I915_BIT_6_SWIZZLE_NONE;
swizzle_y = I915_BIT_6_SWIZZLE_NONE;
} else if (INTEL_INFO(dev)->gen >= 6) {
if (dev_priv->preserve_bios_swizzle) {
if (I915_READ(DISP_ARB_CTL) &
DISP_TILE_SURFACE_SWIZZLING) {
swizzle_x = I915_BIT_6_SWIZZLE_9_10;
swizzle_y = I915_BIT_6_SWIZZLE_9;
} else {
swizzle_x = I915_BIT_6_SWIZZLE_NONE;
swizzle_y = I915_BIT_6_SWIZZLE_NONE;
}
} else {
uint32_t dimm_c0, dimm_c1;
dimm_c0 = I915_READ(MAD_DIMM_C0);
dimm_c1 = I915_READ(MAD_DIMM_C1);
dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
/* Enable swizzling when the channels are populated
* with identically sized dimms. We don't need to check
* the 3rd channel because no cpu with gpu attached
* ships in that configuration. Also, swizzling only
* makes sense for 2 channels anyway. */
if (dimm_c0 == dimm_c1) {
swizzle_x = I915_BIT_6_SWIZZLE_9_10;
swizzle_y = I915_BIT_6_SWIZZLE_9;
} else {
swizzle_x = I915_BIT_6_SWIZZLE_NONE;
swizzle_y = I915_BIT_6_SWIZZLE_NONE;
}
}
} else if (IS_GEN5(dev)) {
/* On Ironlake whatever DRAM config, GPU always do
* same swizzling setup.
*/
swizzle_x = I915_BIT_6_SWIZZLE_9_10;
swizzle_y = I915_BIT_6_SWIZZLE_9;
} else if (IS_GEN2(dev)) {
/* As far as we know, the 865 doesn't have these bit 6
* swizzling issues.
*/
swizzle_x = I915_BIT_6_SWIZZLE_NONE;
swizzle_y = I915_BIT_6_SWIZZLE_NONE;
} else if (IS_MOBILE(dev) || (IS_GEN3(dev) && !IS_G33(dev))) {
uint32_t dcc;
/* On 9xx chipsets, channel interleave by the CPU is
* determined by DCC. For single-channel, neither the CPU
* nor the GPU do swizzling. For dual channel interleaved,
* the GPU's interleave is bit 9 and 10 for X tiled, and bit
* 9 for Y tiled. The CPU's interleave is independent, and
* can be based on either bit 11 (haven't seen this yet) or
* bit 17 (common).
*/
dcc = I915_READ(DCC);
switch (dcc & DCC_ADDRESSING_MODE_MASK) {
case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
swizzle_x = I915_BIT_6_SWIZZLE_NONE;
swizzle_y = I915_BIT_6_SWIZZLE_NONE;
break;
case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
if (dcc & DCC_CHANNEL_XOR_DISABLE) {
/* This is the base swizzling by the GPU for
* tiled buffers.
*/
swizzle_x = I915_BIT_6_SWIZZLE_9_10;
swizzle_y = I915_BIT_6_SWIZZLE_9;
} else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
/* Bit 11 swizzling by the CPU in addition. */
swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
swizzle_y = I915_BIT_6_SWIZZLE_9_11;
} else {
/* Bit 17 swizzling by the CPU in addition. */
swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
swizzle_y = I915_BIT_6_SWIZZLE_9_17;
}
break;
}
/* check for L-shaped memory aka modified enhanced addressing */
if (IS_GEN4(dev)) {
uint32_t ddc2 = I915_READ(DCC2);
if (!(ddc2 & DCC2_MODIFIED_ENHANCED_DISABLE))
dev_priv->quirks |= QUIRK_PIN_SWIZZLED_PAGES;
}
if (dcc == 0xffffffff) {
DRM_ERROR("Couldn't read from MCHBAR. "
"Disabling tiling.\n");
swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
}
} else {
/* The 965, G33, and newer, have a very flexible memory
* configuration. It will enable dual-channel mode
* (interleaving) on as much memory as it can, and the GPU
* will additionally sometimes enable different bit 6
* swizzling for tiled objects from the CPU.
*
* Here's what I found on the G965:
* slot fill memory size swizzling
* 0A 0B 1A 1B 1-ch 2-ch
* 512 0 0 0 512 0 O
* 512 0 512 0 16 1008 X
* 512 0 0 512 16 1008 X
* 0 512 0 512 16 1008 X
* 1024 1024 1024 0 2048 1024 O
*
* We could probably detect this based on either the DRB
* matching, which was the case for the swizzling required in
* the table above, or from the 1-ch value being less than
* the minimum size of a rank.
*/
if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) {
swizzle_x = I915_BIT_6_SWIZZLE_NONE;
swizzle_y = I915_BIT_6_SWIZZLE_NONE;
} else {
swizzle_x = I915_BIT_6_SWIZZLE_9_10;
swizzle_y = I915_BIT_6_SWIZZLE_9;
}
}
dev_priv->mm.bit_6_swizzle_x = swizzle_x;
dev_priv->mm.bit_6_swizzle_y = swizzle_y;
}
/* Check pitch constriants for all chips & tiling formats */
static bool
@ -313,8 +144,18 @@ i915_gem_object_fence_ok(struct drm_i915_gem_object *obj, int tiling_mode)
}
/**
* i915_gem_set_tiling - IOCTL handler to set tiling mode
* @dev: DRM device
* @data: data pointer for the ioctl
* @file: DRM file for the ioctl call
*
* Sets the tiling mode of an object, returning the required swizzling of
* bit 6 of addresses in the object.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int
i915_gem_set_tiling(struct drm_device *dev, void *data,
@ -432,7 +273,17 @@ err:
}
/**
* i915_gem_get_tiling - IOCTL handler to get tiling mode
* @dev: DRM device
* @data: data pointer for the ioctl
* @file: DRM file for the ioctl call
*
* Returns the current tiling mode and required bit 6 swizzling for the object.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int
i915_gem_get_tiling(struct drm_device *dev, void *data,
@ -478,75 +329,3 @@ i915_gem_get_tiling(struct drm_device *dev, void *data,
return 0;
}
/**
* Swap every 64 bytes of this page around, to account for it having a new
* bit 17 of its physical address and therefore being interpreted differently
* by the GPU.
*/
static void
i915_gem_swizzle_page(struct page *page)
{
char temp[64];
char *vaddr;
int i;
vaddr = kmap(page);
for (i = 0; i < PAGE_SIZE; i += 128) {
memcpy(temp, &vaddr[i], 64);
memcpy(&vaddr[i], &vaddr[i + 64], 64);
memcpy(&vaddr[i + 64], temp, 64);
}
kunmap(page);
}
void
i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj)
{
struct sg_page_iter sg_iter;
int i;
if (obj->bit_17 == NULL)
return;
i = 0;
for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
struct page *page = sg_page_iter_page(&sg_iter);
char new_bit_17 = page_to_phys(page) >> 17;
if ((new_bit_17 & 0x1) !=
(test_bit(i, obj->bit_17) != 0)) {
i915_gem_swizzle_page(page);
set_page_dirty(page);
}
i++;
}
}
void
i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj)
{
struct sg_page_iter sg_iter;
int page_count = obj->base.size >> PAGE_SHIFT;
int i;
if (obj->bit_17 == NULL) {
obj->bit_17 = kcalloc(BITS_TO_LONGS(page_count),
sizeof(long), GFP_KERNEL);
if (obj->bit_17 == NULL) {
DRM_ERROR("Failed to allocate memory for bit 17 "
"record\n");
return;
}
}
i = 0;
for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
if (page_to_phys(sg_page_iter_page(&sg_iter)) & (1 << 17))
__set_bit(i, obj->bit_17);
else
__clear_bit(i, obj->bit_17);
i++;
}
}

View File

@ -369,6 +369,7 @@ int i915_error_state_to_str(struct drm_i915_error_state_buf *m,
err_printf(m, "Reset count: %u\n", error->reset_count);
err_printf(m, "Suspend count: %u\n", error->suspend_count);
err_printf(m, "PCI ID: 0x%04x\n", dev->pdev->device);
err_printf(m, "IOMMU enabled?: %d\n", error->iommu);
err_printf(m, "EIR: 0x%08x\n", error->eir);
err_printf(m, "IER: 0x%08x\n", error->ier);
if (INTEL_INFO(dev)->gen >= 8) {
@ -1266,6 +1267,10 @@ static void i915_error_capture_msg(struct drm_device *dev,
static void i915_capture_gen_state(struct drm_i915_private *dev_priv,
struct drm_i915_error_state *error)
{
error->iommu = -1;
#ifdef CONFIG_INTEL_IOMMU
error->iommu = intel_iommu_gfx_mapped;
#endif
error->reset_count = i915_reset_count(&dev_priv->gpu_error);
error->suspend_count = dev_priv->suspend_count;
}

View File

@ -0,0 +1,102 @@
/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#ifndef _I915_GUC_REG_H_
#define _I915_GUC_REG_H_
/* Definitions of GuC H/W registers, bits, etc */
#define GUC_STATUS 0xc000
#define GS_BOOTROM_SHIFT 1
#define GS_BOOTROM_MASK (0x7F << GS_BOOTROM_SHIFT)
#define GS_BOOTROM_RSA_FAILED (0x50 << GS_BOOTROM_SHIFT)
#define GS_UKERNEL_SHIFT 8
#define GS_UKERNEL_MASK (0xFF << GS_UKERNEL_SHIFT)
#define GS_UKERNEL_LAPIC_DONE (0x30 << GS_UKERNEL_SHIFT)
#define GS_UKERNEL_DPC_ERROR (0x60 << GS_UKERNEL_SHIFT)
#define GS_UKERNEL_READY (0xF0 << GS_UKERNEL_SHIFT)
#define GS_MIA_SHIFT 16
#define GS_MIA_MASK (0x07 << GS_MIA_SHIFT)
#define GUC_WOPCM_SIZE 0xc050
#define GUC_WOPCM_SIZE_VALUE (0x80 << 12) /* 512KB */
#define GUC_WOPCM_OFFSET 0x80000 /* 512KB */
#define SOFT_SCRATCH(n) (0xc180 + ((n) * 4))
#define UOS_RSA_SCRATCH_0 0xc200
#define DMA_ADDR_0_LOW 0xc300
#define DMA_ADDR_0_HIGH 0xc304
#define DMA_ADDR_1_LOW 0xc308
#define DMA_ADDR_1_HIGH 0xc30c
#define DMA_ADDRESS_SPACE_WOPCM (7 << 16)
#define DMA_ADDRESS_SPACE_GTT (8 << 16)
#define DMA_COPY_SIZE 0xc310
#define DMA_CTRL 0xc314
#define UOS_MOVE (1<<4)
#define START_DMA (1<<0)
#define DMA_GUC_WOPCM_OFFSET 0xc340
#define GEN8_GT_PM_CONFIG 0x138140
#define GEN9_GT_PM_CONFIG 0x13816c
#define GEN8_GT_DOORBELL_ENABLE (1<<0)
#define GEN8_GTCR 0x4274
#define GEN8_GTCR_INVALIDATE (1<<0)
#define GUC_ARAT_C6DIS 0xA178
#define GUC_SHIM_CONTROL 0xc064
#define GUC_DISABLE_SRAM_INIT_TO_ZEROES (1<<0)
#define GUC_ENABLE_READ_CACHE_LOGIC (1<<1)
#define GUC_ENABLE_MIA_CACHING (1<<2)
#define GUC_GEN10_MSGCH_ENABLE (1<<4)
#define GUC_ENABLE_READ_CACHE_FOR_SRAM_DATA (1<<9)
#define GUC_ENABLE_READ_CACHE_FOR_WOPCM_DATA (1<<10)
#define GUC_ENABLE_MIA_CLOCK_GATING (1<<15)
#define GUC_GEN10_SHIM_WC_ENABLE (1<<21)
#define GUC_SHIM_CONTROL_VALUE (GUC_DISABLE_SRAM_INIT_TO_ZEROES | \
GUC_ENABLE_READ_CACHE_LOGIC | \
GUC_ENABLE_MIA_CACHING | \
GUC_ENABLE_READ_CACHE_FOR_SRAM_DATA | \
GUC_ENABLE_READ_CACHE_FOR_WOPCM_DATA)
#define HOST2GUC_INTERRUPT 0xc4c8
#define HOST2GUC_TRIGGER (1<<0)
#define DRBMISC1 0x1984
#define DOORBELL_ENABLE (1<<0)
#define GEN8_DRBREGL(x) (0x1000 + (x) * 8)
#define GEN8_DRB_VALID (1<<0)
#define GEN8_DRBREGU(x) (GEN8_DRBREGL(x) + 4)
#define DE_GUCRMR 0x44054
#define GUC_BCS_RCS_IER 0xC550
#define GUC_VCS2_VCS1_IER 0xC554
#define GUC_WD_VECS_IER 0xC558
#define GUC_PM_P24C_IER 0xC55C
#endif

View File

@ -1227,6 +1227,22 @@ static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
return ret;
}
static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
{
switch (port) {
case PORT_A:
return val & BXT_PORTA_HOTPLUG_LONG_DETECT;
case PORT_B:
return val & PORTB_HOTPLUG_LONG_DETECT;
case PORT_C:
return val & PORTC_HOTPLUG_LONG_DETECT;
case PORT_D:
return val & PORTD_HOTPLUG_LONG_DETECT;
default:
return false;
}
}
static bool pch_port_hotplug_long_detect(enum port port, u32 val)
{
switch (port) {
@ -1256,9 +1272,10 @@ static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
}
/* Get a bit mask of pins that have triggered, and which ones may be long. */
static void pch_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
u32 hotplug_trigger, u32 dig_hotplug_reg,
const u32 hpd[HPD_NUM_PINS])
const u32 hpd[HPD_NUM_PINS],
bool long_pulse_detect(enum port port, u32 val))
{
enum port port;
int i;
@ -1272,8 +1289,10 @@ static void pch_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
*pin_mask |= BIT(i);
port = intel_hpd_pin_to_port(i);
if (pch_port_hotplug_long_detect(port, dig_hotplug_reg))
if (!intel_hpd_pin_to_port(i, &port))
continue;
if (long_pulse_detect(port, dig_hotplug_reg))
*long_mask |= BIT(i);
}
@ -1282,34 +1301,6 @@ static void pch_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
}
/* Get a bit mask of pins that have triggered, and which ones may be long. */
static void i9xx_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
u32 hotplug_trigger, const u32 hpd[HPD_NUM_PINS])
{
enum port port;
int i;
*pin_mask = 0;
*long_mask = 0;
if (!hotplug_trigger)
return;
for_each_hpd_pin(i) {
if ((hpd[i] & hotplug_trigger) == 0)
continue;
*pin_mask |= BIT(i);
port = intel_hpd_pin_to_port(i);
if (i9xx_port_hotplug_long_detect(port, hotplug_trigger))
*long_mask |= BIT(i);
}
DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, pins 0x%08x\n",
hotplug_trigger, *pin_mask);
}
static void gmbus_irq_handler(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
@ -1547,7 +1538,9 @@ static void i9xx_hpd_irq_handler(struct drm_device *dev)
if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
i9xx_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger, hpd_status_g4x);
intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
hotplug_trigger, hpd_status_g4x,
i9xx_port_hotplug_long_detect);
intel_hpd_irq_handler(dev, pin_mask, long_mask);
if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
@ -1555,7 +1548,9 @@ static void i9xx_hpd_irq_handler(struct drm_device *dev)
} else {
u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
i9xx_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger, hpd_status_i915);
intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
hotplug_trigger, hpd_status_g4x,
i9xx_port_hotplug_long_detect);
intel_hpd_irq_handler(dev, pin_mask, long_mask);
}
}
@ -1662,8 +1657,9 @@ static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
pch_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
dig_hotplug_reg, hpd_ibx);
intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
dig_hotplug_reg, hpd_ibx,
pch_port_hotplug_long_detect);
intel_hpd_irq_handler(dev, pin_mask, long_mask);
}
@ -1763,8 +1759,10 @@ static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
pch_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
dig_hotplug_reg, hpd_cpt);
intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
dig_hotplug_reg, hpd_cpt,
pch_port_hotplug_long_detect);
intel_hpd_irq_handler(dev, pin_mask, long_mask);
}
@ -1981,7 +1979,8 @@ static void bxt_hpd_handler(struct drm_device *dev, uint32_t iir_status)
/* Clear sticky bits in hpd status */
I915_WRITE(BXT_HOTPLUG_CTL, hp_control);
pch_get_hpd_pins(&pin_mask, &long_mask, hp_trigger, hp_control, hpd_bxt);
intel_get_hpd_pins(&pin_mask, &long_mask, hp_trigger, hp_control,
hpd_bxt, bxt_port_hotplug_long_detect);
intel_hpd_irq_handler(dev, pin_mask, long_mask);
}

View File

@ -52,6 +52,8 @@ struct i915_params i915 __read_mostly = {
.mmio_debug = 0,
.verbose_state_checks = 1,
.edp_vswing = 0,
.enable_guc_submission = false,
.guc_log_level = -1,
};
module_param_named(modeset, i915.modeset, int, 0400);
@ -181,3 +183,10 @@ MODULE_PARM_DESC(edp_vswing,
"Ignore/Override vswing pre-emph table selection from VBT "
"(0=use value from vbt [default], 1=low power swing(200mV),"
"2=default swing(400mV))");
module_param_named_unsafe(enable_guc_submission, i915.enable_guc_submission, bool, 0400);
MODULE_PARM_DESC(enable_guc_submission, "Enable GuC submission (default:false)");
module_param_named(guc_log_level, i915.guc_log_level, int, 0400);
MODULE_PARM_DESC(guc_log_level,
"GuC firmware logging level (-1:disabled (default), 0-3:enabled)");

View File

@ -178,13 +178,22 @@
#define GAB_CTL 0x24000
#define GAB_CTL_CONT_AFTER_PAGEFAULT (1<<8)
#define GEN7_BIOS_RESERVED 0x1082C0
#define GEN7_BIOS_RESERVED_1M (0 << 5)
#define GEN7_BIOS_RESERVED_256K (1 << 5)
#define GEN8_BIOS_RESERVED_SHIFT 7
#define GEN7_BIOS_RESERVED_MASK 0x1
#define GEN8_BIOS_RESERVED_MASK 0x3
#define GEN6_STOLEN_RESERVED 0x1082C0
#define GEN6_STOLEN_RESERVED_ADDR_MASK (0xFFF << 20)
#define GEN7_STOLEN_RESERVED_ADDR_MASK (0x3FFF << 18)
#define GEN6_STOLEN_RESERVED_SIZE_MASK (3 << 4)
#define GEN6_STOLEN_RESERVED_1M (0 << 4)
#define GEN6_STOLEN_RESERVED_512K (1 << 4)
#define GEN6_STOLEN_RESERVED_256K (2 << 4)
#define GEN6_STOLEN_RESERVED_128K (3 << 4)
#define GEN7_STOLEN_RESERVED_SIZE_MASK (1 << 5)
#define GEN7_STOLEN_RESERVED_1M (0 << 5)
#define GEN7_STOLEN_RESERVED_256K (1 << 5)
#define GEN8_STOLEN_RESERVED_SIZE_MASK (3 << 7)
#define GEN8_STOLEN_RESERVED_1M (0 << 7)
#define GEN8_STOLEN_RESERVED_2M (1 << 7)
#define GEN8_STOLEN_RESERVED_4M (2 << 7)
#define GEN8_STOLEN_RESERVED_8M (3 << 7)
/* VGA stuff */
@ -5985,6 +5994,11 @@ enum skl_disp_power_wells {
/* digital port hotplug */
#define PCH_PORT_HOTPLUG 0xc4030 /* SHOTPLUG_CTL */
#define BXT_PORTA_HOTPLUG_ENABLE (1 << 28)
#define BXT_PORTA_HOTPLUG_STATUS_MASK (0x3 << 24)
#define BXT_PORTA_HOTPLUG_NO_DETECT (0 << 24)
#define BXT_PORTA_HOTPLUG_SHORT_DETECT (1 << 24)
#define BXT_PORTA_HOTPLUG_LONG_DETECT (2 << 24)
#define PORTD_HOTPLUG_ENABLE (1 << 20)
#define PORTD_PULSE_DURATION_2ms (0)
#define PORTD_PULSE_DURATION_4_5ms (1 << 18)
@ -6846,6 +6860,9 @@ enum skl_disp_power_wells {
#define GEN7_MISCCPCTL (0x9424)
#define GEN7_DOP_CLOCK_GATE_ENABLE (1<<0)
#define GEN8_GARBCNTL 0xB004
#define GEN9_GAPS_TSV_CREDIT_DISABLE (1<<7)
/* IVYBRIDGE DPF */
#define GEN7_L3CDERRST1 0xB008 /* L3CD Error Status 1 */
#define HSW_L3CDERRST11 0xB208 /* L3CD Error Status register 1 slice 1 */

View File

@ -886,6 +886,17 @@ err:
memset(dev_priv->vbt.dsi.sequence, 0, sizeof(dev_priv->vbt.dsi.sequence));
}
static u8 translate_iboost(u8 val)
{
static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
if (val >= ARRAY_SIZE(mapping)) {
DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
return 0;
}
return mapping[val];
}
static void parse_ddi_port(struct drm_i915_private *dev_priv, enum port port,
const struct bdb_header *bdb)
{
@ -968,13 +979,28 @@ static void parse_ddi_port(struct drm_i915_private *dev_priv, enum port port,
}
if (is_dp) {
if (aux_channel == 0x40 && port != PORT_A)
if (port == PORT_E) {
info->alternate_aux_channel = aux_channel;
/* if DDIE share aux channel with other port, then
* DP couldn't exist on the shared port. Otherwise
* they share the same aux channel and system
* couldn't communicate with them seperately. */
if (aux_channel == DP_AUX_A)
dev_priv->vbt.ddi_port_info[PORT_A].supports_dp = 0;
else if (aux_channel == DP_AUX_B)
dev_priv->vbt.ddi_port_info[PORT_B].supports_dp = 0;
else if (aux_channel == DP_AUX_C)
dev_priv->vbt.ddi_port_info[PORT_C].supports_dp = 0;
else if (aux_channel == DP_AUX_D)
dev_priv->vbt.ddi_port_info[PORT_D].supports_dp = 0;
}
else if (aux_channel == DP_AUX_A && port != PORT_A)
DRM_DEBUG_KMS("Unexpected AUX channel for port A\n");
if (aux_channel == 0x10 && port != PORT_B)
else if (aux_channel == DP_AUX_B && port != PORT_B)
DRM_DEBUG_KMS("Unexpected AUX channel for port B\n");
if (aux_channel == 0x20 && port != PORT_C)
else if (aux_channel == DP_AUX_C && port != PORT_C)
DRM_DEBUG_KMS("Unexpected AUX channel for port C\n");
if (aux_channel == 0x30 && port != PORT_D)
else if (aux_channel == DP_AUX_D && port != PORT_D)
DRM_DEBUG_KMS("Unexpected AUX channel for port D\n");
}
@ -986,6 +1012,16 @@ static void parse_ddi_port(struct drm_i915_private *dev_priv, enum port port,
hdmi_level_shift);
info->hdmi_level_shift = hdmi_level_shift;
}
/* Parse the I_boost config for SKL and above */
if (bdb->version >= 196 && (child->common.flags_1 & IBOOST_ENABLE)) {
info->dp_boost_level = translate_iboost(child->common.iboost_level & 0xF);
DRM_DEBUG_KMS("VBT (e)DP boost level for port %c: %d\n",
port_name(port), info->dp_boost_level);
info->hdmi_boost_level = translate_iboost(child->common.iboost_level >> 4);
DRM_DEBUG_KMS("VBT HDMI boost level for port %c: %d\n",
port_name(port), info->hdmi_boost_level);
}
}
static void parse_ddi_ports(struct drm_i915_private *dev_priv,

View File

@ -231,6 +231,10 @@ struct old_child_dev_config {
/* This one contains field offsets that are known to be common for all BDB
* versions. Notice that the meaning of the contents contents may still change,
* but at least the offsets are consistent. */
/* Definitions for flags_1 */
#define IBOOST_ENABLE (1<<3)
struct common_child_dev_config {
u16 handle;
u16 device_type;
@ -239,8 +243,13 @@ struct common_child_dev_config {
u8 not_common2[2];
u8 ddc_pin;
u16 edid_ptr;
u8 obsolete;
u8 flags_1;
u8 not_common3[13];
u8 iboost_level;
} __packed;
/* This field changes depending on the BDB version, so the most reliable way to
* read it is by checking the BDB version and reading the raw pointer. */
union child_device_config {

View File

@ -236,55 +236,6 @@ static void intel_enable_crt(struct intel_encoder *encoder)
intel_crt_set_dpms(encoder, crt->connector->base.dpms);
}
/* Special dpms function to support cloning between dvo/sdvo/crt. */
static int intel_crt_dpms(struct drm_connector *connector, int mode)
{
struct drm_device *dev = connector->dev;
struct intel_encoder *encoder = intel_attached_encoder(connector);
struct drm_crtc *crtc;
int old_dpms;
/* PCH platforms and VLV only support on/off. */
if (INTEL_INFO(dev)->gen >= 5 && mode != DRM_MODE_DPMS_ON)
mode = DRM_MODE_DPMS_OFF;
if (mode == connector->dpms)
return 0;
old_dpms = connector->dpms;
connector->dpms = mode;
/* Only need to change hw state when actually enabled */
crtc = encoder->base.crtc;
if (!crtc) {
encoder->connectors_active = false;
return 0;
}
/* We need the pipe to run for anything but OFF. */
if (mode == DRM_MODE_DPMS_OFF)
encoder->connectors_active = false;
else
encoder->connectors_active = true;
/* We call connector dpms manually below in case pipe dpms doesn't
* change due to cloning. */
if (mode < old_dpms) {
/* From off to on, enable the pipe first. */
intel_crtc_update_dpms(crtc);
intel_crt_set_dpms(encoder, mode);
} else {
intel_crt_set_dpms(encoder, mode);
intel_crtc_update_dpms(crtc);
}
intel_modeset_check_state(connector->dev);
return 0;
}
static enum drm_mode_status
intel_crt_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
@ -800,7 +751,7 @@ static void intel_crt_reset(struct drm_connector *connector)
static const struct drm_connector_funcs intel_crt_connector_funcs = {
.reset = intel_crt_reset,
.dpms = intel_crt_dpms,
.dpms = drm_atomic_helper_connector_dpms,
.detect = intel_crt_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = intel_crt_destroy,

View File

@ -244,7 +244,7 @@ void intel_csr_load_status_set(struct drm_i915_private *dev_priv,
void intel_csr_load_program(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
__be32 *payload = dev_priv->csr.dmc_payload;
u32 *payload = dev_priv->csr.dmc_payload;
uint32_t i, fw_size;
if (!IS_GEN9(dev)) {
@ -256,7 +256,7 @@ void intel_csr_load_program(struct drm_device *dev)
fw_size = dev_priv->csr.dmc_fw_size;
for (i = 0; i < fw_size; i++)
I915_WRITE(CSR_PROGRAM_BASE + i * 4,
(u32 __force)payload[i]);
payload[i]);
for (i = 0; i < dev_priv->csr.mmio_count; i++) {
I915_WRITE(dev_priv->csr.mmioaddr[i],
@ -279,7 +279,7 @@ static void finish_csr_load(const struct firmware *fw, void *context)
char substepping = intel_get_substepping(dev);
uint32_t dmc_offset = CSR_DEFAULT_FW_OFFSET, readcount = 0, nbytes;
uint32_t i;
__be32 *dmc_payload;
uint32_t *dmc_payload;
bool fw_loaded = false;
if (!fw) {
@ -375,15 +375,7 @@ static void finish_csr_load(const struct firmware *fw, void *context)
}
dmc_payload = csr->dmc_payload;
for (i = 0; i < dmc_header->fw_size; i++) {
uint32_t *tmp = (u32 *)&fw->data[readcount + i * 4];
/*
* The firmware payload is an array of 32 bit words stored in
* little-endian format in the firmware image and programmed
* as 32 bit big-endian format to memory.
*/
dmc_payload[i] = cpu_to_be32(*tmp);
}
memcpy(dmc_payload, &fw->data[readcount], nbytes);
/* load csr program during system boot, as needed for DC states */
intel_csr_load_program(dev);

View File

@ -440,6 +440,7 @@ static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port,
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 reg;
u32 iboost_bit = 0;
int i, n_hdmi_entries, n_dp_entries, n_edp_entries, hdmi_default_entry,
size;
int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
@ -466,6 +467,10 @@ static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port,
ddi_translations_hdmi =
skl_get_buf_trans_hdmi(dev, &n_hdmi_entries);
hdmi_default_entry = 8;
/* If we're boosting the current, set bit 31 of trans1 */
if (dev_priv->vbt.ddi_port_info[port].hdmi_boost_level ||
dev_priv->vbt.ddi_port_info[port].dp_boost_level)
iboost_bit = 1<<31;
} else if (IS_BROADWELL(dev)) {
ddi_translations_fdi = bdw_ddi_translations_fdi;
ddi_translations_dp = bdw_ddi_translations_dp;
@ -526,7 +531,7 @@ static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port,
}
for (i = 0, reg = DDI_BUF_TRANS(port); i < size; i++) {
I915_WRITE(reg, ddi_translations[i].trans1);
I915_WRITE(reg, ddi_translations[i].trans1 | iboost_bit);
reg += 4;
I915_WRITE(reg, ddi_translations[i].trans2);
reg += 4;
@ -541,7 +546,7 @@ static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port,
hdmi_level = hdmi_default_entry;
/* Entry 9 is for HDMI: */
I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans1);
I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans1 | iboost_bit);
reg += 4;
I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans2);
reg += 4;
@ -2078,18 +2083,35 @@ static void skl_ddi_set_iboost(struct drm_device *dev, u32 level,
struct drm_i915_private *dev_priv = dev->dev_private;
const struct ddi_buf_trans *ddi_translations;
uint8_t iboost;
uint8_t dp_iboost, hdmi_iboost;
int n_entries;
u32 reg;
/* VBT may override standard boost values */
dp_iboost = dev_priv->vbt.ddi_port_info[port].dp_boost_level;
hdmi_iboost = dev_priv->vbt.ddi_port_info[port].hdmi_boost_level;
if (type == INTEL_OUTPUT_DISPLAYPORT) {
ddi_translations = skl_get_buf_trans_dp(dev, &n_entries);
iboost = ddi_translations[port].i_boost;
if (dp_iboost) {
iboost = dp_iboost;
} else {
ddi_translations = skl_get_buf_trans_dp(dev, &n_entries);
iboost = ddi_translations[port].i_boost;
}
} else if (type == INTEL_OUTPUT_EDP) {
ddi_translations = skl_get_buf_trans_edp(dev, &n_entries);
iboost = ddi_translations[port].i_boost;
if (dp_iboost) {
iboost = dp_iboost;
} else {
ddi_translations = skl_get_buf_trans_edp(dev, &n_entries);
iboost = ddi_translations[port].i_boost;
}
} else if (type == INTEL_OUTPUT_HDMI) {
ddi_translations = skl_get_buf_trans_hdmi(dev, &n_entries);
iboost = ddi_translations[port].i_boost;
if (hdmi_iboost) {
iboost = hdmi_iboost;
} else {
ddi_translations = skl_get_buf_trans_hdmi(dev, &n_entries);
iboost = ddi_translations[port].i_boost;
}
} else {
return;
}
@ -3184,10 +3206,9 @@ void intel_ddi_init(struct drm_device *dev, enum port port)
dev_priv->vbt.ddi_port_info[port].supports_hdmi);
init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
if (!init_dp && !init_hdmi) {
DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, assuming it is\n",
DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, respect it\n",
port_name(port));
init_hdmi = true;
init_dp = true;
return;
}
intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);

View File

@ -1936,7 +1936,9 @@ static void intel_disable_shared_dpll(struct intel_crtc *crtc)
struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
/* PCH only available on ILK+ */
BUG_ON(INTEL_INFO(dev)->gen < 5);
if (INTEL_INFO(dev)->gen < 5)
return;
if (pll == NULL)
return;
@ -2395,7 +2397,18 @@ intel_pin_and_fence_fb_obj(struct drm_plane *plane,
* a fence as the cost is not that onerous.
*/
ret = i915_gem_object_get_fence(obj);
if (ret)
if (ret == -EDEADLK) {
/*
* -EDEADLK means there are no free fences
* no pending flips.
*
* This is propagated to atomic, but it uses
* -EDEADLK to force a locking recovery, so
* change the returned error to -EBUSY.
*/
ret = -EBUSY;
goto err_unpin;
} else if (ret)
goto err_unpin;
i915_gem_object_pin_fence(obj);
@ -5134,6 +5147,7 @@ static enum intel_display_power_domain port_to_power_domain(enum port port)
{
switch (port) {
case PORT_A:
case PORT_E:
return POWER_DOMAIN_PORT_DDI_A_4_LANES;
case PORT_B:
return POWER_DOMAIN_PORT_DDI_B_4_LANES;
@ -6271,67 +6285,6 @@ free:
return ret;
}
/* Master function to enable/disable CRTC and corresponding power wells */
int intel_crtc_control(struct drm_crtc *crtc, bool enable)
{
struct drm_device *dev = crtc->dev;
struct drm_mode_config *config = &dev->mode_config;
struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_crtc_state *pipe_config;
struct drm_atomic_state *state;
int ret;
if (enable == intel_crtc->active)
return 0;
if (enable && !crtc->state->enable)
return 0;
/* this function should be called with drm_modeset_lock_all for now */
if (WARN_ON(!ctx))
return -EIO;
lockdep_assert_held(&ctx->ww_ctx);
state = drm_atomic_state_alloc(dev);
if (WARN_ON(!state))
return -ENOMEM;
state->acquire_ctx = ctx;
state->allow_modeset = true;
pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
if (IS_ERR(pipe_config)) {
ret = PTR_ERR(pipe_config);
goto err;
}
pipe_config->base.active = enable;
ret = drm_atomic_commit(state);
if (!ret)
return ret;
err:
DRM_ERROR("Updating crtc active failed with %i\n", ret);
drm_atomic_state_free(state);
return ret;
}
/**
* Sets the power management mode of the pipe and plane.
*/
void intel_crtc_update_dpms(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct intel_encoder *intel_encoder;
bool enable = false;
for_each_encoder_on_crtc(dev, crtc, intel_encoder)
enable |= intel_encoder->connectors_active;
intel_crtc_control(crtc, enable);
}
void intel_encoder_destroy(struct drm_encoder *encoder)
{
struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
@ -6340,62 +6293,42 @@ void intel_encoder_destroy(struct drm_encoder *encoder)
kfree(intel_encoder);
}
/* Simple dpms helper for encoders with just one connector, no cloning and only
* one kind of off state. It clamps all !ON modes to fully OFF and changes the
* state of the entire output pipe. */
static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
{
if (mode == DRM_MODE_DPMS_ON) {
encoder->connectors_active = true;
intel_crtc_update_dpms(encoder->base.crtc);
} else {
encoder->connectors_active = false;
intel_crtc_update_dpms(encoder->base.crtc);
}
}
/* Cross check the actual hw state with our own modeset state tracking (and it's
* internal consistency). */
static void intel_connector_check_state(struct intel_connector *connector)
{
struct drm_crtc *crtc = connector->base.state->crtc;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
connector->base.base.id,
connector->base.name);
if (connector->get_hw_state(connector)) {
struct intel_encoder *encoder = connector->encoder;
struct drm_crtc *crtc;
bool encoder_enabled;
enum pipe pipe;
struct drm_encoder *encoder = &connector->encoder->base;
struct drm_connector_state *conn_state = connector->base.state;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
connector->base.base.id,
connector->base.name);
I915_STATE_WARN(!crtc,
"connector enabled without attached crtc\n");
/* there is no real hw state for MST connectors */
if (connector->mst_port)
if (!crtc)
return;
I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
"wrong connector dpms state\n");
I915_STATE_WARN(connector->base.encoder != &encoder->base,
"active connector not linked to encoder\n");
I915_STATE_WARN(!crtc->state->active,
"connector is active, but attached crtc isn't\n");
if (encoder) {
I915_STATE_WARN(!encoder->connectors_active,
"encoder->connectors_active not set\n");
if (!encoder)
return;
encoder_enabled = encoder->get_hw_state(encoder, &pipe);
I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
if (I915_STATE_WARN_ON(!encoder->base.crtc))
return;
I915_STATE_WARN(conn_state->best_encoder != encoder,
"atomic encoder doesn't match attached encoder\n");
crtc = encoder->base.crtc;
I915_STATE_WARN(!crtc->state->enable,
"crtc not enabled\n");
I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
"encoder active on the wrong pipe\n");
}
I915_STATE_WARN(conn_state->crtc != encoder->crtc,
"attached encoder crtc differs from connector crtc\n");
} else {
I915_STATE_WARN(crtc && crtc->state->active,
"attached crtc is active, but connector isn't\n");
I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
"best encoder set without crtc!\n");
}
}
@ -6427,28 +6360,6 @@ struct intel_connector *intel_connector_alloc(void)
return connector;
}
/* Even simpler default implementation, if there's really no special case to
* consider. */
int intel_connector_dpms(struct drm_connector *connector, int mode)
{
/* All the simple cases only support two dpms states. */
if (mode != DRM_MODE_DPMS_ON)
mode = DRM_MODE_DPMS_OFF;
if (mode == connector->dpms)
return 0;
connector->dpms = mode;
/* Only need to change hw state when actually enabled */
if (connector->encoder)
intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
intel_modeset_check_state(connector->dev);
return 0;
}
/* Simple connector->get_hw_state implementation for encoders that support only
* one connector and no cloning and hence the encoder state determines the state
* of the connector. */
@ -10764,15 +10675,12 @@ static void intel_unpin_work_fn(struct work_struct *__work)
container_of(__work, struct intel_unpin_work, work);
struct intel_crtc *crtc = to_intel_crtc(work->crtc);
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_plane *primary = crtc->base.primary;
mutex_lock(&dev->struct_mutex);
intel_unpin_fb_obj(work->old_fb, primary->state);
drm_gem_object_unreference(&work->pending_flip_obj->base);
intel_fbc_update(dev_priv);
if (work->flip_queued_req)
i915_gem_request_assign(&work->flip_queued_req, NULL);
mutex_unlock(&dev->struct_mutex);
@ -11544,7 +11452,7 @@ static int intel_crtc_page_flip(struct drm_crtc *crtc,
to_intel_plane(primary)->frontbuffer_bit);
mutex_unlock(&dev->struct_mutex);
intel_fbc_disable(dev_priv);
intel_fbc_disable_crtc(intel_crtc);
intel_frontbuffer_flip_prepare(dev,
to_intel_plane(primary)->frontbuffer_bit);
@ -11840,7 +11748,7 @@ static int intel_crtc_atomic_check(struct drm_crtc *crtc,
struct intel_crtc_state *pipe_config =
to_intel_crtc_state(crtc_state);
struct drm_atomic_state *state = crtc_state->state;
int ret, idx = crtc->base.id;
int ret;
bool mode_changed = needs_modeset(crtc_state);
if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
@ -11848,10 +11756,6 @@ static int intel_crtc_atomic_check(struct drm_crtc *crtc,
return -EINVAL;
}
I915_STATE_WARN(crtc->state->active != intel_crtc->active,
"[CRTC:%i] mismatch between state->active(%i) and crtc->active(%i)\n",
idx, crtc->state->active, intel_crtc->active);
if (mode_changed && !crtc_state->active)
intel_crtc->atomic.update_wm_post = true;
@ -12160,6 +12064,7 @@ clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
struct intel_dpll_hw_state dpll_hw_state;
enum intel_dpll_id shared_dpll;
uint32_t ddi_pll_sel;
bool force_thru;
/* FIXME: before the switch to atomic started, a new pipe_config was
* kzalloc'd. Code that depends on any field being zero should be
@ -12171,6 +12076,7 @@ clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
shared_dpll = crtc_state->shared_dpll;
dpll_hw_state = crtc_state->dpll_hw_state;
ddi_pll_sel = crtc_state->ddi_pll_sel;
force_thru = crtc_state->pch_pfit.force_thru;
memset(crtc_state, 0, sizeof *crtc_state);
@ -12179,6 +12085,7 @@ clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
crtc_state->shared_dpll = shared_dpll;
crtc_state->dpll_hw_state = dpll_hw_state;
crtc_state->ddi_pll_sel = ddi_pll_sel;
crtc_state->pch_pfit.force_thru = force_thru;
}
static int
@ -12280,7 +12187,9 @@ encoder_retry:
goto encoder_retry;
}
pipe_config->dither = pipe_config->pipe_bpp != base_bpp;
/* Dithering seems to not pass-through bits correctly when it should, so
* only enable it on 6bpc panels. */
pipe_config->dither = pipe_config->pipe_bpp == 6*3;
DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
@ -12288,48 +12197,15 @@ fail:
return ret;
}
static bool intel_crtc_in_use(struct drm_crtc *crtc)
{
struct drm_encoder *encoder;
struct drm_device *dev = crtc->dev;
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
if (encoder->crtc == crtc)
return true;
return false;
}
static void
intel_modeset_update_state(struct drm_atomic_state *state)
intel_modeset_update_crtc_state(struct drm_atomic_state *state)
{
struct drm_device *dev = state->dev;
struct intel_encoder *intel_encoder;
struct drm_crtc *crtc;
struct drm_crtc_state *crtc_state;
struct drm_connector *connector;
int i;
intel_shared_dpll_commit(state);
for_each_intel_encoder(dev, intel_encoder) {
if (!intel_encoder->base.crtc)
continue;
crtc = intel_encoder->base.crtc;
crtc_state = drm_atomic_get_existing_crtc_state(state, crtc);
if (!crtc_state || !needs_modeset(crtc->state))
continue;
intel_encoder->connectors_active = false;
}
drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
/* Double check state. */
for_each_crtc_in_state(state, crtc, crtc_state, i) {
WARN_ON(crtc->state->enable != intel_crtc_in_use(crtc));
to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
/* Update hwmode for vblank functions */
@ -12338,21 +12214,6 @@ intel_modeset_update_state(struct drm_atomic_state *state)
else
crtc->hwmode.crtc_clock = 0;
}
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
if (!connector->encoder || !connector->encoder->crtc)
continue;
crtc = connector->encoder->crtc;
crtc_state = drm_atomic_get_existing_crtc_state(state, crtc);
if (!crtc_state || !needs_modeset(crtc->state))
continue;
if (crtc->state->active) {
intel_encoder = to_intel_encoder(connector->encoder);
intel_encoder->connectors_active = true;
}
}
}
static bool intel_fuzzy_clock_check(int clock1, int clock2)
@ -12702,20 +12563,23 @@ static void check_wm_state(struct drm_device *dev)
}
static void
check_connector_state(struct drm_device *dev)
check_connector_state(struct drm_device *dev,
struct drm_atomic_state *old_state)
{
struct intel_connector *connector;
struct drm_connector_state *old_conn_state;
struct drm_connector *connector;
int i;
for_each_intel_connector(dev, connector) {
struct drm_encoder *encoder = connector->base.encoder;
struct drm_connector_state *state = connector->base.state;
for_each_connector_in_state(old_state, connector, old_conn_state, i) {
struct drm_encoder *encoder = connector->encoder;
struct drm_connector_state *state = connector->state;
/* This also checks the encoder/connector hw state with the
* ->get_hw_state callbacks. */
intel_connector_check_state(connector);
intel_connector_check_state(to_intel_connector(connector));
I915_STATE_WARN(state->best_encoder != encoder,
"connector's staged encoder doesn't match current encoder\n");
"connector's atomic encoder doesn't match legacy encoder\n");
}
}
@ -12727,133 +12591,106 @@ check_encoder_state(struct drm_device *dev)
for_each_intel_encoder(dev, encoder) {
bool enabled = false;
bool active = false;
enum pipe pipe, tracked_pipe;
enum pipe pipe;
DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
encoder->base.base.id,
encoder->base.name);
I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
"encoder's active_connectors set, but no crtc\n");
for_each_intel_connector(dev, connector) {
if (connector->base.encoder != &encoder->base)
if (connector->base.state->best_encoder != &encoder->base)
continue;
enabled = true;
if (connector->base.dpms != DRM_MODE_DPMS_OFF)
active = true;
I915_STATE_WARN(connector->base.state->crtc !=
encoder->base.crtc,
"connector's crtc doesn't match encoder crtc\n");
}
/*
* for MST connectors if we unplug the connector is gone
* away but the encoder is still connected to a crtc
* until a modeset happens in response to the hotplug.
*/
if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
continue;
I915_STATE_WARN(!!encoder->base.crtc != enabled,
"encoder's enabled state mismatch "
"(expected %i, found %i)\n",
!!encoder->base.crtc, enabled);
I915_STATE_WARN(active && !encoder->base.crtc,
"active encoder with no crtc\n");
I915_STATE_WARN(encoder->connectors_active != active,
"encoder's computed active state doesn't match tracked active state "
"(expected %i, found %i)\n", active, encoder->connectors_active);
active = encoder->get_hw_state(encoder, &pipe);
I915_STATE_WARN(active != encoder->connectors_active,
"encoder's hw state doesn't match sw tracking "
"(expected %i, found %i)\n",
encoder->connectors_active, active);
if (!encoder->base.crtc)
continue;
tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
I915_STATE_WARN(active && pipe != tracked_pipe,
"active encoder's pipe doesn't match"
"(expected %i, found %i)\n",
tracked_pipe, pipe);
if (!encoder->base.crtc) {
bool active;
active = encoder->get_hw_state(encoder, &pipe);
I915_STATE_WARN(active,
"encoder detached but still enabled on pipe %c.\n",
pipe_name(pipe));
}
}
}
static void
check_crtc_state(struct drm_device *dev)
check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *crtc;
struct intel_encoder *encoder;
struct intel_crtc_state pipe_config;
struct drm_crtc_state *old_crtc_state;
struct drm_crtc *crtc;
int i;
for_each_intel_crtc(dev, crtc) {
bool enabled = false;
bool active = false;
for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_crtc_state *pipe_config, *sw_config;
bool active;
memset(&pipe_config, 0, sizeof(pipe_config));
DRM_DEBUG_KMS("[CRTC:%d]\n",
crtc->base.base.id);
I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
"active crtc, but not enabled in sw tracking\n");
for_each_intel_encoder(dev, encoder) {
if (encoder->base.crtc != &crtc->base)
continue;
enabled = true;
if (encoder->connectors_active)
active = true;
}
I915_STATE_WARN(active != crtc->active,
"crtc's computed active state doesn't match tracked active state "
"(expected %i, found %i)\n", active, crtc->active);
I915_STATE_WARN(enabled != crtc->base.state->enable,
"crtc's computed enabled state doesn't match tracked enabled state "
"(expected %i, found %i)\n", enabled,
crtc->base.state->enable);
active = dev_priv->display.get_pipe_config(crtc,
&pipe_config);
/* hw state is inconsistent with the pipe quirk */
if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
(crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
active = crtc->active;
for_each_intel_encoder(dev, encoder) {
enum pipe pipe;
if (encoder->base.crtc != &crtc->base)
continue;
if (encoder->get_hw_state(encoder, &pipe))
encoder->get_config(encoder, &pipe_config);
}
I915_STATE_WARN(crtc->active != active,
"crtc active state doesn't match with hw state "
"(expected %i, found %i)\n", crtc->active, active);
I915_STATE_WARN(crtc->active != crtc->base.state->active,
"transitional active state does not match atomic hw state "
"(expected %i, found %i)\n", crtc->base.state->active, crtc->active);
if (!active)
if (!needs_modeset(crtc->state))
continue;
if (!intel_pipe_config_compare(dev, crtc->config,
&pipe_config, false)) {
__drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
pipe_config = to_intel_crtc_state(old_crtc_state);
memset(pipe_config, 0, sizeof(*pipe_config));
pipe_config->base.crtc = crtc;
pipe_config->base.state = old_state;
DRM_DEBUG_KMS("[CRTC:%d]\n",
crtc->base.id);
active = dev_priv->display.get_pipe_config(intel_crtc,
pipe_config);
/* hw state is inconsistent with the pipe quirk */
if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
(intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
active = crtc->state->active;
I915_STATE_WARN(crtc->state->active != active,
"crtc active state doesn't match with hw state "
"(expected %i, found %i)\n", crtc->state->active, active);
I915_STATE_WARN(intel_crtc->active != crtc->state->active,
"transitional active state does not match atomic hw state "
"(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
for_each_encoder_on_crtc(dev, crtc, encoder) {
enum pipe pipe;
active = encoder->get_hw_state(encoder, &pipe);
I915_STATE_WARN(active != crtc->state->active,
"[ENCODER:%i] active %i with crtc active %i\n",
encoder->base.base.id, active, crtc->state->active);
I915_STATE_WARN(active && intel_crtc->pipe != pipe,
"Encoder connected to wrong pipe %c\n",
pipe_name(pipe));
if (active)
encoder->get_config(encoder, pipe_config);
}
if (!crtc->state->active)
continue;
sw_config = to_intel_crtc_state(crtc->state);
if (!intel_pipe_config_compare(dev, sw_config,
pipe_config, false)) {
I915_STATE_WARN(1, "pipe state doesn't match!\n");
intel_dump_pipe_config(crtc, &pipe_config,
intel_dump_pipe_config(intel_crtc, pipe_config,
"[hw state]");
intel_dump_pipe_config(crtc, crtc->config,
intel_dump_pipe_config(intel_crtc, sw_config,
"[sw state]");
}
}
@ -12908,13 +12745,14 @@ check_shared_dpll_state(struct drm_device *dev)
}
}
void
intel_modeset_check_state(struct drm_device *dev)
static void
intel_modeset_check_state(struct drm_device *dev,
struct drm_atomic_state *old_state)
{
check_wm_state(dev);
check_connector_state(dev);
check_connector_state(dev, old_state);
check_encoder_state(dev);
check_crtc_state(dev);
check_crtc_state(dev, old_state);
check_shared_dpll_state(dev);
}
@ -13270,12 +13108,14 @@ static int intel_atomic_commit(struct drm_device *dev,
/* Only after disabling all output pipelines that will be changed can we
* update the the output configuration. */
intel_modeset_update_state(state);
intel_modeset_update_crtc_state(state);
/* The state has been swaped above, so state actually contains the
* old state now. */
if (any_ms)
if (any_ms) {
intel_shared_dpll_commit(state);
drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
modeset_update_crtc_power_domains(state);
}
/* Now enable the clocks, plane, pipe, and connectors that we set up. */
for_each_crtc_in_state(state, crtc, crtc_state, i) {
@ -13298,10 +13138,11 @@ static int intel_atomic_commit(struct drm_device *dev,
drm_atomic_helper_wait_for_vblanks(dev, state);
drm_atomic_helper_cleanup_planes(dev, state);
drm_atomic_state_free(state);
if (any_ms)
intel_modeset_check_state(dev);
intel_modeset_check_state(dev, state);
drm_atomic_state_free(state);
return 0;
}
@ -14106,8 +13947,7 @@ static void intel_setup_outputs(struct drm_device *dev)
*/
found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
/* WaIgnoreDDIAStrap: skl */
if (found ||
(IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
if (found || IS_SKYLAKE(dev))
intel_ddi_init(dev, PORT_A);
/* DDI B, C and D detection is indicated by the SFUSE_STRAP
@ -14271,7 +14111,7 @@ static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj = intel_fb->obj;
mutex_lock(&dev->struct_mutex);
intel_fb_obj_flush(obj, false, ORIGIN_GTT);
intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
mutex_unlock(&dev->struct_mutex);
return 0;
@ -15065,8 +14905,10 @@ static void intel_sanitize_crtc(struct intel_crtc *crtc)
/* Adjust the state of the output pipe according to whether we
* have active connectors/encoders. */
enable = false;
for_each_encoder_on_crtc(dev, &crtc->base, encoder)
enable |= encoder->connectors_active;
for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
enable = true;
break;
}
if (!enable)
intel_crtc_disable_noatomic(&crtc->base);
@ -15093,10 +14935,8 @@ static void intel_sanitize_crtc(struct intel_crtc *crtc)
* actually up, hence no need to break them. */
WARN_ON(crtc->active);
for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
WARN_ON(encoder->connectors_active);
for_each_encoder_on_crtc(dev, &crtc->base, encoder)
encoder->base.crtc = NULL;
}
}
if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
@ -15122,6 +14962,7 @@ static void intel_sanitize_encoder(struct intel_encoder *encoder)
{
struct intel_connector *connector;
struct drm_device *dev = encoder->base.dev;
bool active = false;
/* We need to check both for a crtc link (meaning that the
* encoder is active and trying to read from a pipe) and the
@ -15129,7 +14970,15 @@ static void intel_sanitize_encoder(struct intel_encoder *encoder)
bool has_active_crtc = encoder->base.crtc &&
to_intel_crtc(encoder->base.crtc)->active;
if (encoder->connectors_active && !has_active_crtc) {
for_each_intel_connector(dev, connector) {
if (connector->base.encoder != &encoder->base)
continue;
active = true;
break;
}
if (active && !has_active_crtc) {
DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
encoder->base.base.id,
encoder->base.name);
@ -15146,7 +14995,6 @@ static void intel_sanitize_encoder(struct intel_encoder *encoder)
encoder->post_disable(encoder);
}
encoder->base.crtc = NULL;
encoder->connectors_active = false;
/* Inconsistent output/port/pipe state happens presumably due to
* a bug in one of the get_hw_state functions. Or someplace else
@ -15308,7 +15156,6 @@ static void intel_modeset_readout_hw_state(struct drm_device *dev)
encoder->base.crtc = NULL;
}
encoder->connectors_active = false;
DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
encoder->base.base.id,
encoder->base.name,
@ -15319,7 +15166,6 @@ static void intel_modeset_readout_hw_state(struct drm_device *dev)
for_each_intel_connector(dev, connector) {
if (connector->get_hw_state(connector)) {
connector->base.dpms = DRM_MODE_DPMS_ON;
connector->encoder->connectors_active = true;
connector->base.encoder = &connector->encoder->base;
} else {
connector->base.dpms = DRM_MODE_DPMS_OFF;

View File

@ -849,8 +849,15 @@ intel_dp_aux_ch(struct intel_dp *intel_dp,
}
if (try == 3) {
WARN(1, "dp_aux_ch not started status 0x%08x\n",
I915_READ(ch_ctl));
static u32 last_status = -1;
const u32 status = I915_READ(ch_ctl);
if (status != last_status) {
WARN(1, "dp_aux_ch not started status 0x%08x\n",
status);
last_status = status;
}
ret = -EBUSY;
goto out;
}
@ -1026,11 +1033,34 @@ static void
intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
enum port port = intel_dig_port->port;
struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port];
const char *name = NULL;
uint32_t porte_aux_ctl_reg = DPA_AUX_CH_CTL;
int ret;
/* On SKL we don't have Aux for port E so we rely on VBT to set
* a proper alternate aux channel.
*/
if (IS_SKYLAKE(dev) && port == PORT_E) {
switch (info->alternate_aux_channel) {
case DP_AUX_B:
porte_aux_ctl_reg = DPB_AUX_CH_CTL;
break;
case DP_AUX_C:
porte_aux_ctl_reg = DPC_AUX_CH_CTL;
break;
case DP_AUX_D:
porte_aux_ctl_reg = DPD_AUX_CH_CTL;
break;
case DP_AUX_A:
default:
porte_aux_ctl_reg = DPA_AUX_CH_CTL;
}
}
switch (port) {
case PORT_A:
intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
@ -1048,6 +1078,10 @@ intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
name = "DPDDC-D";
break;
case PORT_E:
intel_dp->aux_ch_ctl_reg = porte_aux_ctl_reg;
name = "DPDDC-E";
break;
default:
BUG();
}
@ -1061,7 +1095,7 @@ intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
*
* Skylake moves AUX_CTL back next to DDI_BUF_CTL, on the CPU.
*/
if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
if (!IS_HASWELL(dev) && !IS_BROADWELL(dev) && port != PORT_E)
intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
intel_dp->aux.name = name;
@ -1409,7 +1443,10 @@ intel_dp_compute_config(struct intel_encoder *encoder,
* bpc in between. */
bpp = pipe_config->pipe_bpp;
if (is_edp(intel_dp)) {
if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
/* Get bpp from vbt only for panels that dont have bpp in edid */
if (intel_connector->base.display_info.bpc == 0 &&
(dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp)) {
DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
dev_priv->vbt.edp_bpp);
bpp = dev_priv->vbt.edp_bpp;
@ -2624,7 +2661,7 @@ static void vlv_steal_power_sequencer(struct drm_device *dev,
DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
pipe_name(pipe), port_name(port));
WARN(encoder->connectors_active,
WARN(encoder->base.crtc,
"stealing pipe %c power sequencer from active eDP port %c\n",
pipe_name(pipe), port_name(port));
@ -3958,43 +3995,67 @@ intel_dp_probe_mst(struct intel_dp *intel_dp)
return intel_dp->is_mst;
}
int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
static void intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct intel_crtc *intel_crtc =
to_intel_crtc(intel_dig_port->base.base.crtc);
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
u8 buf;
int test_crc_count;
int attempts = 6;
int ret = 0;
hsw_disable_ips(intel_crtc);
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0) {
ret = -EIO;
goto out;
}
if (!(buf & DP_TEST_CRC_SUPPORTED)) {
ret = -ENOTTY;
goto out;
}
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
ret = -EIO;
goto out;
DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
return;
}
if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
buf | DP_TEST_SINK_START) < 0) {
ret = -EIO;
goto out;
buf & ~DP_TEST_SINK_START) < 0)
DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
hsw_enable_ips(intel_crtc);
}
static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
u8 buf;
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
return -EIO;
if (!(buf & DP_TEST_CRC_SUPPORTED))
return -ENOTTY;
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
return -EIO;
hsw_disable_ips(intel_crtc);
if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
buf | DP_TEST_SINK_START) < 0) {
hsw_enable_ips(intel_crtc);
return -EIO;
}
return 0;
}
int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = dig_port->base.base.dev;
struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
u8 buf;
int test_crc_count;
int attempts = 6;
int ret;
ret = intel_dp_sink_crc_start(intel_dp);
if (ret)
return ret;
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0) {
ret = -EIO;
goto out;
goto stop;
}
test_crc_count = buf & DP_TEST_COUNT_MASK;
@ -4003,7 +4064,7 @@ int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
if (drm_dp_dpcd_readb(&intel_dp->aux,
DP_TEST_SINK_MISC, &buf) < 0) {
ret = -EIO;
goto out;
goto stop;
}
intel_wait_for_vblank(dev, intel_crtc->pipe);
} while (--attempts && (buf & DP_TEST_COUNT_MASK) == test_crc_count);
@ -4011,25 +4072,13 @@ int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
if (attempts == 0) {
DRM_DEBUG_KMS("Panel is unable to calculate CRC after 6 vblanks\n");
ret = -ETIMEDOUT;
goto out;
goto stop;
}
if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
ret = -EIO;
goto out;
}
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
ret = -EIO;
goto out;
}
if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
buf & ~DP_TEST_SINK_START) < 0) {
ret = -EIO;
goto out;
}
out:
hsw_enable_ips(intel_crtc);
stop:
intel_dp_sink_crc_stop(intel_dp);
return ret;
}
@ -4090,9 +4139,16 @@ static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
intel_dp->aux.i2c_defer_count);
intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
} else {
struct edid *block = intel_connector->detect_edid;
/* We have to write the checksum
* of the last block read
*/
block += intel_connector->detect_edid->extensions;
if (!drm_dp_dpcd_write(&intel_dp->aux,
DP_TEST_EDID_CHECKSUM,
&intel_connector->detect_edid->checksum,
&block->checksum,
1))
DRM_DEBUG_KMS("Failed to write EDID checksum\n");
@ -4240,10 +4296,7 @@ intel_dp_check_link_status(struct intel_dp *intel_dp)
WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
if (!intel_encoder->connectors_active)
return;
if (WARN_ON(!intel_encoder->base.crtc))
if (!intel_encoder->base.crtc)
return;
if (!to_intel_crtc(intel_encoder->base.crtc)->active)
@ -4824,7 +4877,7 @@ static void intel_dp_encoder_reset(struct drm_encoder *encoder)
}
static const struct drm_connector_funcs intel_dp_connector_funcs = {
.dpms = intel_connector_dpms,
.dpms = drm_atomic_helper_connector_dpms,
.detect = intel_dp_detect,
.force = intel_dp_force,
.fill_modes = drm_helper_probe_single_connector_modes,

View File

@ -328,7 +328,7 @@ intel_dp_mst_connector_destroy(struct drm_connector *connector)
}
static const struct drm_connector_funcs intel_dp_mst_connector_funcs = {
.dpms = intel_connector_dpms,
.dpms = drm_atomic_helper_connector_dpms,
.detect = intel_dp_mst_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.set_property = intel_dp_mst_set_property,
@ -464,9 +464,20 @@ static void intel_dp_destroy_mst_connector(struct drm_dp_mst_topology_mgr *mgr,
{
struct intel_connector *intel_connector = to_intel_connector(connector);
struct drm_device *dev = connector->dev;
/* need to nuke the connector */
drm_modeset_lock_all(dev);
intel_connector_dpms(connector, DRM_MODE_DPMS_OFF);
if (connector->state->crtc) {
struct drm_mode_set set;
int ret;
memset(&set, 0, sizeof(set));
set.crtc = connector->state->crtc,
ret = drm_atomic_helper_set_config(&set);
WARN(ret, "Disabling mst crtc failed with %i\n", ret);
}
drm_modeset_unlock_all(dev);
intel_connector->unregister(intel_connector);

View File

@ -133,7 +133,6 @@ struct intel_encoder {
enum intel_output_type type;
unsigned int cloneable;
bool connectors_active;
void (*hot_plug)(struct intel_encoder *);
bool (*compute_config)(struct intel_encoder *,
struct intel_crtc_state *);
@ -992,14 +991,10 @@ void intel_mark_busy(struct drm_device *dev);
void intel_mark_idle(struct drm_device *dev);
void intel_crtc_restore_mode(struct drm_crtc *crtc);
int intel_display_suspend(struct drm_device *dev);
int intel_crtc_control(struct drm_crtc *crtc, bool enable);
void intel_crtc_update_dpms(struct drm_crtc *crtc);
void intel_encoder_destroy(struct drm_encoder *encoder);
int intel_connector_init(struct intel_connector *);
struct intel_connector *intel_connector_alloc(void);
int intel_connector_dpms(struct drm_connector *, int mode);
bool intel_connector_get_hw_state(struct intel_connector *connector);
void intel_modeset_check_state(struct drm_device *dev);
bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
struct intel_digital_port *port);
void intel_connector_attach_encoder(struct intel_connector *connector,
@ -1243,7 +1238,7 @@ void intel_fbc_invalidate(struct drm_i915_private *dev_priv,
unsigned int frontbuffer_bits,
enum fb_op_origin origin);
void intel_fbc_flush(struct drm_i915_private *dev_priv,
unsigned int frontbuffer_bits);
unsigned int frontbuffer_bits, enum fb_op_origin origin);
const char *intel_no_fbc_reason_str(enum no_fbc_reason reason);
void intel_fbc_cleanup_cfb(struct drm_i915_private *dev_priv);

View File

@ -982,7 +982,7 @@ static const struct drm_connector_helper_funcs intel_dsi_connector_helper_funcs
};
static const struct drm_connector_funcs intel_dsi_connector_funcs = {
.dpms = intel_connector_dpms,
.dpms = drm_atomic_helper_connector_dpms,
.detect = intel_dsi_detect,
.destroy = intel_dsi_connector_destroy,
.fill_modes = drm_helper_probe_single_connector_modes,

View File

@ -196,52 +196,6 @@ static void intel_enable_dvo(struct intel_encoder *encoder)
intel_dvo->dev.dev_ops->dpms(&intel_dvo->dev, true);
}
/* Special dpms function to support cloning between dvo/sdvo/crt. */
static int intel_dvo_dpms(struct drm_connector *connector, int mode)
{
struct intel_dvo *intel_dvo = intel_attached_dvo(connector);
struct drm_crtc *crtc;
struct intel_crtc_state *config;
/* dvo supports only 2 dpms states. */
if (mode != DRM_MODE_DPMS_ON)
mode = DRM_MODE_DPMS_OFF;
if (mode == connector->dpms)
return 0;
connector->dpms = mode;
/* Only need to change hw state when actually enabled */
crtc = intel_dvo->base.base.crtc;
if (!crtc) {
intel_dvo->base.connectors_active = false;
return 0;
}
/* We call connector dpms manually below in case pipe dpms doesn't
* change due to cloning. */
if (mode == DRM_MODE_DPMS_ON) {
config = to_intel_crtc(crtc)->config;
intel_dvo->base.connectors_active = true;
intel_crtc_update_dpms(crtc);
intel_dvo->dev.dev_ops->dpms(&intel_dvo->dev, true);
} else {
intel_dvo->dev.dev_ops->dpms(&intel_dvo->dev, false);
intel_dvo->base.connectors_active = false;
intel_crtc_update_dpms(crtc);
}
intel_modeset_check_state(connector->dev);
return 0;
}
static enum drm_mode_status
intel_dvo_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
@ -389,7 +343,7 @@ static void intel_dvo_destroy(struct drm_connector *connector)
}
static const struct drm_connector_funcs intel_dvo_connector_funcs = {
.dpms = intel_dvo_dpms,
.dpms = drm_atomic_helper_connector_dpms,
.detect = intel_dvo_detect,
.destroy = intel_dvo_destroy,
.fill_modes = drm_helper_probe_single_connector_modes,

View File

@ -884,22 +884,23 @@ void intel_fbc_invalidate(struct drm_i915_private *dev_priv,
}
void intel_fbc_flush(struct drm_i915_private *dev_priv,
unsigned int frontbuffer_bits)
unsigned int frontbuffer_bits, enum fb_op_origin origin)
{
if (!dev_priv->fbc.enable_fbc)
return;
mutex_lock(&dev_priv->fbc.lock);
if (origin == ORIGIN_GTT)
return;
if (!dev_priv->fbc.busy_bits)
goto out;
mutex_lock(&dev_priv->fbc.lock);
dev_priv->fbc.busy_bits &= ~frontbuffer_bits;
if (!dev_priv->fbc.busy_bits)
if (!dev_priv->fbc.busy_bits) {
__intel_fbc_disable(dev_priv);
__intel_fbc_update(dev_priv);
}
out:
mutex_unlock(&dev_priv->fbc.lock);
}

View File

@ -129,7 +129,7 @@ static void intel_frontbuffer_flush(struct drm_device *dev,
intel_edp_drrs_flush(dev, frontbuffer_bits);
intel_psr_flush(dev, frontbuffer_bits, origin);
intel_fbc_flush(dev_priv, frontbuffer_bits);
intel_fbc_flush(dev_priv, frontbuffer_bits, origin);
}
/**

View File

@ -0,0 +1,245 @@
/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifndef _INTEL_GUC_FWIF_H
#define _INTEL_GUC_FWIF_H
/*
* This file is partially autogenerated, although currently with some manual
* fixups afterwards. In future, it should be entirely autogenerated, in order
* to ensure that the definitions herein remain in sync with those used by the
* GuC's own firmware.
*
* EDITING THIS FILE IS THEREFORE NOT RECOMMENDED - YOUR CHANGES MAY BE LOST.
*/
#define GFXCORE_FAMILY_GEN8 11
#define GFXCORE_FAMILY_GEN9 12
#define GFXCORE_FAMILY_FORCE_ULONG 0x7fffffff
#define GUC_CTX_PRIORITY_CRITICAL 0
#define GUC_CTX_PRIORITY_HIGH 1
#define GUC_CTX_PRIORITY_NORMAL 2
#define GUC_CTX_PRIORITY_LOW 3
#define GUC_MAX_GPU_CONTEXTS 1024
#define GUC_INVALID_CTX_ID (GUC_MAX_GPU_CONTEXTS + 1)
/* Work queue item header definitions */
#define WQ_STATUS_ACTIVE 1
#define WQ_STATUS_SUSPENDED 2
#define WQ_STATUS_CMD_ERROR 3
#define WQ_STATUS_ENGINE_ID_NOT_USED 4
#define WQ_STATUS_SUSPENDED_FROM_RESET 5
#define WQ_TYPE_SHIFT 0
#define WQ_TYPE_BATCH_BUF (0x1 << WQ_TYPE_SHIFT)
#define WQ_TYPE_PSEUDO (0x2 << WQ_TYPE_SHIFT)
#define WQ_TYPE_INORDER (0x3 << WQ_TYPE_SHIFT)
#define WQ_TARGET_SHIFT 10
#define WQ_LEN_SHIFT 16
#define WQ_NO_WCFLUSH_WAIT (1 << 27)
#define WQ_PRESENT_WORKLOAD (1 << 28)
#define WQ_WORKLOAD_SHIFT 29
#define WQ_WORKLOAD_GENERAL (0 << WQ_WORKLOAD_SHIFT)
#define WQ_WORKLOAD_GPGPU (1 << WQ_WORKLOAD_SHIFT)
#define WQ_WORKLOAD_TOUCH (2 << WQ_WORKLOAD_SHIFT)
#define WQ_RING_TAIL_SHIFT 20
#define WQ_RING_TAIL_MASK (0x7FF << WQ_RING_TAIL_SHIFT)
#define GUC_DOORBELL_ENABLED 1
#define GUC_DOORBELL_DISABLED 0
#define GUC_CTX_DESC_ATTR_ACTIVE (1 << 0)
#define GUC_CTX_DESC_ATTR_PENDING_DB (1 << 1)
#define GUC_CTX_DESC_ATTR_KERNEL (1 << 2)
#define GUC_CTX_DESC_ATTR_PREEMPT (1 << 3)
#define GUC_CTX_DESC_ATTR_RESET (1 << 4)
#define GUC_CTX_DESC_ATTR_WQLOCKED (1 << 5)
#define GUC_CTX_DESC_ATTR_PCH (1 << 6)
/* The guc control data is 10 DWORDs */
#define GUC_CTL_CTXINFO 0
#define GUC_CTL_CTXNUM_IN16_SHIFT 0
#define GUC_CTL_BASE_ADDR_SHIFT 12
#define GUC_CTL_ARAT_HIGH 1
#define GUC_CTL_ARAT_LOW 2
#define GUC_CTL_DEVICE_INFO 3
#define GUC_CTL_GTTYPE_SHIFT 0
#define GUC_CTL_COREFAMILY_SHIFT 7
#define GUC_CTL_LOG_PARAMS 4
#define GUC_LOG_VALID (1 << 0)
#define GUC_LOG_NOTIFY_ON_HALF_FULL (1 << 1)
#define GUC_LOG_ALLOC_IN_MEGABYTE (1 << 3)
#define GUC_LOG_CRASH_PAGES 1
#define GUC_LOG_CRASH_SHIFT 4
#define GUC_LOG_DPC_PAGES 3
#define GUC_LOG_DPC_SHIFT 6
#define GUC_LOG_ISR_PAGES 3
#define GUC_LOG_ISR_SHIFT 9
#define GUC_LOG_BUF_ADDR_SHIFT 12
#define GUC_CTL_PAGE_FAULT_CONTROL 5
#define GUC_CTL_WA 6
#define GUC_CTL_WA_UK_BY_DRIVER (1 << 3)
#define GUC_CTL_FEATURE 7
#define GUC_CTL_VCS2_ENABLED (1 << 0)
#define GUC_CTL_KERNEL_SUBMISSIONS (1 << 1)
#define GUC_CTL_FEATURE2 (1 << 2)
#define GUC_CTL_POWER_GATING (1 << 3)
#define GUC_CTL_DISABLE_SCHEDULER (1 << 4)
#define GUC_CTL_PREEMPTION_LOG (1 << 5)
#define GUC_CTL_ENABLE_SLPC (1 << 7)
#define GUC_CTL_DEBUG 8
#define GUC_LOG_VERBOSITY_SHIFT 0
#define GUC_LOG_VERBOSITY_LOW (0 << GUC_LOG_VERBOSITY_SHIFT)
#define GUC_LOG_VERBOSITY_MED (1 << GUC_LOG_VERBOSITY_SHIFT)
#define GUC_LOG_VERBOSITY_HIGH (2 << GUC_LOG_VERBOSITY_SHIFT)
#define GUC_LOG_VERBOSITY_ULTRA (3 << GUC_LOG_VERBOSITY_SHIFT)
/* Verbosity range-check limits, without the shift */
#define GUC_LOG_VERBOSITY_MIN 0
#define GUC_LOG_VERBOSITY_MAX 3
#define GUC_CTL_MAX_DWORDS (GUC_CTL_DEBUG + 1)
struct guc_doorbell_info {
u32 db_status;
u32 cookie;
u32 reserved[14];
} __packed;
union guc_doorbell_qw {
struct {
u32 db_status;
u32 cookie;
};
u64 value_qw;
} __packed;
#define GUC_MAX_DOORBELLS 256
#define GUC_INVALID_DOORBELL_ID (GUC_MAX_DOORBELLS)
#define GUC_DB_SIZE (PAGE_SIZE)
#define GUC_WQ_SIZE (PAGE_SIZE * 2)
/* Work item for submitting workloads into work queue of GuC. */
struct guc_wq_item {
u32 header;
u32 context_desc;
u32 ring_tail;
u32 fence_id;
} __packed;
struct guc_process_desc {
u32 context_id;
u64 db_base_addr;
u32 head;
u32 tail;
u32 error_offset;
u64 wq_base_addr;
u32 wq_size_bytes;
u32 wq_status;
u32 engine_presence;
u32 priority;
u32 reserved[30];
} __packed;
/* engine id and context id is packed into guc_execlist_context.context_id*/
#define GUC_ELC_CTXID_OFFSET 0
#define GUC_ELC_ENGINE_OFFSET 29
/* The execlist context including software and HW information */
struct guc_execlist_context {
u32 context_desc;
u32 context_id;
u32 ring_status;
u32 ring_lcra;
u32 ring_begin;
u32 ring_end;
u32 ring_next_free_location;
u32 ring_current_tail_pointer_value;
u8 engine_state_submit_value;
u8 engine_state_wait_value;
u16 pagefault_count;
u16 engine_submit_queue_count;
} __packed;
/*Context descriptor for communicating between uKernel and Driver*/
struct guc_context_desc {
u32 sched_common_area;
u32 context_id;
u32 pas_id;
u8 engines_used;
u64 db_trigger_cpu;
u32 db_trigger_uk;
u64 db_trigger_phy;
u16 db_id;
struct guc_execlist_context lrc[I915_NUM_RINGS];
u8 attribute;
u32 priority;
u32 wq_sampled_tail_offset;
u32 wq_total_submit_enqueues;
u32 process_desc;
u32 wq_addr;
u32 wq_size;
u32 engine_presence;
u32 reserved0[1];
u64 reserved1[1];
u64 desc_private;
} __packed;
/* This Action will be programmed in C180 - SOFT_SCRATCH_O_REG */
enum host2guc_action {
HOST2GUC_ACTION_DEFAULT = 0x0,
HOST2GUC_ACTION_SAMPLE_FORCEWAKE = 0x6,
HOST2GUC_ACTION_ALLOCATE_DOORBELL = 0x10,
HOST2GUC_ACTION_DEALLOCATE_DOORBELL = 0x20,
HOST2GUC_ACTION_SLPC_REQUEST = 0x3003,
HOST2GUC_ACTION_LIMIT
};
/*
* The GuC sends its response to a command by overwriting the
* command in SS0. The response is distinguishable from a command
* by the fact that all the MASK bits are set. The remaining bits
* give more detail.
*/
#define GUC2HOST_RESPONSE_MASK ((u32)0xF0000000)
#define GUC2HOST_IS_RESPONSE(x) ((u32)(x) >= GUC2HOST_RESPONSE_MASK)
#define GUC2HOST_STATUS(x) (GUC2HOST_RESPONSE_MASK | (x))
/* GUC will return status back to SOFT_SCRATCH_O_REG */
enum guc2host_status {
GUC2HOST_STATUS_SUCCESS = GUC2HOST_STATUS(0x0),
GUC2HOST_STATUS_ALLOCATE_DOORBELL_FAIL = GUC2HOST_STATUS(0x10),
GUC2HOST_STATUS_DEALLOCATE_DOORBELL_FAIL = GUC2HOST_STATUS(0x20),
GUC2HOST_STATUS_GENERIC_FAIL = GUC2HOST_STATUS(0x0000F000)
};
#endif

View File

@ -1909,7 +1909,7 @@ static void intel_hdmi_destroy(struct drm_connector *connector)
}
static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
.dpms = intel_connector_dpms,
.dpms = drm_atomic_helper_connector_dpms,
.detect = intel_hdmi_detect,
.force = intel_hdmi_force,
.fill_modes = drm_helper_probe_single_connector_modes,

View File

@ -76,17 +76,23 @@
* it will use i915_hotplug_work_func where this logic is handled.
*/
enum port intel_hpd_pin_to_port(enum hpd_pin pin)
bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port)
{
switch (pin) {
case HPD_PORT_A:
*port = PORT_A;
return true;
case HPD_PORT_B:
return PORT_B;
*port = PORT_B;
return true;
case HPD_PORT_C:
return PORT_C;
*port = PORT_C;
return true;
case HPD_PORT_D:
return PORT_D;
*port = PORT_D;
return true;
default:
return PORT_A; /* no hpd */
return false; /* no hpd */
}
}
@ -369,8 +375,8 @@ void intel_hpd_irq_handler(struct drm_device *dev,
if (!(BIT(i) & pin_mask))
continue;
port = intel_hpd_pin_to_port(i);
is_dig_port = port && dev_priv->hotplug.irq_port[port];
is_dig_port = intel_hpd_pin_to_port(i, &port) &&
dev_priv->hotplug.irq_port[port];
if (is_dig_port) {
bool long_hpd = long_mask & BIT(i);

View File

@ -497,6 +497,9 @@ void intel_lrc_irq_handler(struct intel_engine_cs *ring)
status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
(read_pointer % 6) * 8 + 4);
if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
continue;
if (status & GEN8_CTX_STATUS_PREEMPTED) {
if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
if (execlists_check_remove_request(ring, status_id))
@ -521,7 +524,7 @@ void intel_lrc_irq_handler(struct intel_engine_cs *ring)
ring->next_context_status_buffer = write_pointer % 6;
I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
((u32)ring->next_context_status_buffer & 0x07) << 8);
_MASKED_FIELD(0x07 << 8, ((u32)ring->next_context_status_buffer & 0x07) << 8));
}
static int execlists_context_queue(struct drm_i915_gem_request *request)
@ -1740,6 +1743,12 @@ static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
if (ret)
goto out;
ret = req->ring->emit_bb_start(req,
(so.ggtt_offset + so.aux_batch_offset),
I915_DISPATCH_SECURE);
if (ret)
goto out;
i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
out:

View File

@ -549,7 +549,7 @@ static const struct drm_connector_helper_funcs intel_lvds_connector_helper_funcs
};
static const struct drm_connector_funcs intel_lvds_connector_funcs = {
.dpms = intel_connector_dpms,
.dpms = drm_atomic_helper_connector_dpms,
.detect = intel_lvds_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.set_property = intel_lvds_set_property,

View File

@ -102,6 +102,12 @@ static void skl_init_clock_gating(struct drm_device *dev)
/* WaDisableLSQCROPERFforOCL:skl */
I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
GEN8_LQSC_RO_PERF_DIS);
/* WaEnableGapsTsvCreditFix:skl */
if (IS_SKYLAKE(dev) && (INTEL_REVID(dev) >= SKL_REVID_C0)) {
I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
GEN9_GAPS_TSV_CREDIT_DISABLE));
}
}
static void bxt_init_clock_gating(struct drm_device *dev)
@ -4266,7 +4272,7 @@ static void ironlake_enable_drps(struct drm_device *dev)
if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
DRM_ERROR("stuck trying to change perf mode\n");
msleep(1);
mdelay(1);
ironlake_set_drps(dev, fstart);
@ -4297,10 +4303,10 @@ static void ironlake_disable_drps(struct drm_device *dev)
/* Go back to the starting frequency */
ironlake_set_drps(dev, dev_priv->ips.fstart);
msleep(1);
mdelay(1);
rgvswctl |= MEMCTL_CMD_STS;
I915_WRITE(MEMSWCTL, rgvswctl);
msleep(1);
mdelay(1);
spin_unlock_irq(&mchdev_lock);
}

View File

@ -698,6 +698,7 @@ void intel_psr_flush(struct drm_device *dev,
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc;
enum pipe pipe;
int delay_ms = HAS_DDI(dev) ? 100 : 500;
mutex_lock(&dev_priv->psr.lock);
if (!dev_priv->psr.enabled) {
@ -733,7 +734,7 @@ void intel_psr_flush(struct drm_device *dev,
if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
schedule_delayed_work(&dev_priv->psr.work,
msecs_to_jiffies(100));
msecs_to_jiffies(delay_ms));
mutex_unlock(&dev_priv->psr.lock);
}

View File

@ -780,11 +780,11 @@ static int wa_add(struct drm_i915_private *dev_priv,
return 0;
}
#define WA_REG(addr, mask, val) { \
#define WA_REG(addr, mask, val) do { \
const int r = wa_add(dev_priv, (addr), (mask), (val)); \
if (r) \
return r; \
}
} while (0)
#define WA_SET_BIT_MASKED(addr, mask) \
WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
@ -1041,13 +1041,6 @@ static int skl_init_workarounds(struct intel_engine_cs *ring)
WA_SET_BIT_MASKED(HIZ_CHICKEN,
BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
if (INTEL_REVID(dev) == SKL_REVID_C0 ||
INTEL_REVID(dev) == SKL_REVID_D0)
/* WaBarrierPerformanceFixDisable:skl */
WA_SET_BIT_MASKED(HDC_CHICKEN0,
HDC_FENCE_DEST_SLM_DISABLE |
HDC_BARRIER_PERFORMANCE_DISABLE);
if (INTEL_REVID(dev) <= SKL_REVID_D0) {
/*
*Use Force Non-Coherent whenever executing a 3D context. This
@ -1066,6 +1059,13 @@ static int skl_init_workarounds(struct intel_engine_cs *ring)
HDC_FENCE_DEST_SLM_DISABLE |
HDC_BARRIER_PERFORMANCE_DISABLE);
/* WaDisableSbeCacheDispatchPortSharing:skl */
if (INTEL_REVID(dev) <= SKL_REVID_F0) {
WA_SET_BIT_MASKED(
GEN7_HALF_SLICE_CHICKEN1,
GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
}
return skl_tune_iz_hashing(ring);
}

View File

@ -68,6 +68,22 @@
bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
int power_well_id);
static void intel_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
DRM_DEBUG_KMS("enabling %s\n", power_well->name);
power_well->ops->enable(dev_priv, power_well);
power_well->hw_enabled = true;
}
static void intel_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
DRM_DEBUG_KMS("disabling %s\n", power_well->name);
power_well->hw_enabled = false;
power_well->ops->disable(dev_priv, power_well);
}
/*
* We should only use the power well if we explicitly asked the hardware to
* enable it, so check if it's enabled and also check if we've requested it to
@ -1104,11 +1120,8 @@ void intel_display_power_get(struct drm_i915_private *dev_priv,
mutex_lock(&power_domains->lock);
for_each_power_well(i, power_well, BIT(domain), power_domains) {
if (!power_well->count++) {
DRM_DEBUG_KMS("enabling %s\n", power_well->name);
power_well->ops->enable(dev_priv, power_well);
power_well->hw_enabled = true;
}
if (!power_well->count++)
intel_power_well_enable(dev_priv, power_well);
}
power_domains->domain_use_count[domain]++;
@ -1142,11 +1155,8 @@ void intel_display_power_put(struct drm_i915_private *dev_priv,
for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
WARN_ON(!power_well->count);
if (!--power_well->count && i915.disable_power_well) {
DRM_DEBUG_KMS("disabling %s\n", power_well->name);
power_well->hw_enabled = false;
power_well->ops->disable(dev_priv, power_well);
}
if (!--power_well->count && i915.disable_power_well)
intel_power_well_disable(dev_priv, power_well);
}
mutex_unlock(&power_domains->lock);

View File

@ -1508,53 +1508,6 @@ static void intel_enable_sdvo(struct intel_encoder *encoder)
intel_sdvo_set_active_outputs(intel_sdvo, intel_sdvo->attached_output);
}
/* Special dpms function to support cloning between dvo/sdvo/crt. */
static int intel_sdvo_dpms(struct drm_connector *connector, int mode)
{
struct drm_crtc *crtc;
struct intel_sdvo *intel_sdvo = intel_attached_sdvo(connector);
/* dvo supports only 2 dpms states. */
if (mode != DRM_MODE_DPMS_ON)
mode = DRM_MODE_DPMS_OFF;
if (mode == connector->dpms)
return 0;
connector->dpms = mode;
/* Only need to change hw state when actually enabled */
crtc = intel_sdvo->base.base.crtc;
if (!crtc) {
intel_sdvo->base.connectors_active = false;
return 0;
}
/* We set active outputs manually below in case pipe dpms doesn't change
* due to cloning. */
if (mode != DRM_MODE_DPMS_ON) {
intel_sdvo_set_active_outputs(intel_sdvo, 0);
if (0)
intel_sdvo_set_encoder_power_state(intel_sdvo, mode);
intel_sdvo->base.connectors_active = false;
intel_crtc_update_dpms(crtc);
} else {
intel_sdvo->base.connectors_active = true;
intel_crtc_update_dpms(crtc);
if (0)
intel_sdvo_set_encoder_power_state(intel_sdvo, mode);
intel_sdvo_set_active_outputs(intel_sdvo, intel_sdvo->attached_output);
}
intel_modeset_check_state(connector->dev);
return 0;
}
static enum drm_mode_status
intel_sdvo_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
@ -2192,7 +2145,7 @@ done:
}
static const struct drm_connector_funcs intel_sdvo_connector_funcs = {
.dpms = intel_sdvo_dpms,
.dpms = drm_atomic_helper_connector_dpms,
.detect = intel_sdvo_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.set_property = intel_sdvo_set_property,

View File

@ -1509,7 +1509,7 @@ out:
}
static const struct drm_connector_funcs intel_tv_connector_funcs = {
.dpms = intel_connector_dpms,
.dpms = drm_atomic_helper_connector_dpms,
.detect = intel_tv_detect,
.destroy = intel_tv_destroy,
.set_property = intel_tv_set_property,