s390 updates for the 5.6 merge window #2

- Add KPROBES_ON_FTRACE support.
 
 - Add EP11 AES secure keys support.
 
 - PAES rework and prerequisites for paes-s390 ciphers selftests.
 
 - Fix page table upgrade for hugetlbfs.
 -----BEGIN PGP SIGNATURE-----
 
 iQEzBAABCAAdFiEE3QHqV+H2a8xAv27vjYWKoQLXFBgFAl465KkACgkQjYWKoQLX
 FBiR/wf/e+Fj/mDYHElcZ55MWaORBpp8NT94IYSt0RbII1PEh9cB8NciYLQdFFmc
 bUlNj7u3fHwk1D8S3pOSYKhIaHQQOWDqd/uNTzbCicbbVhuwmslLc+jffnORtlKe
 mCHeQsVAw3NwE8FIPhPMTAKBZV0pLkM4T9PA2xgeuB5cShoMgXgLgUoIwHJ4c2TP
 WwnolIJ/QR0nKpmPI5lp0+PjjSk/8nA/VvmpxgYbJCTQm8dhwhAfePh8Kf6pEp6K
 wETUaIyWkX1a+kI9h2qIBsR7KplqqrKABA5sxnPDQW/kut1Pc/2fWxMOBxux0f/V
 Kk+f6yoVbe7X6VYm+V4AyyAzQMRggQ==
 =9Eeg
 -----END PGP SIGNATURE-----

Merge tag 's390-5.6-2' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux

Pull more s390 updates from Vasily Gorbik:
 "The second round of s390 fixes and features for 5.6:

   - Add KPROBES_ON_FTRACE support

   - Add EP11 AES secure keys support

   - PAES rework and prerequisites for paes-s390 ciphers selftests

   - Fix page table upgrade for hugetlbfs"

* tag 's390-5.6-2' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux:
  s390/pkey/zcrypt: Support EP11 AES secure keys
  s390/zcrypt: extend EP11 card and queue sysfs attributes
  s390/zcrypt: add new low level ep11 functions support file
  s390/zcrypt: ep11 structs rework, export zcrypt_send_ep11_cprb
  s390/zcrypt: enable card/domain autoselect on ep11 cprbs
  s390/crypto: enable clear key values for paes ciphers
  s390/pkey: Add support for key blob with clear key value
  s390/crypto: Rework on paes implementation
  s390: support KPROBES_ON_FTRACE
  s390/mm: fix dynamic pagetable upgrade for hugetlbfs
This commit is contained in:
Linus Torvalds 2020-02-05 17:33:35 +00:00
commit cfb4b571e8
19 changed files with 2499 additions and 287 deletions

View File

@ -24,7 +24,7 @@
| parisc: | ok |
| powerpc: | ok |
| riscv: | TODO |
| s390: | TODO |
| s390: | ok |
| sh: | TODO |
| sparc: | TODO |
| um: | TODO |

View File

@ -156,6 +156,7 @@ config S390
select HAVE_KERNEL_UNCOMPRESSED
select HAVE_KERNEL_XZ
select HAVE_KPROBES
select HAVE_KPROBES_ON_FTRACE
select HAVE_KRETPROBES
select HAVE_KVM
select HAVE_LIVEPATCH

View File

@ -5,7 +5,7 @@
* s390 implementation of the AES Cipher Algorithm with protected keys.
*
* s390 Version:
* Copyright IBM Corp. 2017,2019
* Copyright IBM Corp. 2017,2020
* Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
* Harald Freudenberger <freude@de.ibm.com>
*/
@ -20,6 +20,7 @@
#include <linux/module.h>
#include <linux/cpufeature.h>
#include <linux/init.h>
#include <linux/mutex.h>
#include <linux/spinlock.h>
#include <crypto/internal/skcipher.h>
#include <crypto/xts.h>
@ -32,11 +33,11 @@
* is called. As paes can handle different kinds of key blobs
* and padding is also possible, the limits need to be generous.
*/
#define PAES_MIN_KEYSIZE 64
#define PAES_MAX_KEYSIZE 256
#define PAES_MIN_KEYSIZE 16
#define PAES_MAX_KEYSIZE 320
static u8 *ctrblk;
static DEFINE_SPINLOCK(ctrblk_lock);
static DEFINE_MUTEX(ctrblk_lock);
static cpacf_mask_t km_functions, kmc_functions, kmctr_functions;
@ -53,10 +54,35 @@ struct key_blob {
unsigned int keylen;
};
static inline int _copy_key_to_kb(struct key_blob *kb,
static inline int _key_to_kb(struct key_blob *kb,
const u8 *key,
unsigned int keylen)
{
struct clearkey_header {
u8 type;
u8 res0[3];
u8 version;
u8 res1[3];
u32 keytype;
u32 len;
} __packed * h;
switch (keylen) {
case 16:
case 24:
case 32:
/* clear key value, prepare pkey clear key token in keybuf */
memset(kb->keybuf, 0, sizeof(kb->keybuf));
h = (struct clearkey_header *) kb->keybuf;
h->version = 0x02; /* TOKVER_CLEAR_KEY */
h->keytype = (keylen - 8) >> 3;
h->len = keylen;
memcpy(kb->keybuf + sizeof(*h), key, keylen);
kb->keylen = sizeof(*h) + keylen;
kb->key = kb->keybuf;
break;
default:
/* other key material, let pkey handle this */
if (keylen <= sizeof(kb->keybuf))
kb->key = kb->keybuf;
else {
@ -66,6 +92,8 @@ static inline int _copy_key_to_kb(struct key_blob *kb,
}
memcpy(kb->key, key, keylen);
kb->keylen = keylen;
break;
}
return 0;
}
@ -82,16 +110,18 @@ static inline void _free_kb_keybuf(struct key_blob *kb)
struct s390_paes_ctx {
struct key_blob kb;
struct pkey_protkey pk;
spinlock_t pk_lock;
unsigned long fc;
};
struct s390_pxts_ctx {
struct key_blob kb[2];
struct pkey_protkey pk[2];
spinlock_t pk_lock;
unsigned long fc;
};
static inline int __paes_convert_key(struct key_blob *kb,
static inline int __paes_keyblob2pkey(struct key_blob *kb,
struct pkey_protkey *pk)
{
int i, ret;
@ -106,11 +136,42 @@ static inline int __paes_convert_key(struct key_blob *kb,
return ret;
}
static int __paes_set_key(struct s390_paes_ctx *ctx)
static inline int __paes_convert_key(struct s390_paes_ctx *ctx)
{
struct pkey_protkey pkey;
if (__paes_keyblob2pkey(&ctx->kb, &pkey))
return -EINVAL;
spin_lock_bh(&ctx->pk_lock);
memcpy(&ctx->pk, &pkey, sizeof(pkey));
spin_unlock_bh(&ctx->pk_lock);
return 0;
}
static int ecb_paes_init(struct crypto_skcipher *tfm)
{
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
ctx->kb.key = NULL;
spin_lock_init(&ctx->pk_lock);
return 0;
}
static void ecb_paes_exit(struct crypto_skcipher *tfm)
{
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
_free_kb_keybuf(&ctx->kb);
}
static inline int __ecb_paes_set_key(struct s390_paes_ctx *ctx)
{
unsigned long fc;
if (__paes_convert_key(&ctx->kb, &ctx->pk))
if (__paes_convert_key(ctx))
return -EINVAL;
/* Pick the correct function code based on the protected key type */
@ -124,22 +185,6 @@ static int __paes_set_key(struct s390_paes_ctx *ctx)
return ctx->fc ? 0 : -EINVAL;
}
static int ecb_paes_init(struct crypto_skcipher *tfm)
{
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
ctx->kb.key = NULL;
return 0;
}
static void ecb_paes_exit(struct crypto_skcipher *tfm)
{
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
_free_kb_keybuf(&ctx->kb);
}
static int ecb_paes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
unsigned int key_len)
{
@ -147,11 +192,11 @@ static int ecb_paes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
_free_kb_keybuf(&ctx->kb);
rc = _copy_key_to_kb(&ctx->kb, in_key, key_len);
rc = _key_to_kb(&ctx->kb, in_key, key_len);
if (rc)
return rc;
return __paes_set_key(ctx);
return __ecb_paes_set_key(ctx);
}
static int ecb_paes_crypt(struct skcipher_request *req, unsigned long modifier)
@ -161,18 +206,31 @@ static int ecb_paes_crypt(struct skcipher_request *req, unsigned long modifier)
struct skcipher_walk walk;
unsigned int nbytes, n, k;
int ret;
struct {
u8 key[MAXPROTKEYSIZE];
} param;
ret = skcipher_walk_virt(&walk, req, false);
if (ret)
return ret;
spin_lock_bh(&ctx->pk_lock);
memcpy(param.key, ctx->pk.protkey, MAXPROTKEYSIZE);
spin_unlock_bh(&ctx->pk_lock);
while ((nbytes = walk.nbytes) != 0) {
/* only use complete blocks */
n = nbytes & ~(AES_BLOCK_SIZE - 1);
k = cpacf_km(ctx->fc | modifier, ctx->pk.protkey,
k = cpacf_km(ctx->fc | modifier, &param,
walk.dst.virt.addr, walk.src.virt.addr, n);
if (k)
ret = skcipher_walk_done(&walk, nbytes - k);
if (k < n) {
if (__paes_set_key(ctx) != 0)
if (__paes_convert_key(ctx))
return skcipher_walk_done(&walk, -EIO);
spin_lock_bh(&ctx->pk_lock);
memcpy(param.key, ctx->pk.protkey, MAXPROTKEYSIZE);
spin_unlock_bh(&ctx->pk_lock);
}
}
return ret;
@ -210,6 +268,7 @@ static int cbc_paes_init(struct crypto_skcipher *tfm)
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
ctx->kb.key = NULL;
spin_lock_init(&ctx->pk_lock);
return 0;
}
@ -221,11 +280,11 @@ static void cbc_paes_exit(struct crypto_skcipher *tfm)
_free_kb_keybuf(&ctx->kb);
}
static int __cbc_paes_set_key(struct s390_paes_ctx *ctx)
static inline int __cbc_paes_set_key(struct s390_paes_ctx *ctx)
{
unsigned long fc;
if (__paes_convert_key(&ctx->kb, &ctx->pk))
if (__paes_convert_key(ctx))
return -EINVAL;
/* Pick the correct function code based on the protected key type */
@ -246,7 +305,7 @@ static int cbc_paes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
_free_kb_keybuf(&ctx->kb);
rc = _copy_key_to_kb(&ctx->kb, in_key, key_len);
rc = _key_to_kb(&ctx->kb, in_key, key_len);
if (rc)
return rc;
@ -268,8 +327,12 @@ static int cbc_paes_crypt(struct skcipher_request *req, unsigned long modifier)
ret = skcipher_walk_virt(&walk, req, false);
if (ret)
return ret;
memcpy(param.iv, walk.iv, AES_BLOCK_SIZE);
spin_lock_bh(&ctx->pk_lock);
memcpy(param.key, ctx->pk.protkey, MAXPROTKEYSIZE);
spin_unlock_bh(&ctx->pk_lock);
while ((nbytes = walk.nbytes) != 0) {
/* only use complete blocks */
n = nbytes & ~(AES_BLOCK_SIZE - 1);
@ -280,9 +343,11 @@ static int cbc_paes_crypt(struct skcipher_request *req, unsigned long modifier)
ret = skcipher_walk_done(&walk, nbytes - k);
}
if (k < n) {
if (__cbc_paes_set_key(ctx) != 0)
if (__paes_convert_key(ctx))
return skcipher_walk_done(&walk, -EIO);
spin_lock_bh(&ctx->pk_lock);
memcpy(param.key, ctx->pk.protkey, MAXPROTKEYSIZE);
spin_unlock_bh(&ctx->pk_lock);
}
}
return ret;
@ -322,6 +387,7 @@ static int xts_paes_init(struct crypto_skcipher *tfm)
ctx->kb[0].key = NULL;
ctx->kb[1].key = NULL;
spin_lock_init(&ctx->pk_lock);
return 0;
}
@ -334,12 +400,27 @@ static void xts_paes_exit(struct crypto_skcipher *tfm)
_free_kb_keybuf(&ctx->kb[1]);
}
static int __xts_paes_set_key(struct s390_pxts_ctx *ctx)
static inline int __xts_paes_convert_key(struct s390_pxts_ctx *ctx)
{
struct pkey_protkey pkey0, pkey1;
if (__paes_keyblob2pkey(&ctx->kb[0], &pkey0) ||
__paes_keyblob2pkey(&ctx->kb[1], &pkey1))
return -EINVAL;
spin_lock_bh(&ctx->pk_lock);
memcpy(&ctx->pk[0], &pkey0, sizeof(pkey0));
memcpy(&ctx->pk[1], &pkey1, sizeof(pkey1));
spin_unlock_bh(&ctx->pk_lock);
return 0;
}
static inline int __xts_paes_set_key(struct s390_pxts_ctx *ctx)
{
unsigned long fc;
if (__paes_convert_key(&ctx->kb[0], &ctx->pk[0]) ||
__paes_convert_key(&ctx->kb[1], &ctx->pk[1]))
if (__xts_paes_convert_key(ctx))
return -EINVAL;
if (ctx->pk[0].type != ctx->pk[1].type)
@ -371,10 +452,10 @@ static int xts_paes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
_free_kb_keybuf(&ctx->kb[0]);
_free_kb_keybuf(&ctx->kb[1]);
rc = _copy_key_to_kb(&ctx->kb[0], in_key, key_len);
rc = _key_to_kb(&ctx->kb[0], in_key, key_len);
if (rc)
return rc;
rc = _copy_key_to_kb(&ctx->kb[1], in_key + key_len, key_len);
rc = _key_to_kb(&ctx->kb[1], in_key + key_len, key_len);
if (rc)
return rc;
@ -416,15 +497,17 @@ static int xts_paes_crypt(struct skcipher_request *req, unsigned long modifier)
ret = skcipher_walk_virt(&walk, req, false);
if (ret)
return ret;
keylen = (ctx->pk[0].type == PKEY_KEYTYPE_AES_128) ? 48 : 64;
offset = (ctx->pk[0].type == PKEY_KEYTYPE_AES_128) ? 16 : 0;
retry:
memset(&pcc_param, 0, sizeof(pcc_param));
memcpy(pcc_param.tweak, walk.iv, sizeof(pcc_param.tweak));
spin_lock_bh(&ctx->pk_lock);
memcpy(pcc_param.key + offset, ctx->pk[1].protkey, keylen);
cpacf_pcc(ctx->fc, pcc_param.key + offset);
memcpy(xts_param.key + offset, ctx->pk[0].protkey, keylen);
spin_unlock_bh(&ctx->pk_lock);
cpacf_pcc(ctx->fc, pcc_param.key + offset);
memcpy(xts_param.init, pcc_param.xts, 16);
while ((nbytes = walk.nbytes) != 0) {
@ -435,11 +518,15 @@ retry:
if (k)
ret = skcipher_walk_done(&walk, nbytes - k);
if (k < n) {
if (__xts_paes_set_key(ctx) != 0)
if (__xts_paes_convert_key(ctx))
return skcipher_walk_done(&walk, -EIO);
goto retry;
spin_lock_bh(&ctx->pk_lock);
memcpy(xts_param.key + offset,
ctx->pk[0].protkey, keylen);
spin_unlock_bh(&ctx->pk_lock);
}
}
return ret;
}
@ -476,6 +563,7 @@ static int ctr_paes_init(struct crypto_skcipher *tfm)
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
ctx->kb.key = NULL;
spin_lock_init(&ctx->pk_lock);
return 0;
}
@ -487,11 +575,11 @@ static void ctr_paes_exit(struct crypto_skcipher *tfm)
_free_kb_keybuf(&ctx->kb);
}
static int __ctr_paes_set_key(struct s390_paes_ctx *ctx)
static inline int __ctr_paes_set_key(struct s390_paes_ctx *ctx)
{
unsigned long fc;
if (__paes_convert_key(&ctx->kb, &ctx->pk))
if (__paes_convert_key(ctx))
return -EINVAL;
/* Pick the correct function code based on the protected key type */
@ -513,7 +601,7 @@ static int ctr_paes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
_free_kb_keybuf(&ctx->kb);
rc = _copy_key_to_kb(&ctx->kb, in_key, key_len);
rc = _key_to_kb(&ctx->kb, in_key, key_len);
if (rc)
return rc;
@ -543,49 +631,65 @@ static int ctr_paes_crypt(struct skcipher_request *req)
struct skcipher_walk walk;
unsigned int nbytes, n, k;
int ret, locked;
locked = spin_trylock(&ctrblk_lock);
struct {
u8 key[MAXPROTKEYSIZE];
} param;
ret = skcipher_walk_virt(&walk, req, false);
if (ret)
return ret;
spin_lock_bh(&ctx->pk_lock);
memcpy(param.key, ctx->pk.protkey, MAXPROTKEYSIZE);
spin_unlock_bh(&ctx->pk_lock);
locked = mutex_trylock(&ctrblk_lock);
while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
n = AES_BLOCK_SIZE;
if (nbytes >= 2*AES_BLOCK_SIZE && locked)
n = __ctrblk_init(ctrblk, walk.iv, nbytes);
ctrptr = (n > AES_BLOCK_SIZE) ? ctrblk : walk.iv;
k = cpacf_kmctr(ctx->fc, ctx->pk.protkey, walk.dst.virt.addr,
k = cpacf_kmctr(ctx->fc, &param, walk.dst.virt.addr,
walk.src.virt.addr, n, ctrptr);
if (k) {
if (ctrptr == ctrblk)
memcpy(walk.iv, ctrptr + k - AES_BLOCK_SIZE,
AES_BLOCK_SIZE);
crypto_inc(walk.iv, AES_BLOCK_SIZE);
ret = skcipher_walk_done(&walk, nbytes - n);
ret = skcipher_walk_done(&walk, nbytes - k);
}
if (k < n) {
if (__ctr_paes_set_key(ctx) != 0) {
if (__paes_convert_key(ctx)) {
if (locked)
spin_unlock(&ctrblk_lock);
mutex_unlock(&ctrblk_lock);
return skcipher_walk_done(&walk, -EIO);
}
spin_lock_bh(&ctx->pk_lock);
memcpy(param.key, ctx->pk.protkey, MAXPROTKEYSIZE);
spin_unlock_bh(&ctx->pk_lock);
}
}
if (locked)
spin_unlock(&ctrblk_lock);
mutex_unlock(&ctrblk_lock);
/*
* final block may be < AES_BLOCK_SIZE, copy only nbytes
*/
if (nbytes) {
while (1) {
if (cpacf_kmctr(ctx->fc, ctx->pk.protkey, buf,
if (cpacf_kmctr(ctx->fc, &param, buf,
walk.src.virt.addr, AES_BLOCK_SIZE,
walk.iv) == AES_BLOCK_SIZE)
break;
if (__ctr_paes_set_key(ctx) != 0)
if (__paes_convert_key(ctx))
return skcipher_walk_done(&walk, -EIO);
spin_lock_bh(&ctx->pk_lock);
memcpy(param.key, ctx->pk.protkey, MAXPROTKEYSIZE);
spin_unlock_bh(&ctx->pk_lock);
}
memcpy(walk.dst.virt.addr, buf, nbytes);
crypto_inc(walk.iv, AES_BLOCK_SIZE);
ret = skcipher_walk_done(&walk, 0);
ret = skcipher_walk_done(&walk, nbytes);
}
return ret;
@ -618,12 +722,12 @@ static inline void __crypto_unregister_skcipher(struct skcipher_alg *alg)
static void paes_s390_fini(void)
{
if (ctrblk)
free_page((unsigned long) ctrblk);
__crypto_unregister_skcipher(&ctr_paes_alg);
__crypto_unregister_skcipher(&xts_paes_alg);
__crypto_unregister_skcipher(&cbc_paes_alg);
__crypto_unregister_skcipher(&ecb_paes_alg);
if (ctrblk)
free_page((unsigned long) ctrblk);
}
static int __init paes_s390_init(void)
@ -661,14 +765,14 @@ static int __init paes_s390_init(void)
if (cpacf_test_func(&kmctr_functions, CPACF_KMCTR_PAES_128) ||
cpacf_test_func(&kmctr_functions, CPACF_KMCTR_PAES_192) ||
cpacf_test_func(&kmctr_functions, CPACF_KMCTR_PAES_256)) {
ret = crypto_register_skcipher(&ctr_paes_alg);
if (ret)
goto out_err;
ctrblk = (u8 *) __get_free_page(GFP_KERNEL);
if (!ctrblk) {
ret = -ENOMEM;
goto out_err;
}
ret = crypto_register_skcipher(&ctr_paes_alg);
if (ret)
goto out_err;
}
return 0;

View File

@ -54,7 +54,6 @@ typedef u16 kprobe_opcode_t;
struct arch_specific_insn {
/* copy of original instruction */
kprobe_opcode_t *insn;
unsigned int is_ftrace_insn : 1;
};
struct prev_kprobe {

View File

@ -33,6 +33,8 @@
#define ARCH_HAS_PREPARE_HUGEPAGE
#define ARCH_HAS_HUGEPAGE_CLEAR_FLUSH
#define HAVE_ARCH_HUGETLB_UNMAPPED_AREA
#include <asm/setup.h>
#ifndef __ASSEMBLY__

View File

@ -25,10 +25,11 @@
#define MAXPROTKEYSIZE 64 /* a protected key blob may be up to 64 bytes */
#define MAXCLRKEYSIZE 32 /* a clear key value may be up to 32 bytes */
#define MAXAESCIPHERKEYSIZE 136 /* our aes cipher keys have always 136 bytes */
#define MINEP11AESKEYBLOBSIZE 256 /* min EP11 AES key blob size */
#define MAXEP11AESKEYBLOBSIZE 320 /* max EP11 AES key blob size */
/* Minimum and maximum size of a key blob */
/* Minimum size of a key blob */
#define MINKEYBLOBSIZE SECKEYBLOBSIZE
#define MAXKEYBLOBSIZE MAXAESCIPHERKEYSIZE
/* defines for the type field within the pkey_protkey struct */
#define PKEY_KEYTYPE_AES_128 1
@ -39,6 +40,7 @@
enum pkey_key_type {
PKEY_TYPE_CCA_DATA = (__u32) 1,
PKEY_TYPE_CCA_CIPHER = (__u32) 2,
PKEY_TYPE_EP11 = (__u32) 3,
};
/* the newer ioctls use a pkey_key_size enum for key size information */
@ -200,7 +202,7 @@ struct pkey_kblob2pkey {
/*
* Generate secure key, version 2.
* Generate either a CCA AES secure key or a CCA AES cipher key.
* Generate CCA AES secure key, CCA AES cipher key or EP11 AES secure key.
* There needs to be a list of apqns given with at least one entry in there.
* All apqns in the list need to be exact apqns, 0xFFFF as ANY card or domain
* is not supported. The implementation walks through the list of apqns and
@ -210,10 +212,13 @@ struct pkey_kblob2pkey {
* (return -1 with errno ENODEV). You may use the PKEY_APQNS4KT ioctl to
* generate a list of apqns based on the key type to generate.
* The keygenflags argument is passed to the low level generation functions
* individual for the key type and has a key type specific meaning. Currently
* only CCA AES cipher keys react to this parameter: Use one or more of the
* PKEY_KEYGEN_* flags to widen the export possibilities. By default a cipher
* key is only exportable for CPACF (PKEY_KEYGEN_XPRT_CPAC).
* individual for the key type and has a key type specific meaning. When
* generating CCA cipher keys you can use one or more of the PKEY_KEYGEN_*
* flags to widen the export possibilities. By default a cipher key is
* only exportable for CPACF (PKEY_KEYGEN_XPRT_CPAC).
* The keygenflag argument for generating an EP11 AES key should either be 0
* to use the defaults which are XCP_BLOB_ENCRYPT, XCP_BLOB_DECRYPT and
* XCP_BLOB_PROTKEY_EXTRACTABLE or a valid combination of XCP_BLOB_* flags.
*/
struct pkey_genseck2 {
struct pkey_apqn __user *apqns; /* in: ptr to list of apqn targets*/
@ -229,8 +234,8 @@ struct pkey_genseck2 {
/*
* Generate secure key from clear key value, version 2.
* Construct a CCA AES secure key or CCA AES cipher key from a given clear key
* value.
* Construct an CCA AES secure key, CCA AES cipher key or EP11 AES secure
* key from a given clear key value.
* There needs to be a list of apqns given with at least one entry in there.
* All apqns in the list need to be exact apqns, 0xFFFF as ANY card or domain
* is not supported. The implementation walks through the list of apqns and
@ -240,10 +245,13 @@ struct pkey_genseck2 {
* (return -1 with errno ENODEV). You may use the PKEY_APQNS4KT ioctl to
* generate a list of apqns based on the key type to generate.
* The keygenflags argument is passed to the low level generation functions
* individual for the key type and has a key type specific meaning. Currently
* only CCA AES cipher keys react to this parameter: Use one or more of the
* PKEY_KEYGEN_* flags to widen the export possibilities. By default a cipher
* key is only exportable for CPACF (PKEY_KEYGEN_XPRT_CPAC).
* individual for the key type and has a key type specific meaning. When
* generating CCA cipher keys you can use one or more of the PKEY_KEYGEN_*
* flags to widen the export possibilities. By default a cipher key is
* only exportable for CPACF (PKEY_KEYGEN_XPRT_CPAC).
* The keygenflag argument for generating an EP11 AES key should either be 0
* to use the defaults which are XCP_BLOB_ENCRYPT, XCP_BLOB_DECRYPT and
* XCP_BLOB_PROTKEY_EXTRACTABLE or a valid combination of XCP_BLOB_* flags.
*/
struct pkey_clr2seck2 {
struct pkey_apqn __user *apqns; /* in: ptr to list of apqn targets */
@ -266,14 +274,19 @@ struct pkey_clr2seck2 {
* with one apqn able to handle this key.
* The function also checks for the master key verification patterns
* of the key matching to the current or alternate mkvp of the apqn.
* Currently CCA AES secure keys and CCA AES cipher keys are supported.
* The flags field is updated with some additional info about the apqn mkvp
* For CCA AES secure keys and CCA AES cipher keys this means to check
* the key's mkvp against the current or old mkvp of the apqns. The flags
* field is updated with some additional info about the apqn mkvp
* match: If the current mkvp matches to the key's mkvp then the
* PKEY_FLAGS_MATCH_CUR_MKVP bit is set, if the alternate mkvp matches to
* the key's mkvp the PKEY_FLAGS_MATCH_ALT_MKVP is set. For CCA keys the
* alternate mkvp is the old master key verification pattern.
* CCA AES secure keys are also checked to have the CPACF export allowed
* bit enabled (XPRTCPAC) in the kmf1 field.
* EP11 keys are also supported and the wkvp of the key is checked against
* the current wkvp of the apqns. There is no alternate for this type of
* key and so on a match the flag PKEY_FLAGS_MATCH_CUR_MKVP always is set.
* EP11 keys are also checked to have XCP_BLOB_PROTKEY_EXTRACTABLE set.
* The ioctl returns 0 as long as the given or found apqn matches to
* matches with the current or alternate mkvp to the key's mkvp. If the given
* apqn does not match or there is no such apqn found, -1 with errno
@ -313,16 +326,20 @@ struct pkey_kblob2pkey2 {
/*
* Build a list of APQNs based on a key blob given.
* Is able to find out which type of secure key is given (CCA AES secure
* key or CCA AES cipher key) and tries to find all matching crypto cards
* based on the MKVP and maybe other criterias (like CCA AES cipher keys
* need a CEX5C or higher). The list of APQNs is further filtered by the key's
* mkvp which needs to match to either the current mkvp or the alternate mkvp
* (which is the old mkvp on CCA adapters) of the apqns. The flags argument may
* be used to limit the matching apqns. If the PKEY_FLAGS_MATCH_CUR_MKVP is
* given, only the current mkvp of each apqn is compared. Likewise with the
* PKEY_FLAGS_MATCH_ALT_MKVP. If both are given, it is assumed to
* return apqns where either the current or the alternate mkvp
* key, CCA AES cipher key or EP11 AES key) and tries to find all matching
* crypto cards based on the MKVP and maybe other criterias (like CCA AES
* cipher keys need a CEX5C or higher, EP11 keys with BLOB_PKEY_EXTRACTABLE
* need a CEX7 and EP11 api version 4). The list of APQNs is further filtered
* by the key's mkvp which needs to match to either the current mkvp (CCA and
* EP11) or the alternate mkvp (old mkvp, CCA adapters only) of the apqns. The
* flags argument may be used to limit the matching apqns. If the
* PKEY_FLAGS_MATCH_CUR_MKVP is given, only the current mkvp of each apqn is
* compared. Likewise with the PKEY_FLAGS_MATCH_ALT_MKVP. If both are given, it
* is assumed to return apqns where either the current or the alternate mkvp
* matches. At least one of the matching flags needs to be given.
* The flags argument for EP11 keys has no further action and is currently
* ignored (but needs to be given as PKEY_FLAGS_MATCH_CUR_MKVP) as there is only
* the wkvp from the key to match against the apqn's wkvp.
* The list of matching apqns is stored into the space given by the apqns
* argument and the number of stored entries goes into apqn_entries. If the list
* is empty (apqn_entries is 0) the apqn_entries field is updated to the number
@ -356,6 +373,10 @@ struct pkey_apqns4key {
* If both are given, it is assumed to return apqns where either the
* current or the alternate mkvp matches. If no match flag is given
* (flags is 0) the mkvp values are ignored for the match process.
* For EP11 keys there is only the current wkvp. So if the apqns should also
* match to a given wkvp, then the PKEY_FLAGS_MATCH_CUR_MKVP flag should be
* set. The wkvp value is 32 bytes but only the leftmost 16 bytes are compared
* against the leftmost 16 byte of the wkvp of the apqn.
* The list of matching apqns is stored into the space given by the apqns
* argument and the number of stored entries goes into apqn_entries. If the list
* is empty (apqn_entries is 0) the apqn_entries field is updated to the number

View File

@ -162,10 +162,10 @@ struct ica_xcRB {
*/
struct ep11_cprb {
__u16 cprb_len;
unsigned char cprb_ver_id;
unsigned char pad_000[2];
unsigned char flags;
unsigned char func_id[2];
__u8 cprb_ver_id;
__u8 pad_000[2];
__u8 flags;
__u8 func_id[2];
__u32 source_id;
__u32 target_id;
__u32 ret_code;
@ -197,13 +197,13 @@ struct ep11_target_dev {
*/
struct ep11_urb {
__u16 targets_num;
__u64 targets;
__u8 __user *targets;
__u64 weight;
__u64 req_no;
__u64 req_len;
__u64 req;
__u8 __user *req;
__u64 resp_len;
__u64 resp;
__u8 __user *resp;
} __attribute__((packed));
/**
@ -238,6 +238,8 @@ struct zcrypt_device_matrix_ext {
};
#define AUTOSELECT 0xFFFFFFFF
#define AUTOSEL_AP ((__u16) 0xFFFF)
#define AUTOSEL_DOM ((__u16) 0xFFFF)
#define ZCRYPT_IOCTL_MAGIC 'z'

View File

@ -72,15 +72,6 @@ static inline void ftrace_generate_orig_insn(struct ftrace_insn *insn)
#endif
}
static inline int is_kprobe_on_ftrace(struct ftrace_insn *insn)
{
#ifdef CONFIG_KPROBES
if (insn->opc == BREAKPOINT_INSTRUCTION)
return 1;
#endif
return 0;
}
static inline void ftrace_generate_kprobe_nop_insn(struct ftrace_insn *insn)
{
#ifdef CONFIG_KPROBES
@ -114,16 +105,6 @@ int ftrace_make_nop(struct module *mod, struct dyn_ftrace *rec,
/* Initial code replacement */
ftrace_generate_orig_insn(&orig);
ftrace_generate_nop_insn(&new);
} else if (is_kprobe_on_ftrace(&old)) {
/*
* If we find a breakpoint instruction, a kprobe has been
* placed at the beginning of the function. We write the
* constant KPROBE_ON_FTRACE_NOP into the remaining four
* bytes of the original instruction so that the kprobes
* handler can execute a nop, if it reaches this breakpoint.
*/
ftrace_generate_kprobe_call_insn(&orig);
ftrace_generate_kprobe_nop_insn(&new);
} else {
/* Replace ftrace call with a nop. */
ftrace_generate_call_insn(&orig, rec->ip);
@ -142,21 +123,10 @@ int ftrace_make_call(struct dyn_ftrace *rec, unsigned long addr)
if (probe_kernel_read(&old, (void *) rec->ip, sizeof(old)))
return -EFAULT;
if (is_kprobe_on_ftrace(&old)) {
/*
* If we find a breakpoint instruction, a kprobe has been
* placed at the beginning of the function. We write the
* constant KPROBE_ON_FTRACE_CALL into the remaining four
* bytes of the original instruction so that the kprobes
* handler can execute a brasl if it reaches this breakpoint.
*/
ftrace_generate_kprobe_nop_insn(&orig);
ftrace_generate_kprobe_call_insn(&new);
} else {
/* Replace nop with an ftrace call. */
ftrace_generate_nop_insn(&orig);
ftrace_generate_call_insn(&new, rec->ip);
}
/* Verify that the to be replaced code matches what we expect. */
if (memcmp(&orig, &old, sizeof(old)))
return -EINVAL;
@ -241,3 +211,45 @@ int ftrace_disable_ftrace_graph_caller(void)
}
#endif /* CONFIG_FUNCTION_GRAPH_TRACER */
#ifdef CONFIG_KPROBES_ON_FTRACE
void kprobe_ftrace_handler(unsigned long ip, unsigned long parent_ip,
struct ftrace_ops *ops, struct pt_regs *regs)
{
struct kprobe_ctlblk *kcb;
struct kprobe *p = get_kprobe((kprobe_opcode_t *)ip);
if (unlikely(!p) || kprobe_disabled(p))
return;
if (kprobe_running()) {
kprobes_inc_nmissed_count(p);
return;
}
__this_cpu_write(current_kprobe, p);
kcb = get_kprobe_ctlblk();
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
instruction_pointer_set(regs, ip);
if (!p->pre_handler || !p->pre_handler(p, regs)) {
instruction_pointer_set(regs, ip + MCOUNT_INSN_SIZE);
if (unlikely(p->post_handler)) {
kcb->kprobe_status = KPROBE_HIT_SSDONE;
p->post_handler(p, regs, 0);
}
}
__this_cpu_write(current_kprobe, NULL);
}
NOKPROBE_SYMBOL(kprobe_ftrace_handler);
int arch_prepare_kprobe_ftrace(struct kprobe *p)
{
p->ainsn.insn = NULL;
return 0;
}
#endif

View File

@ -56,20 +56,9 @@ struct kprobe_insn_cache kprobe_s390_insn_slots = {
static void copy_instruction(struct kprobe *p)
{
unsigned long ip = (unsigned long) p->addr;
s64 disp, new_disp;
u64 addr, new_addr;
if (ftrace_location(ip) == ip) {
/*
* If kprobes patches the instruction that is morphed by
* ftrace make sure that kprobes always sees the branch
* "jg .+24" that skips the mcount block or the "brcl 0,0"
* in case of hotpatch.
*/
ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn);
p->ainsn.is_ftrace_insn = 1;
} else
memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
p->opcode = p->ainsn.insn[0];
if (!probe_is_insn_relative_long(p->ainsn.insn))
@ -136,11 +125,6 @@ int arch_prepare_kprobe(struct kprobe *p)
}
NOKPROBE_SYMBOL(arch_prepare_kprobe);
int arch_check_ftrace_location(struct kprobe *p)
{
return 0;
}
struct swap_insn_args {
struct kprobe *p;
unsigned int arm_kprobe : 1;
@ -149,28 +133,11 @@ struct swap_insn_args {
static int swap_instruction(void *data)
{
struct swap_insn_args *args = data;
struct ftrace_insn new_insn, *insn;
struct kprobe *p = args->p;
size_t len;
u16 opc;
new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
len = sizeof(new_insn.opc);
if (!p->ainsn.is_ftrace_insn)
goto skip_ftrace;
len = sizeof(new_insn);
insn = (struct ftrace_insn *) p->addr;
if (args->arm_kprobe) {
if (is_ftrace_nop(insn))
new_insn.disp = KPROBE_ON_FTRACE_NOP;
else
new_insn.disp = KPROBE_ON_FTRACE_CALL;
} else {
ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr);
if (insn->disp == KPROBE_ON_FTRACE_NOP)
ftrace_generate_nop_insn(&new_insn);
}
skip_ftrace:
s390_kernel_write(p->addr, &new_insn, len);
opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
s390_kernel_write(p->addr, &opc, sizeof(opc));
return 0;
}
NOKPROBE_SYMBOL(swap_instruction);
@ -464,24 +431,6 @@ static void resume_execution(struct kprobe *p, struct pt_regs *regs)
unsigned long ip = regs->psw.addr;
int fixup = probe_get_fixup_type(p->ainsn.insn);
/* Check if the kprobes location is an enabled ftrace caller */
if (p->ainsn.is_ftrace_insn) {
struct ftrace_insn *insn = (struct ftrace_insn *) p->addr;
struct ftrace_insn call_insn;
ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr);
/*
* A kprobe on an enabled ftrace call site actually single
* stepped an unconditional branch (ftrace nop equivalent).
* Now we need to fixup things and pretend that a brasl r0,...
* was executed instead.
*/
if (insn->disp == KPROBE_ON_FTRACE_CALL) {
ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE;
regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn);
}
}
if (fixup & FIXUP_PSW_NORMAL)
ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;

View File

@ -42,6 +42,9 @@ ENTRY(ftrace_caller)
.globl ftrace_regs_caller
.set ftrace_regs_caller,ftrace_caller
stg %r14,(__SF_GPRS+8*8)(%r15) # save traced function caller
lghi %r14,0 # save condition code
ipm %r14 # don't put any instructions
sllg %r14,%r14,16 # clobbering CC before this point
lgr %r1,%r15
#if !(defined(CC_USING_HOTPATCH) || defined(CC_USING_NOP_MCOUNT))
aghi %r0,MCOUNT_RETURN_FIXUP
@ -54,6 +57,9 @@ ENTRY(ftrace_caller)
# allocate pt_regs and stack frame for ftrace_trace_function
aghi %r15,-STACK_FRAME_SIZE
stg %r1,(STACK_PTREGS_GPRS+15*8)(%r15)
stg %r14,(STACK_PTREGS_PSW)(%r15)
lg %r14,(__SF_GPRS+8*8)(%r1) # restore original return address
stosm (STACK_PTREGS_PSW)(%r15),0
aghi %r1,-TRACED_FUNC_FRAME_SIZE
stg %r1,__SF_BACKCHAIN(%r15)
stg %r0,(STACK_PTREGS_PSW+8)(%r15)

View File

@ -2,7 +2,7 @@
/*
* IBM System z Huge TLB Page Support for Kernel.
*
* Copyright IBM Corp. 2007,2016
* Copyright IBM Corp. 2007,2020
* Author(s): Gerald Schaefer <gerald.schaefer@de.ibm.com>
*/
@ -11,6 +11,9 @@
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/mman.h>
#include <linux/sched/mm.h>
#include <linux/security.h>
/*
* If the bit selected by single-bit bitmask "a" is set within "x", move
@ -267,3 +270,98 @@ static __init int setup_hugepagesz(char *opt)
return 1;
}
__setup("hugepagesz=", setup_hugepagesz);
static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
unsigned long addr, unsigned long len,
unsigned long pgoff, unsigned long flags)
{
struct hstate *h = hstate_file(file);
struct vm_unmapped_area_info info;
info.flags = 0;
info.length = len;
info.low_limit = current->mm->mmap_base;
info.high_limit = TASK_SIZE;
info.align_mask = PAGE_MASK & ~huge_page_mask(h);
info.align_offset = 0;
return vm_unmapped_area(&info);
}
static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
unsigned long addr0, unsigned long len,
unsigned long pgoff, unsigned long flags)
{
struct hstate *h = hstate_file(file);
struct vm_unmapped_area_info info;
unsigned long addr;
info.flags = VM_UNMAPPED_AREA_TOPDOWN;
info.length = len;
info.low_limit = max(PAGE_SIZE, mmap_min_addr);
info.high_limit = current->mm->mmap_base;
info.align_mask = PAGE_MASK & ~huge_page_mask(h);
info.align_offset = 0;
addr = vm_unmapped_area(&info);
/*
* A failed mmap() very likely causes application failure,
* so fall back to the bottom-up function here. This scenario
* can happen with large stack limits and large mmap()
* allocations.
*/
if (addr & ~PAGE_MASK) {
VM_BUG_ON(addr != -ENOMEM);
info.flags = 0;
info.low_limit = TASK_UNMAPPED_BASE;
info.high_limit = TASK_SIZE;
addr = vm_unmapped_area(&info);
}
return addr;
}
unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
unsigned long len, unsigned long pgoff, unsigned long flags)
{
struct hstate *h = hstate_file(file);
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
int rc;
if (len & ~huge_page_mask(h))
return -EINVAL;
if (len > TASK_SIZE - mmap_min_addr)
return -ENOMEM;
if (flags & MAP_FIXED) {
if (prepare_hugepage_range(file, addr, len))
return -EINVAL;
goto check_asce_limit;
}
if (addr) {
addr = ALIGN(addr, huge_page_size(h));
vma = find_vma(mm, addr);
if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
(!vma || addr + len <= vm_start_gap(vma)))
goto check_asce_limit;
}
if (mm->get_unmapped_area == arch_get_unmapped_area)
addr = hugetlb_get_unmapped_area_bottomup(file, addr, len,
pgoff, flags);
else
addr = hugetlb_get_unmapped_area_topdown(file, addr, len,
pgoff, flags);
if (addr & ~PAGE_MASK)
return addr;
check_asce_limit:
if (addr + len > current->mm->context.asce_limit &&
addr + len <= TASK_SIZE) {
rc = crst_table_upgrade(mm, addr + len);
if (rc)
return (unsigned long) rc;
}
return addr;
}

View File

@ -7,7 +7,8 @@ ap-objs := ap_bus.o ap_card.o ap_queue.o
obj-$(subst m,y,$(CONFIG_ZCRYPT)) += ap.o
# zcrypt_api.o and zcrypt_msgtype*.o depend on ap.o
zcrypt-objs := zcrypt_api.o zcrypt_card.o zcrypt_queue.o
zcrypt-objs += zcrypt_msgtype6.o zcrypt_msgtype50.o zcrypt_ccamisc.o
zcrypt-objs += zcrypt_msgtype6.o zcrypt_msgtype50.o
zcrypt-objs += zcrypt_ccamisc.o zcrypt_ep11misc.o
obj-$(CONFIG_ZCRYPT) += zcrypt.o
# adapter drivers depend on ap.o and zcrypt.o
obj-$(CONFIG_ZCRYPT) += zcrypt_cex2c.o zcrypt_cex2a.o zcrypt_cex4.o

View File

@ -25,6 +25,7 @@
#include "zcrypt_api.h"
#include "zcrypt_ccamisc.h"
#include "zcrypt_ep11misc.h"
MODULE_LICENSE("GPL");
MODULE_AUTHOR("IBM Corporation");
@ -71,6 +72,17 @@ struct protaeskeytoken {
u8 protkey[MAXPROTKEYSIZE]; /* the protected key blob */
} __packed;
/* inside view of a clear key token (type 0x00 version 0x02) */
struct clearaeskeytoken {
u8 type; /* 0x00 for PAES specific key tokens */
u8 res0[3];
u8 version; /* 0x02 for clear AES key token */
u8 res1[3];
u32 keytype; /* key type, one of the PKEY_KEYTYPE values */
u32 len; /* bytes actually stored in clearkey[] */
u8 clearkey[0]; /* clear key value */
} __packed;
/*
* Create a protected key from a clear key value.
*/
@ -172,6 +184,72 @@ static int pkey_skey2pkey(const u8 *key, struct pkey_protkey *pkey)
return rc;
}
/*
* Construct EP11 key with given clear key value.
*/
static int pkey_clr2ep11key(const u8 *clrkey, size_t clrkeylen,
u8 *keybuf, size_t *keybuflen)
{
int i, rc;
u16 card, dom;
u32 nr_apqns, *apqns = NULL;
/* build a list of apqns suitable for ep11 keys with cpacf support */
rc = ep11_findcard2(&apqns, &nr_apqns, 0xFFFF, 0xFFFF,
ZCRYPT_CEX7, EP11_API_V, NULL);
if (rc)
goto out;
/* go through the list of apqns and try to bild an ep11 key */
for (rc = -ENODEV, i = 0; i < nr_apqns; i++) {
card = apqns[i] >> 16;
dom = apqns[i] & 0xFFFF;
rc = ep11_clr2keyblob(card, dom, clrkeylen * 8,
0, clrkey, keybuf, keybuflen);
if (rc == 0)
break;
}
out:
kfree(apqns);
if (rc)
DEBUG_DBG("%s failed rc=%d\n", __func__, rc);
return rc;
}
/*
* Find card and transform EP11 secure key into protected key.
*/
static int pkey_ep11key2pkey(const u8 *key, struct pkey_protkey *pkey)
{
int i, rc;
u16 card, dom;
u32 nr_apqns, *apqns = NULL;
struct ep11keyblob *kb = (struct ep11keyblob *) key;
/* build a list of apqns suitable for this key */
rc = ep11_findcard2(&apqns, &nr_apqns, 0xFFFF, 0xFFFF,
ZCRYPT_CEX7, EP11_API_V, kb->wkvp);
if (rc)
goto out;
/* go through the list of apqns and try to derive an pkey */
for (rc = -ENODEV, i = 0; i < nr_apqns; i++) {
card = apqns[i] >> 16;
dom = apqns[i] & 0xFFFF;
rc = ep11_key2protkey(card, dom, key, kb->head.len,
pkey->protkey, &pkey->len, &pkey->type);
if (rc == 0)
break;
}
out:
kfree(apqns);
if (rc)
DEBUG_DBG("%s failed rc=%d\n", __func__, rc);
return rc;
}
/*
* Verify key and give back some info about the key.
*/
@ -305,26 +383,90 @@ static int pkey_verifyprotkey(const struct pkey_protkey *protkey)
static int pkey_nonccatok2pkey(const u8 *key, u32 keylen,
struct pkey_protkey *protkey)
{
int rc = -EINVAL;
u8 *tmpbuf = NULL;
struct keytoken_header *hdr = (struct keytoken_header *)key;
struct protaeskeytoken *t;
switch (hdr->version) {
case TOKVER_PROTECTED_KEY:
if (keylen != sizeof(struct protaeskeytoken))
return -EINVAL;
case TOKVER_PROTECTED_KEY: {
struct protaeskeytoken *t;
if (keylen != sizeof(struct protaeskeytoken))
goto out;
t = (struct protaeskeytoken *)key;
protkey->len = t->len;
protkey->type = t->keytype;
memcpy(protkey->protkey, t->protkey,
sizeof(protkey->protkey));
rc = pkey_verifyprotkey(protkey);
break;
}
case TOKVER_CLEAR_KEY: {
struct clearaeskeytoken *t;
struct pkey_clrkey ckey;
union u_tmpbuf {
u8 skey[SECKEYBLOBSIZE];
u8 ep11key[MAXEP11AESKEYBLOBSIZE];
};
size_t tmpbuflen = sizeof(union u_tmpbuf);
return pkey_verifyprotkey(protkey);
if (keylen < sizeof(struct clearaeskeytoken))
goto out;
t = (struct clearaeskeytoken *)key;
if (keylen != sizeof(*t) + t->len)
goto out;
if ((t->keytype == PKEY_KEYTYPE_AES_128 && t->len == 16)
|| (t->keytype == PKEY_KEYTYPE_AES_192 && t->len == 24)
|| (t->keytype == PKEY_KEYTYPE_AES_256 && t->len == 32))
memcpy(ckey.clrkey, t->clearkey, t->len);
else
goto out;
/* alloc temp key buffer space */
tmpbuf = kmalloc(tmpbuflen, GFP_ATOMIC);
if (!tmpbuf) {
rc = -ENOMEM;
goto out;
}
/* try direct way with the PCKMO instruction */
rc = pkey_clr2protkey(t->keytype, &ckey, protkey);
if (rc == 0)
break;
/* PCKMO failed, so try the CCA secure key way */
rc = cca_clr2seckey(0xFFFF, 0xFFFF, t->keytype,
ckey.clrkey, tmpbuf);
if (rc == 0)
rc = pkey_skey2pkey(tmpbuf, protkey);
if (rc == 0)
break;
/* if the CCA way also failed, let's try via EP11 */
rc = pkey_clr2ep11key(ckey.clrkey, t->len,
tmpbuf, &tmpbuflen);
if (rc == 0)
rc = pkey_ep11key2pkey(tmpbuf, protkey);
/* now we should really have an protected key */
DEBUG_ERR("%s unable to build protected key from clear",
__func__);
break;
}
case TOKVER_EP11_AES: {
if (keylen < MINEP11AESKEYBLOBSIZE)
goto out;
/* check ep11 key for exportable as protected key */
rc = ep11_check_aeskeyblob(debug_info, 3, key, 0, 1);
if (rc)
goto out;
rc = pkey_ep11key2pkey(key, protkey);
break;
}
default:
DEBUG_ERR("%s unknown/unsupported non-CCA token version %d\n",
__func__, hdr->version);
return -EINVAL;
rc = -EINVAL;
}
out:
kfree(tmpbuf);
return rc;
}
/*
@ -403,6 +545,10 @@ static int pkey_genseckey2(const struct pkey_apqn *apqns, size_t nr_apqns,
if (*keybufsize < SECKEYBLOBSIZE)
return -EINVAL;
break;
case PKEY_TYPE_EP11:
if (*keybufsize < MINEP11AESKEYBLOBSIZE)
return -EINVAL;
break;
default:
return -EINVAL;
}
@ -419,7 +565,10 @@ static int pkey_genseckey2(const struct pkey_apqn *apqns, size_t nr_apqns,
for (i = 0, rc = -ENODEV; i < nr_apqns; i++) {
card = apqns[i].card;
dom = apqns[i].domain;
if (ktype == PKEY_TYPE_CCA_DATA) {
if (ktype == PKEY_TYPE_EP11) {
rc = ep11_genaeskey(card, dom, ksize, kflags,
keybuf, keybufsize);
} else if (ktype == PKEY_TYPE_CCA_DATA) {
rc = cca_genseckey(card, dom, ksize, keybuf);
*keybufsize = (rc ? 0 : SECKEYBLOBSIZE);
} else /* TOKVER_CCA_VLSC */
@ -450,6 +599,10 @@ static int pkey_clr2seckey2(const struct pkey_apqn *apqns, size_t nr_apqns,
if (*keybufsize < SECKEYBLOBSIZE)
return -EINVAL;
break;
case PKEY_TYPE_EP11:
if (*keybufsize < MINEP11AESKEYBLOBSIZE)
return -EINVAL;
break;
default:
return -EINVAL;
}
@ -466,7 +619,10 @@ static int pkey_clr2seckey2(const struct pkey_apqn *apqns, size_t nr_apqns,
for (i = 0, rc = -ENODEV; i < nr_apqns; i++) {
card = apqns[i].card;
dom = apqns[i].domain;
if (ktype == PKEY_TYPE_CCA_DATA) {
if (ktype == PKEY_TYPE_EP11) {
rc = ep11_clr2keyblob(card, dom, ksize, kflags,
clrkey, keybuf, keybufsize);
} else if (ktype == PKEY_TYPE_CCA_DATA) {
rc = cca_clr2seckey(card, dom, ksize,
clrkey, keybuf);
*keybufsize = (rc ? 0 : SECKEYBLOBSIZE);
@ -489,11 +645,11 @@ static int pkey_verifykey2(const u8 *key, size_t keylen,
u32 _nr_apqns, *_apqns = NULL;
struct keytoken_header *hdr = (struct keytoken_header *)key;
if (keylen < sizeof(struct keytoken_header) ||
hdr->type != TOKTYPE_CCA_INTERNAL)
if (keylen < sizeof(struct keytoken_header))
return -EINVAL;
if (hdr->version == TOKVER_CCA_AES) {
if (hdr->type == TOKTYPE_CCA_INTERNAL
&& hdr->version == TOKVER_CCA_AES) {
struct secaeskeytoken *t = (struct secaeskeytoken *)key;
rc = cca_check_secaeskeytoken(debug_info, 3, key, 0);
@ -521,7 +677,8 @@ static int pkey_verifykey2(const u8 *key, size_t keylen,
*cardnr = ((struct pkey_apqn *)_apqns)->card;
*domain = ((struct pkey_apqn *)_apqns)->domain;
} else if (hdr->version == TOKVER_CCA_VLSC) {
} else if (hdr->type == TOKTYPE_CCA_INTERNAL
&& hdr->version == TOKVER_CCA_VLSC) {
struct cipherkeytoken *t = (struct cipherkeytoken *)key;
rc = cca_check_secaescipherkey(debug_info, 3, key, 0, 1);
@ -556,6 +713,29 @@ static int pkey_verifykey2(const u8 *key, size_t keylen,
*cardnr = ((struct pkey_apqn *)_apqns)->card;
*domain = ((struct pkey_apqn *)_apqns)->domain;
} else if (hdr->type == TOKTYPE_NON_CCA
&& hdr->version == TOKVER_EP11_AES) {
struct ep11keyblob *kb = (struct ep11keyblob *)key;
rc = ep11_check_aeskeyblob(debug_info, 3, key, 0, 1);
if (rc)
goto out;
if (ktype)
*ktype = PKEY_TYPE_EP11;
if (ksize)
*ksize = kb->head.keybitlen;
rc = ep11_findcard2(&_apqns, &_nr_apqns, *cardnr, *domain,
ZCRYPT_CEX7, EP11_API_V, kb->wkvp);
if (rc)
goto out;
if (flags)
*flags = PKEY_FLAGS_MATCH_CUR_MKVP;
*cardnr = ((struct pkey_apqn *)_apqns)->card;
*domain = ((struct pkey_apqn *)_apqns)->domain;
} else
rc = -EINVAL;
@ -578,30 +758,32 @@ static int pkey_keyblob2pkey2(const struct pkey_apqn *apqns, size_t nr_apqns,
if (keylen < sizeof(struct keytoken_header))
return -EINVAL;
switch (hdr->type) {
case TOKTYPE_NON_CCA:
return pkey_nonccatok2pkey(key, keylen, pkey);
case TOKTYPE_CCA_INTERNAL:
switch (hdr->version) {
case TOKVER_CCA_AES:
if (hdr->type == TOKTYPE_CCA_INTERNAL) {
if (hdr->version == TOKVER_CCA_AES) {
if (keylen != sizeof(struct secaeskeytoken))
return -EINVAL;
if (cca_check_secaeskeytoken(debug_info, 3, key, 0))
return -EINVAL;
break;
case TOKVER_CCA_VLSC:
} else if (hdr->version == TOKVER_CCA_VLSC) {
if (keylen < hdr->len || keylen > MAXCCAVLSCTOKENSIZE)
return -EINVAL;
if (cca_check_secaescipherkey(debug_info, 3, key, 0, 1))
return -EINVAL;
break;
default:
} else {
DEBUG_ERR("%s unknown CCA internal token version %d\n",
__func__, hdr->version);
return -EINVAL;
}
break;
default:
} else if (hdr->type == TOKTYPE_NON_CCA) {
if (hdr->version == TOKVER_EP11_AES) {
if (keylen < sizeof(struct ep11keyblob))
return -EINVAL;
if (ep11_check_aeskeyblob(debug_info, 3, key, 0, 1))
return -EINVAL;
} else {
return pkey_nonccatok2pkey(key, keylen, pkey);
}
} else {
DEBUG_ERR("%s unknown/unsupported blob type %d\n",
__func__, hdr->type);
return -EINVAL;
@ -611,12 +793,21 @@ static int pkey_keyblob2pkey2(const struct pkey_apqn *apqns, size_t nr_apqns,
for (i = 0, rc = -ENODEV; i < nr_apqns; i++) {
card = apqns[i].card;
dom = apqns[i].domain;
if (hdr->version == TOKVER_CCA_AES)
if (hdr->type == TOKTYPE_CCA_INTERNAL
&& hdr->version == TOKVER_CCA_AES)
rc = cca_sec2protkey(card, dom, key, pkey->protkey,
&pkey->len, &pkey->type);
else /* TOKVER_CCA_VLSC */
else if (hdr->type == TOKTYPE_CCA_INTERNAL
&& hdr->version == TOKVER_CCA_VLSC)
rc = cca_cipher2protkey(card, dom, key, pkey->protkey,
&pkey->len, &pkey->type);
else { /* EP11 AES secure key blob */
struct ep11keyblob *kb = (struct ep11keyblob *) key;
rc = ep11_key2protkey(card, dom, key, kb->head.len,
pkey->protkey, &pkey->len,
&pkey->type);
}
if (rc == 0)
break;
}
@ -631,12 +822,24 @@ static int pkey_apqns4key(const u8 *key, size_t keylen, u32 flags,
u32 _nr_apqns, *_apqns = NULL;
struct keytoken_header *hdr = (struct keytoken_header *)key;
if (keylen < sizeof(struct keytoken_header) ||
hdr->type != TOKTYPE_CCA_INTERNAL ||
flags == 0)
if (keylen < sizeof(struct keytoken_header) || flags == 0)
return -EINVAL;
if (hdr->version == TOKVER_CCA_AES || hdr->version == TOKVER_CCA_VLSC) {
if (hdr->type == TOKTYPE_NON_CCA && hdr->version == TOKVER_EP11_AES) {
int minhwtype = 0, api = 0;
struct ep11keyblob *kb = (struct ep11keyblob *) key;
if (flags != PKEY_FLAGS_MATCH_CUR_MKVP)
return -EINVAL;
if (kb->attr & EP11_BLOB_PKEY_EXTRACTABLE) {
minhwtype = ZCRYPT_CEX7;
api = EP11_API_V;
}
rc = ep11_findcard2(&_apqns, &_nr_apqns, 0xFFFF, 0xFFFF,
minhwtype, api, kb->wkvp);
if (rc)
goto out;
} else if (hdr->type == TOKTYPE_CCA_INTERNAL) {
int minhwtype = ZCRYPT_CEX3C;
u64 cur_mkvp = 0, old_mkvp = 0;
@ -647,7 +850,7 @@ static int pkey_apqns4key(const u8 *key, size_t keylen, u32 flags,
cur_mkvp = t->mkvp;
if (flags & PKEY_FLAGS_MATCH_ALT_MKVP)
old_mkvp = t->mkvp;
} else {
} else if (hdr->version == TOKVER_CCA_VLSC) {
struct cipherkeytoken *t = (struct cipherkeytoken *)key;
minhwtype = ZCRYPT_CEX6;
@ -655,11 +858,17 @@ static int pkey_apqns4key(const u8 *key, size_t keylen, u32 flags,
cur_mkvp = t->mkvp0;
if (flags & PKEY_FLAGS_MATCH_ALT_MKVP)
old_mkvp = t->mkvp0;
} else {
/* unknown cca internal token type */
return -EINVAL;
}
rc = cca_findcard2(&_apqns, &_nr_apqns, 0xFFFF, 0xFFFF,
minhwtype, cur_mkvp, old_mkvp, 1);
if (rc)
goto out;
} else
return -EINVAL;
if (apqns) {
if (*nr_apqns < _nr_apqns)
rc = -ENOSPC;
@ -667,7 +876,6 @@ static int pkey_apqns4key(const u8 *key, size_t keylen, u32 flags,
memcpy(apqns, _apqns, _nr_apqns * sizeof(u32));
}
*nr_apqns = _nr_apqns;
}
out:
kfree(_apqns);
@ -695,6 +903,19 @@ static int pkey_apqns4keytype(enum pkey_key_type ktype,
minhwtype, cur_mkvp, old_mkvp, 1);
if (rc)
goto out;
} else if (ktype == PKEY_TYPE_EP11) {
u8 *wkvp = NULL;
if (flags & PKEY_FLAGS_MATCH_CUR_MKVP)
wkvp = cur_mkvp;
rc = ep11_findcard2(&_apqns, &_nr_apqns, 0xFFFF, 0xFFFF,
ZCRYPT_CEX7, EP11_API_V, wkvp);
if (rc)
goto out;
} else
return -EINVAL;
if (apqns) {
if (*nr_apqns < _nr_apqns)
rc = -ENOSPC;
@ -702,7 +923,6 @@ static int pkey_apqns4keytype(enum pkey_key_type ktype,
memcpy(apqns, _apqns, _nr_apqns * sizeof(u32));
}
*nr_apqns = _nr_apqns;
}
out:
kfree(_apqns);
@ -1357,8 +1577,9 @@ static ssize_t pkey_ccacipher_aes_attr_read(enum pkey_key_size keybits,
bool is_xts, char *buf, loff_t off,
size_t count)
{
size_t keysize;
int rc;
int i, rc, card, dom;
u32 nr_apqns, *apqns = NULL;
size_t keysize = CCACIPHERTOKENSIZE;
if (off != 0 || count < CCACIPHERTOKENSIZE)
return -EINVAL;
@ -1366,21 +1587,30 @@ static ssize_t pkey_ccacipher_aes_attr_read(enum pkey_key_size keybits,
if (count < 2 * CCACIPHERTOKENSIZE)
return -EINVAL;
keysize = CCACIPHERTOKENSIZE;
rc = cca_gencipherkey(-1, -1, keybits, 0, buf, &keysize);
/* build a list of apqns able to generate an cipher key */
rc = cca_findcard2(&apqns, &nr_apqns, 0xFFFF, 0xFFFF,
ZCRYPT_CEX6, 0, 0, 0);
if (rc)
return rc;
memset(buf, 0, is_xts ? 2 * keysize : keysize);
/* simple try all apqns from the list */
for (i = 0, rc = -ENODEV; i < nr_apqns; i++) {
card = apqns[i] >> 16;
dom = apqns[i] & 0xFFFF;
rc = cca_gencipherkey(card, dom, keybits, 0, buf, &keysize);
if (rc == 0)
break;
}
if (rc)
return rc;
memset(buf + keysize, 0, CCACIPHERTOKENSIZE - keysize);
if (is_xts) {
keysize = CCACIPHERTOKENSIZE;
rc = cca_gencipherkey(-1, -1, keybits, 0,
buf + CCACIPHERTOKENSIZE, &keysize);
if (rc)
return rc;
memset(buf + CCACIPHERTOKENSIZE + keysize, 0,
CCACIPHERTOKENSIZE - keysize);
buf += CCACIPHERTOKENSIZE;
rc = cca_gencipherkey(card, dom, keybits, 0, buf, &keysize);
if (rc == 0)
return 2 * CCACIPHERTOKENSIZE;
}
@ -1457,10 +1687,134 @@ static struct attribute_group ccacipher_attr_group = {
.bin_attrs = ccacipher_attrs,
};
/*
* Sysfs attribute read function for all ep11 aes key binary attributes.
* The implementation can not deal with partial reads, because a new random
* secure key blob is generated with each read. In case of partial reads
* (i.e. off != 0 or count < key blob size) -EINVAL is returned.
* This function and the sysfs attributes using it provide EP11 key blobs
* padded to the upper limit of MAXEP11AESKEYBLOBSIZE which is currently
* 320 bytes.
*/
static ssize_t pkey_ep11_aes_attr_read(enum pkey_key_size keybits,
bool is_xts, char *buf, loff_t off,
size_t count)
{
int i, rc, card, dom;
u32 nr_apqns, *apqns = NULL;
size_t keysize = MAXEP11AESKEYBLOBSIZE;
if (off != 0 || count < MAXEP11AESKEYBLOBSIZE)
return -EINVAL;
if (is_xts)
if (count < 2 * MAXEP11AESKEYBLOBSIZE)
return -EINVAL;
/* build a list of apqns able to generate an cipher key */
rc = ep11_findcard2(&apqns, &nr_apqns, 0xFFFF, 0xFFFF,
ZCRYPT_CEX7, EP11_API_V, NULL);
if (rc)
return rc;
memset(buf, 0, is_xts ? 2 * keysize : keysize);
/* simple try all apqns from the list */
for (i = 0, rc = -ENODEV; i < nr_apqns; i++) {
card = apqns[i] >> 16;
dom = apqns[i] & 0xFFFF;
rc = ep11_genaeskey(card, dom, keybits, 0, buf, &keysize);
if (rc == 0)
break;
}
if (rc)
return rc;
if (is_xts) {
keysize = MAXEP11AESKEYBLOBSIZE;
buf += MAXEP11AESKEYBLOBSIZE;
rc = ep11_genaeskey(card, dom, keybits, 0, buf, &keysize);
if (rc == 0)
return 2 * MAXEP11AESKEYBLOBSIZE;
}
return MAXEP11AESKEYBLOBSIZE;
}
static ssize_t ep11_aes_128_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_ep11_aes_attr_read(PKEY_SIZE_AES_128, false, buf,
off, count);
}
static ssize_t ep11_aes_192_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_ep11_aes_attr_read(PKEY_SIZE_AES_192, false, buf,
off, count);
}
static ssize_t ep11_aes_256_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_ep11_aes_attr_read(PKEY_SIZE_AES_256, false, buf,
off, count);
}
static ssize_t ep11_aes_128_xts_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_ep11_aes_attr_read(PKEY_SIZE_AES_128, true, buf,
off, count);
}
static ssize_t ep11_aes_256_xts_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_ep11_aes_attr_read(PKEY_SIZE_AES_256, true, buf,
off, count);
}
static BIN_ATTR_RO(ep11_aes_128, MAXEP11AESKEYBLOBSIZE);
static BIN_ATTR_RO(ep11_aes_192, MAXEP11AESKEYBLOBSIZE);
static BIN_ATTR_RO(ep11_aes_256, MAXEP11AESKEYBLOBSIZE);
static BIN_ATTR_RO(ep11_aes_128_xts, 2 * MAXEP11AESKEYBLOBSIZE);
static BIN_ATTR_RO(ep11_aes_256_xts, 2 * MAXEP11AESKEYBLOBSIZE);
static struct bin_attribute *ep11_attrs[] = {
&bin_attr_ep11_aes_128,
&bin_attr_ep11_aes_192,
&bin_attr_ep11_aes_256,
&bin_attr_ep11_aes_128_xts,
&bin_attr_ep11_aes_256_xts,
NULL
};
static struct attribute_group ep11_attr_group = {
.name = "ep11",
.bin_attrs = ep11_attrs,
};
static const struct attribute_group *pkey_attr_groups[] = {
&protkey_attr_group,
&ccadata_attr_group,
&ccacipher_attr_group,
&ep11_attr_group,
NULL,
};

View File

@ -36,6 +36,7 @@
#include "zcrypt_msgtype6.h"
#include "zcrypt_msgtype50.h"
#include "zcrypt_ccamisc.h"
#include "zcrypt_ep11misc.h"
/*
* Module description.
@ -849,7 +850,7 @@ static long _zcrypt_send_cprb(struct ap_perms *perms,
/* check if device is online and eligible */
if (!zq->online ||
!zq->ops->send_cprb ||
(tdom != (unsigned short) AUTOSELECT &&
(tdom != AUTOSEL_DOM &&
tdom != AP_QID_QUEUE(zq->queue->qid)))
continue;
/* check if device node has admission for this queue */
@ -874,7 +875,7 @@ static long _zcrypt_send_cprb(struct ap_perms *perms,
/* in case of auto select, provide the correct domain */
qid = pref_zq->queue->qid;
if (*domain == (unsigned short) AUTOSELECT)
if (*domain == AUTOSEL_DOM)
*domain = AP_QID_QUEUE(qid);
rc = pref_zq->ops->send_cprb(pref_zq, xcRB, &ap_msg);
@ -901,7 +902,7 @@ static bool is_desired_ep11_card(unsigned int dev_id,
struct ep11_target_dev *targets)
{
while (target_num-- > 0) {
if (dev_id == targets->ap_id)
if (targets->ap_id == dev_id || targets->ap_id == AUTOSEL_AP)
return true;
targets++;
}
@ -912,15 +913,18 @@ static bool is_desired_ep11_queue(unsigned int dev_qid,
unsigned short target_num,
struct ep11_target_dev *targets)
{
int card = AP_QID_CARD(dev_qid), dom = AP_QID_QUEUE(dev_qid);
while (target_num-- > 0) {
if (AP_MKQID(targets->ap_id, targets->dom_id) == dev_qid)
if ((targets->ap_id == card || targets->ap_id == AUTOSEL_AP) &&
(targets->dom_id == dom || targets->dom_id == AUTOSEL_DOM))
return true;
targets++;
}
return false;
}
static long zcrypt_send_ep11_cprb(struct ap_perms *perms,
static long _zcrypt_send_ep11_cprb(struct ap_perms *perms,
struct ep11_urb *xcrb)
{
struct zcrypt_card *zc, *pref_zc;
@ -1026,6 +1030,12 @@ out:
return rc;
}
long zcrypt_send_ep11_cprb(struct ep11_urb *xcrb)
{
return _zcrypt_send_ep11_cprb(&ap_perms, xcrb);
}
EXPORT_SYMBOL(zcrypt_send_ep11_cprb);
static long zcrypt_rng(char *buffer)
{
struct zcrypt_card *zc, *pref_zc;
@ -1366,12 +1376,12 @@ static long zcrypt_unlocked_ioctl(struct file *filp, unsigned int cmd,
if (copy_from_user(&xcrb, uxcrb, sizeof(xcrb)))
return -EFAULT;
do {
rc = zcrypt_send_ep11_cprb(perms, &xcrb);
rc = _zcrypt_send_ep11_cprb(perms, &xcrb);
} while (rc == -EAGAIN);
/* on failure: retry once again after a requested rescan */
if ((rc == -ENODEV) && (zcrypt_process_rescan()))
do {
rc = zcrypt_send_ep11_cprb(perms, &xcrb);
rc = _zcrypt_send_ep11_cprb(perms, &xcrb);
} while (rc == -EAGAIN);
if (rc)
ZCRYPT_DBF(DBF_DEBUG, "ioctl ZSENDEP11CPRB rc=%d\n", rc);
@ -1885,6 +1895,7 @@ void __exit zcrypt_api_exit(void)
zcrypt_msgtype6_exit();
zcrypt_msgtype50_exit();
zcrypt_ccamisc_exit();
zcrypt_ep11misc_exit();
zcrypt_debug_exit();
}

View File

@ -140,6 +140,7 @@ struct zcrypt_ops *zcrypt_msgtype(unsigned char *, int);
int zcrypt_api_init(void);
void zcrypt_api_exit(void);
long zcrypt_send_cprb(struct ica_xcRB *xcRB);
long zcrypt_send_ep11_cprb(struct ep11_urb *urb);
void zcrypt_device_status_mask_ext(struct zcrypt_device_status_ext *devstatus);
int zcrypt_device_status_ext(int card, int queue,
struct zcrypt_device_status_ext *devstatus);

View File

@ -19,6 +19,7 @@
/* For TOKTYPE_NON_CCA: */
#define TOKVER_PROTECTED_KEY 0x01 /* Protected key token */
#define TOKVER_CLEAR_KEY 0x02 /* Clear key token */
/* For TOKTYPE_CCA_INTERNAL: */
#define TOKVER_CCA_AES 0x04 /* CCA AES key token */

View File

@ -19,6 +19,7 @@
#include "zcrypt_error.h"
#include "zcrypt_cex4.h"
#include "zcrypt_ccamisc.h"
#include "zcrypt_ep11misc.h"
#define CEX4A_MIN_MOD_SIZE 1 /* 8 bits */
#define CEX4A_MAX_MOD_SIZE_2K 256 /* 2048 bits */
@ -71,9 +72,9 @@ static struct ap_device_id zcrypt_cex4_queue_ids[] = {
MODULE_DEVICE_TABLE(ap, zcrypt_cex4_queue_ids);
/*
* CCA card addditional device attributes
* CCA card additional device attributes
*/
static ssize_t serialnr_show(struct device *dev,
static ssize_t cca_serialnr_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
@ -88,21 +89,23 @@ static ssize_t serialnr_show(struct device *dev,
return snprintf(buf, PAGE_SIZE, "%s\n", ci.serial);
}
static DEVICE_ATTR_RO(serialnr);
static struct device_attribute dev_attr_cca_serialnr =
__ATTR(serialnr, 0444, cca_serialnr_show, NULL);
static struct attribute *cca_card_attrs[] = {
&dev_attr_serialnr.attr,
&dev_attr_cca_serialnr.attr,
NULL,
};
static const struct attribute_group cca_card_attr_group = {
static const struct attribute_group cca_card_attr_grp = {
.attrs = cca_card_attrs,
};
/*
* CCA queue addditional device attributes
* CCA queue additional device attributes
*/
static ssize_t mkvps_show(struct device *dev,
static ssize_t cca_mkvps_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
@ -138,17 +141,233 @@ static ssize_t mkvps_show(struct device *dev,
return n;
}
static DEVICE_ATTR_RO(mkvps);
static struct device_attribute dev_attr_cca_mkvps =
__ATTR(mkvps, 0444, cca_mkvps_show, NULL);
static struct attribute *cca_queue_attrs[] = {
&dev_attr_mkvps.attr,
&dev_attr_cca_mkvps.attr,
NULL,
};
static const struct attribute_group cca_queue_attr_group = {
static const struct attribute_group cca_queue_attr_grp = {
.attrs = cca_queue_attrs,
};
/*
* EP11 card additional device attributes
*/
static ssize_t ep11_api_ordinalnr_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct ep11_card_info ci;
struct ap_card *ac = to_ap_card(dev);
struct zcrypt_card *zc = ac->private;
memset(&ci, 0, sizeof(ci));
ep11_get_card_info(ac->id, &ci, zc->online);
if (ci.API_ord_nr > 0)
return snprintf(buf, PAGE_SIZE, "%u\n", ci.API_ord_nr);
else
return snprintf(buf, PAGE_SIZE, "\n");
}
static struct device_attribute dev_attr_ep11_api_ordinalnr =
__ATTR(API_ordinalnr, 0444, ep11_api_ordinalnr_show, NULL);
static ssize_t ep11_fw_version_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct ep11_card_info ci;
struct ap_card *ac = to_ap_card(dev);
struct zcrypt_card *zc = ac->private;
memset(&ci, 0, sizeof(ci));
ep11_get_card_info(ac->id, &ci, zc->online);
if (ci.FW_version > 0)
return snprintf(buf, PAGE_SIZE, "%d.%d\n",
(int)(ci.FW_version >> 8),
(int)(ci.FW_version & 0xFF));
else
return snprintf(buf, PAGE_SIZE, "\n");
}
static struct device_attribute dev_attr_ep11_fw_version =
__ATTR(FW_version, 0444, ep11_fw_version_show, NULL);
static ssize_t ep11_serialnr_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct ep11_card_info ci;
struct ap_card *ac = to_ap_card(dev);
struct zcrypt_card *zc = ac->private;
memset(&ci, 0, sizeof(ci));
ep11_get_card_info(ac->id, &ci, zc->online);
if (ci.serial[0])
return snprintf(buf, PAGE_SIZE, "%16.16s\n", ci.serial);
else
return snprintf(buf, PAGE_SIZE, "\n");
}
static struct device_attribute dev_attr_ep11_serialnr =
__ATTR(serialnr, 0444, ep11_serialnr_show, NULL);
static const struct {
int mode_bit;
const char *mode_txt;
} ep11_op_modes[] = {
{ 0, "FIPS2009" },
{ 1, "BSI2009" },
{ 2, "FIPS2011" },
{ 3, "BSI2011" },
{ 6, "BSICC2017" },
{ 0, NULL }
};
static ssize_t ep11_card_op_modes_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int i, n = 0;
struct ep11_card_info ci;
struct ap_card *ac = to_ap_card(dev);
struct zcrypt_card *zc = ac->private;
memset(&ci, 0, sizeof(ci));
ep11_get_card_info(ac->id, &ci, zc->online);
for (i = 0; ep11_op_modes[i].mode_txt; i++) {
if (ci.op_mode & (1 << ep11_op_modes[i].mode_bit)) {
if (n > 0)
buf[n++] = ' ';
n += snprintf(buf + n, PAGE_SIZE - n,
"%s", ep11_op_modes[i].mode_txt);
}
}
n += snprintf(buf + n, PAGE_SIZE - n, "\n");
return n;
}
static struct device_attribute dev_attr_ep11_card_op_modes =
__ATTR(op_modes, 0444, ep11_card_op_modes_show, NULL);
static struct attribute *ep11_card_attrs[] = {
&dev_attr_ep11_api_ordinalnr.attr,
&dev_attr_ep11_fw_version.attr,
&dev_attr_ep11_serialnr.attr,
&dev_attr_ep11_card_op_modes.attr,
NULL,
};
static const struct attribute_group ep11_card_attr_grp = {
.attrs = ep11_card_attrs,
};
/*
* EP11 queue additional device attributes
*/
static ssize_t ep11_mkvps_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int n = 0;
struct ep11_domain_info di;
struct zcrypt_queue *zq = to_ap_queue(dev)->private;
static const char * const cwk_state[] = { "invalid", "valid" };
static const char * const nwk_state[] = { "empty", "uncommitted",
"committed" };
memset(&di, 0, sizeof(di));
if (zq->online)
ep11_get_domain_info(AP_QID_CARD(zq->queue->qid),
AP_QID_QUEUE(zq->queue->qid),
&di);
if (di.cur_wk_state == '0') {
n = snprintf(buf, PAGE_SIZE, "WK CUR: %s -\n",
cwk_state[di.cur_wk_state - '0']);
} else if (di.cur_wk_state == '1') {
n = snprintf(buf, PAGE_SIZE, "WK CUR: %s 0x",
cwk_state[di.cur_wk_state - '0']);
bin2hex(buf + n, di.cur_wkvp, sizeof(di.cur_wkvp));
n += 2 * sizeof(di.cur_wkvp);
n += snprintf(buf + n, PAGE_SIZE - n, "\n");
} else
n = snprintf(buf, PAGE_SIZE, "WK CUR: - -\n");
if (di.new_wk_state == '0') {
n += snprintf(buf + n, PAGE_SIZE - n, "WK NEW: %s -\n",
nwk_state[di.new_wk_state - '0']);
} else if (di.new_wk_state >= '1' && di.new_wk_state <= '2') {
n += snprintf(buf + n, PAGE_SIZE - n, "WK NEW: %s 0x",
nwk_state[di.new_wk_state - '0']);
bin2hex(buf + n, di.new_wkvp, sizeof(di.new_wkvp));
n += 2 * sizeof(di.new_wkvp);
n += snprintf(buf + n, PAGE_SIZE - n, "\n");
} else
n += snprintf(buf + n, PAGE_SIZE - n, "WK NEW: - -\n");
return n;
}
static struct device_attribute dev_attr_ep11_mkvps =
__ATTR(mkvps, 0444, ep11_mkvps_show, NULL);
static ssize_t ep11_queue_op_modes_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int i, n = 0;
struct ep11_domain_info di;
struct zcrypt_queue *zq = to_ap_queue(dev)->private;
memset(&di, 0, sizeof(di));
if (zq->online)
ep11_get_domain_info(AP_QID_CARD(zq->queue->qid),
AP_QID_QUEUE(zq->queue->qid),
&di);
for (i = 0; ep11_op_modes[i].mode_txt; i++) {
if (di.op_mode & (1 << ep11_op_modes[i].mode_bit)) {
if (n > 0)
buf[n++] = ' ';
n += snprintf(buf + n, PAGE_SIZE - n,
"%s", ep11_op_modes[i].mode_txt);
}
}
n += snprintf(buf + n, PAGE_SIZE - n, "\n");
return n;
}
static struct device_attribute dev_attr_ep11_queue_op_modes =
__ATTR(op_modes, 0444, ep11_queue_op_modes_show, NULL);
static struct attribute *ep11_queue_attrs[] = {
&dev_attr_ep11_mkvps.attr,
&dev_attr_ep11_queue_op_modes.attr,
NULL,
};
static const struct attribute_group ep11_queue_attr_grp = {
.attrs = ep11_queue_attrs,
};
/**
* Probe function for CEX4/CEX5/CEX6/CEX7 card device. It always
* accepts the AP device since the bus_match already checked
@ -313,7 +532,12 @@ static int zcrypt_cex4_card_probe(struct ap_device *ap_dev)
if (ap_test_bit(&ac->functions, AP_FUNC_COPRO)) {
rc = sysfs_create_group(&ap_dev->device.kobj,
&cca_card_attr_group);
&cca_card_attr_grp);
if (rc)
zcrypt_card_unregister(zc);
} else if (ap_test_bit(&ac->functions, AP_FUNC_EP11)) {
rc = sysfs_create_group(&ap_dev->device.kobj,
&ep11_card_attr_grp);
if (rc)
zcrypt_card_unregister(zc);
}
@ -332,7 +556,9 @@ static void zcrypt_cex4_card_remove(struct ap_device *ap_dev)
struct zcrypt_card *zc = ac->private;
if (ap_test_bit(&ac->functions, AP_FUNC_COPRO))
sysfs_remove_group(&ap_dev->device.kobj, &cca_card_attr_group);
sysfs_remove_group(&ap_dev->device.kobj, &cca_card_attr_grp);
else if (ap_test_bit(&ac->functions, AP_FUNC_EP11))
sysfs_remove_group(&ap_dev->device.kobj, &ep11_card_attr_grp);
if (zc)
zcrypt_card_unregister(zc);
}
@ -394,7 +620,12 @@ static int zcrypt_cex4_queue_probe(struct ap_device *ap_dev)
if (ap_test_bit(&aq->card->functions, AP_FUNC_COPRO)) {
rc = sysfs_create_group(&ap_dev->device.kobj,
&cca_queue_attr_group);
&cca_queue_attr_grp);
if (rc)
zcrypt_queue_unregister(zq);
} else if (ap_test_bit(&aq->card->functions, AP_FUNC_EP11)) {
rc = sysfs_create_group(&ap_dev->device.kobj,
&ep11_queue_attr_grp);
if (rc)
zcrypt_queue_unregister(zq);
}
@ -413,7 +644,9 @@ static void zcrypt_cex4_queue_remove(struct ap_device *ap_dev)
struct zcrypt_queue *zq = aq->private;
if (ap_test_bit(&aq->card->functions, AP_FUNC_COPRO))
sysfs_remove_group(&ap_dev->device.kobj, &cca_queue_attr_group);
sysfs_remove_group(&ap_dev->device.kobj, &cca_queue_attr_grp);
else if (ap_test_bit(&aq->card->functions, AP_FUNC_EP11))
sysfs_remove_group(&ap_dev->device.kobj, &ep11_queue_attr_grp);
if (zq)
zcrypt_queue_unregister(zq);
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,124 @@
/* SPDX-License-Identifier: GPL-2.0+ */
/*
* Copyright IBM Corp. 2019
* Author(s): Harald Freudenberger <freude@linux.ibm.com>
*
* Collection of EP11 misc functions used by zcrypt and pkey
*/
#ifndef _ZCRYPT_EP11MISC_H_
#define _ZCRYPT_EP11MISC_H_
#include <asm/zcrypt.h>
#include <asm/pkey.h>
#define TOKVER_EP11_AES 0x03 /* EP11 AES key blob */
#define EP11_API_V 4 /* highest known and supported EP11 API version */
#define EP11_STRUCT_MAGIC 0x1234
#define EP11_BLOB_PKEY_EXTRACTABLE 0x200000
/* inside view of an EP11 secure key blob */
struct ep11keyblob {
union {
u8 session[32];
struct {
u8 type; /* 0x00 (TOKTYPE_NON_CCA) */
u8 res0; /* unused */
u16 len; /* total length in bytes of this blob */
u8 version; /* 0x06 (TOKVER_EP11_AES) */
u8 res1; /* unused */
u16 keybitlen; /* clear key bit len, 0 for unknown */
} head;
};
u8 wkvp[16]; /* wrapping key verification pattern */
u64 attr; /* boolean key attributes */
u64 mode; /* mode bits */
u16 version; /* 0x1234, EP11_STRUCT_MAGIC */
u8 iv[14];
u8 encrypted_key_data[144];
u8 mac[32];
} __packed;
/*
* Simple check if the key blob is a valid EP11 secure AES key.
* If keybitsize is given, the bitsize of the key is also checked.
* If checkcpacfexport is enabled, the key is also checked for the
* attributes needed to export this key for CPACF use.
* Returns 0 on success or errno value on failure.
*/
int ep11_check_aeskeyblob(debug_info_t *dbg, int dbflvl,
const u8 *key, int keybitsize,
int checkcpacfexport);
/* EP11 card info struct */
struct ep11_card_info {
u32 API_ord_nr; /* API ordinal number */
u16 FW_version; /* Firmware major and minor version */
char serial[16]; /* serial number string (16 ascii, no 0x00 !) */
u64 op_mode; /* card operational mode(s) */
};
/* EP11 domain info struct */
struct ep11_domain_info {
char cur_wk_state; /* '0' invalid, '1' valid */
char new_wk_state; /* '0' empty, '1' uncommitted, '2' committed */
u8 cur_wkvp[32]; /* current wrapping key verification pattern */
u8 new_wkvp[32]; /* new wrapping key verification pattern */
u64 op_mode; /* domain operational mode(s) */
};
/*
* Provide information about an EP11 card.
*/
int ep11_get_card_info(u16 card, struct ep11_card_info *info, int verify);
/*
* Provide information about a domain within an EP11 card.
*/
int ep11_get_domain_info(u16 card, u16 domain, struct ep11_domain_info *info);
/*
* Generate (random) EP11 AES secure key.
*/
int ep11_genaeskey(u16 card, u16 domain, u32 keybitsize, u32 keygenflags,
u8 *keybuf, size_t *keybufsize);
/*
* Generate EP11 AES secure key with given clear key value.
*/
int ep11_clr2keyblob(u16 cardnr, u16 domain, u32 keybitsize, u32 keygenflags,
const u8 *clrkey, u8 *keybuf, size_t *keybufsize);
/*
* Derive proteced key from EP11 AES secure key blob.
*/
int ep11_key2protkey(u16 cardnr, u16 domain, const u8 *key, size_t keylen,
u8 *protkey, u32 *protkeylen, u32 *protkeytype);
/*
* Build a list of ep11 apqns meeting the following constrains:
* - apqn is online and is in fact an EP11 apqn
* - if cardnr is not FFFF only apqns with this cardnr
* - if domain is not FFFF only apqns with this domainnr
* - if minhwtype > 0 only apqns with hwtype >= minhwtype
* - if minapi > 0 only apqns with API_ord_nr >= minapi
* - if wkvp != NULL only apqns where the wkvp (EP11_WKVPLEN bytes) matches
* to the first EP11_WKVPLEN bytes of the wkvp of the current wrapping
* key for this domain. When a wkvp is given there will aways be a re-fetch
* of the domain info for the potential apqn - so this triggers an request
* reply to each apqn eligible.
* The array of apqn entries is allocated with kmalloc and returned in *apqns;
* the number of apqns stored into the list is returned in *nr_apqns. One apqn
* entry is simple a 32 bit value with 16 bit cardnr and 16 bit domain nr and
* may be casted to struct pkey_apqn. The return value is either 0 for success
* or a negative errno value. If no apqn meeting the criterias is found,
* -ENODEV is returned.
*/
int ep11_findcard2(u32 **apqns, u32 *nr_apqns, u16 cardnr, u16 domain,
int minhwtype, int minapi, const u8 *wkvp);
void zcrypt_ep11misc_exit(void);
#endif /* _ZCRYPT_EP11MISC_H_ */