Merge branch 'for-davem' of git://git.kernel.org/pub/scm/linux/kernel/git/bwh/sfc-next-2.6

This commit is contained in:
David S. Miller 2010-12-10 10:20:43 -08:00
commit cf78f8ee3d
8 changed files with 467 additions and 305 deletions

View File

@ -74,9 +74,8 @@ extern int efx_filter_insert_filter(struct efx_nic *efx,
bool replace); bool replace);
extern int efx_filter_remove_filter(struct efx_nic *efx, extern int efx_filter_remove_filter(struct efx_nic *efx,
struct efx_filter_spec *spec); struct efx_filter_spec *spec);
extern void efx_filter_table_clear(struct efx_nic *efx, extern void efx_filter_clear_rx(struct efx_nic *efx,
enum efx_filter_table_id table_id, enum efx_filter_priority priority);
enum efx_filter_priority priority);
/* Channels */ /* Channels */
extern void efx_process_channel_now(struct efx_channel *channel); extern void efx_process_channel_now(struct efx_channel *channel);

View File

@ -11,6 +11,7 @@
#include <linux/netdevice.h> #include <linux/netdevice.h>
#include <linux/ethtool.h> #include <linux/ethtool.h>
#include <linux/rtnetlink.h> #include <linux/rtnetlink.h>
#include <linux/in.h>
#include "net_driver.h" #include "net_driver.h"
#include "workarounds.h" #include "workarounds.h"
#include "selftest.h" #include "selftest.h"
@ -558,12 +559,8 @@ static int efx_ethtool_set_flags(struct net_device *net_dev, u32 data)
if (rc) if (rc)
return rc; return rc;
if (!(data & ETH_FLAG_NTUPLE)) { if (!(data & ETH_FLAG_NTUPLE))
efx_filter_table_clear(efx, EFX_FILTER_TABLE_RX_IP, efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
EFX_FILTER_PRI_MANUAL);
efx_filter_table_clear(efx, EFX_FILTER_TABLE_RX_MAC,
EFX_FILTER_PRI_MANUAL);
}
return 0; return 0;
} }
@ -582,6 +579,9 @@ static void efx_ethtool_self_test(struct net_device *net_dev,
goto fail1; goto fail1;
} }
netif_info(efx, drv, efx->net_dev, "starting %sline testing\n",
(test->flags & ETH_TEST_FL_OFFLINE) ? "off" : "on");
/* We need rx buffers and interrupts. */ /* We need rx buffers and interrupts. */
already_up = (efx->net_dev->flags & IFF_UP); already_up = (efx->net_dev->flags & IFF_UP);
if (!already_up) { if (!already_up) {
@ -600,9 +600,9 @@ static void efx_ethtool_self_test(struct net_device *net_dev,
if (!already_up) if (!already_up)
dev_close(efx->net_dev); dev_close(efx->net_dev);
netif_dbg(efx, drv, efx->net_dev, "%s %sline self-tests\n", netif_info(efx, drv, efx->net_dev, "%s %sline self-tests\n",
rc == 0 ? "passed" : "failed", rc == 0 ? "passed" : "failed",
(test->flags & ETH_TEST_FL_OFFLINE) ? "off" : "on"); (test->flags & ETH_TEST_FL_OFFLINE) ? "off" : "on");
fail2: fail2:
fail1: fail1:
@ -921,6 +921,7 @@ static int efx_ethtool_set_rx_ntuple(struct net_device *net_dev,
struct ethhdr *mac_entry = &ntuple->fs.h_u.ether_spec; struct ethhdr *mac_entry = &ntuple->fs.h_u.ether_spec;
struct ethhdr *mac_mask = &ntuple->fs.m_u.ether_spec; struct ethhdr *mac_mask = &ntuple->fs.m_u.ether_spec;
struct efx_filter_spec filter; struct efx_filter_spec filter;
int rc;
/* Range-check action */ /* Range-check action */
if (ntuple->fs.action < ETHTOOL_RXNTUPLE_ACTION_CLEAR || if (ntuple->fs.action < ETHTOOL_RXNTUPLE_ACTION_CLEAR ||
@ -930,9 +931,16 @@ static int efx_ethtool_set_rx_ntuple(struct net_device *net_dev,
if (~ntuple->fs.data_mask) if (~ntuple->fs.data_mask)
return -EINVAL; return -EINVAL;
efx_filter_init_rx(&filter, EFX_FILTER_PRI_MANUAL, 0,
(ntuple->fs.action == ETHTOOL_RXNTUPLE_ACTION_DROP) ?
0xfff : ntuple->fs.action);
switch (ntuple->fs.flow_type) { switch (ntuple->fs.flow_type) {
case TCP_V4_FLOW: case TCP_V4_FLOW:
case UDP_V4_FLOW: case UDP_V4_FLOW: {
u8 proto = (ntuple->fs.flow_type == TCP_V4_FLOW ?
IPPROTO_TCP : IPPROTO_UDP);
/* Must match all of destination, */ /* Must match all of destination, */
if (ip_mask->ip4dst | ip_mask->pdst) if (ip_mask->ip4dst | ip_mask->pdst)
return -EINVAL; return -EINVAL;
@ -944,7 +952,22 @@ static int efx_ethtool_set_rx_ntuple(struct net_device *net_dev,
/* and nothing else */ /* and nothing else */
if ((u8)~ip_mask->tos | (u16)~ntuple->fs.vlan_tag_mask) if ((u8)~ip_mask->tos | (u16)~ntuple->fs.vlan_tag_mask)
return -EINVAL; return -EINVAL;
if (!ip_mask->ip4src)
rc = efx_filter_set_ipv4_full(&filter, proto,
ip_entry->ip4dst,
ip_entry->pdst,
ip_entry->ip4src,
ip_entry->psrc);
else
rc = efx_filter_set_ipv4_local(&filter, proto,
ip_entry->ip4dst,
ip_entry->pdst);
if (rc)
return rc;
break; break;
}
case ETHER_FLOW: case ETHER_FLOW:
/* Must match all of destination, */ /* Must match all of destination, */
if (!is_zero_ether_addr(mac_mask->h_dest)) if (!is_zero_ether_addr(mac_mask->h_dest))
@ -957,58 +980,24 @@ static int efx_ethtool_set_rx_ntuple(struct net_device *net_dev,
if (!is_broadcast_ether_addr(mac_mask->h_source) || if (!is_broadcast_ether_addr(mac_mask->h_source) ||
mac_mask->h_proto != htons(0xffff)) mac_mask->h_proto != htons(0xffff))
return -EINVAL; return -EINVAL;
rc = efx_filter_set_eth_local(
&filter,
(ntuple->fs.vlan_tag_mask == 0xf000) ?
ntuple->fs.vlan_tag : EFX_FILTER_VID_UNSPEC,
mac_entry->h_dest);
if (rc)
return rc;
break; break;
default: default:
return -EINVAL; return -EINVAL;
} }
filter.priority = EFX_FILTER_PRI_MANUAL; if (ntuple->fs.action == ETHTOOL_RXNTUPLE_ACTION_CLEAR)
filter.flags = 0;
switch (ntuple->fs.flow_type) {
case TCP_V4_FLOW:
if (!ip_mask->ip4src)
efx_filter_set_rx_tcp_full(&filter,
htonl(ip_entry->ip4src),
htons(ip_entry->psrc),
htonl(ip_entry->ip4dst),
htons(ip_entry->pdst));
else
efx_filter_set_rx_tcp_wild(&filter,
htonl(ip_entry->ip4dst),
htons(ip_entry->pdst));
break;
case UDP_V4_FLOW:
if (!ip_mask->ip4src)
efx_filter_set_rx_udp_full(&filter,
htonl(ip_entry->ip4src),
htons(ip_entry->psrc),
htonl(ip_entry->ip4dst),
htons(ip_entry->pdst));
else
efx_filter_set_rx_udp_wild(&filter,
htonl(ip_entry->ip4dst),
htons(ip_entry->pdst));
break;
case ETHER_FLOW:
if (ntuple->fs.vlan_tag_mask == 0xf000)
efx_filter_set_rx_mac_full(&filter,
ntuple->fs.vlan_tag & 0xfff,
mac_entry->h_dest);
else
efx_filter_set_rx_mac_wild(&filter, mac_entry->h_dest);
break;
}
if (ntuple->fs.action == ETHTOOL_RXNTUPLE_ACTION_CLEAR) {
return efx_filter_remove_filter(efx, &filter); return efx_filter_remove_filter(efx, &filter);
} else { else
if (ntuple->fs.action == ETHTOOL_RXNTUPLE_ACTION_DROP)
filter.dmaq_id = 0xfff;
else
filter.dmaq_id = ntuple->fs.action;
return efx_filter_insert_filter(efx, &filter, true); return efx_filter_insert_filter(efx, &filter, true);
}
} }
static int efx_ethtool_get_rxfh_indir(struct net_device *net_dev, static int efx_ethtool_get_rxfh_indir(struct net_device *net_dev,

View File

@ -7,6 +7,7 @@
* by the Free Software Foundation, incorporated herein by reference. * by the Free Software Foundation, incorporated herein by reference.
*/ */
#include <linux/in.h>
#include "efx.h" #include "efx.h"
#include "filter.h" #include "filter.h"
#include "io.h" #include "io.h"
@ -26,19 +27,26 @@
*/ */
#define FILTER_CTL_SRCH_MAX 200 #define FILTER_CTL_SRCH_MAX 200
enum efx_filter_table_id {
EFX_FILTER_TABLE_RX_IP = 0,
EFX_FILTER_TABLE_RX_MAC,
EFX_FILTER_TABLE_COUNT,
};
struct efx_filter_table { struct efx_filter_table {
enum efx_filter_table_id id;
u32 offset; /* address of table relative to BAR */ u32 offset; /* address of table relative to BAR */
unsigned size; /* number of entries */ unsigned size; /* number of entries */
unsigned step; /* step between entries */ unsigned step; /* step between entries */
unsigned used; /* number currently used */ unsigned used; /* number currently used */
unsigned long *used_bitmap; unsigned long *used_bitmap;
struct efx_filter_spec *spec; struct efx_filter_spec *spec;
unsigned search_depth[EFX_FILTER_TYPE_COUNT];
}; };
struct efx_filter_state { struct efx_filter_state {
spinlock_t lock; spinlock_t lock;
struct efx_filter_table table[EFX_FILTER_TABLE_COUNT]; struct efx_filter_table table[EFX_FILTER_TABLE_COUNT];
unsigned search_depth[EFX_FILTER_TYPE_COUNT];
}; };
/* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
@ -65,68 +73,203 @@ static u16 efx_filter_increment(u32 key)
} }
static enum efx_filter_table_id static enum efx_filter_table_id
efx_filter_type_table_id(enum efx_filter_type type) efx_filter_spec_table_id(const struct efx_filter_spec *spec)
{ {
BUILD_BUG_ON(EFX_FILTER_TABLE_RX_IP != (EFX_FILTER_RX_TCP_FULL >> 2)); BUILD_BUG_ON(EFX_FILTER_TABLE_RX_IP != (EFX_FILTER_TCP_FULL >> 2));
BUILD_BUG_ON(EFX_FILTER_TABLE_RX_IP != (EFX_FILTER_RX_TCP_WILD >> 2)); BUILD_BUG_ON(EFX_FILTER_TABLE_RX_IP != (EFX_FILTER_TCP_WILD >> 2));
BUILD_BUG_ON(EFX_FILTER_TABLE_RX_IP != (EFX_FILTER_RX_UDP_FULL >> 2)); BUILD_BUG_ON(EFX_FILTER_TABLE_RX_IP != (EFX_FILTER_UDP_FULL >> 2));
BUILD_BUG_ON(EFX_FILTER_TABLE_RX_IP != (EFX_FILTER_RX_UDP_WILD >> 2)); BUILD_BUG_ON(EFX_FILTER_TABLE_RX_IP != (EFX_FILTER_UDP_WILD >> 2));
BUILD_BUG_ON(EFX_FILTER_TABLE_RX_MAC != (EFX_FILTER_RX_MAC_FULL >> 2)); BUILD_BUG_ON(EFX_FILTER_TABLE_RX_MAC != (EFX_FILTER_MAC_FULL >> 2));
BUILD_BUG_ON(EFX_FILTER_TABLE_RX_MAC != (EFX_FILTER_RX_MAC_WILD >> 2)); BUILD_BUG_ON(EFX_FILTER_TABLE_RX_MAC != (EFX_FILTER_MAC_WILD >> 2));
return type >> 2; EFX_BUG_ON_PARANOID(spec->type == EFX_FILTER_UNSPEC);
return spec->type >> 2;
} }
static void static struct efx_filter_table *
efx_filter_table_reset_search_depth(struct efx_filter_state *state, efx_filter_spec_table(struct efx_filter_state *state,
enum efx_filter_table_id table_id) const struct efx_filter_spec *spec)
{ {
memset(state->search_depth + (table_id << 2), 0, if (spec->type == EFX_FILTER_UNSPEC)
sizeof(state->search_depth[0]) << 2); return NULL;
else
return &state->table[efx_filter_spec_table_id(spec)];
}
static void efx_filter_table_reset_search_depth(struct efx_filter_table *table)
{
memset(table->search_depth, 0, sizeof(table->search_depth));
} }
static void efx_filter_push_rx_limits(struct efx_nic *efx) static void efx_filter_push_rx_limits(struct efx_nic *efx)
{ {
struct efx_filter_state *state = efx->filter_state; struct efx_filter_state *state = efx->filter_state;
struct efx_filter_table *table;
efx_oword_t filter_ctl; efx_oword_t filter_ctl;
efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL); efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
table = &state->table[EFX_FILTER_TABLE_RX_IP];
EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT, EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
state->search_depth[EFX_FILTER_RX_TCP_FULL] + table->search_depth[EFX_FILTER_TCP_FULL] +
FILTER_CTL_SRCH_FUDGE_FULL); FILTER_CTL_SRCH_FUDGE_FULL);
EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT, EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
state->search_depth[EFX_FILTER_RX_TCP_WILD] + table->search_depth[EFX_FILTER_TCP_WILD] +
FILTER_CTL_SRCH_FUDGE_WILD); FILTER_CTL_SRCH_FUDGE_WILD);
EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT, EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
state->search_depth[EFX_FILTER_RX_UDP_FULL] + table->search_depth[EFX_FILTER_UDP_FULL] +
FILTER_CTL_SRCH_FUDGE_FULL); FILTER_CTL_SRCH_FUDGE_FULL);
EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT, EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
state->search_depth[EFX_FILTER_RX_UDP_WILD] + table->search_depth[EFX_FILTER_UDP_WILD] +
FILTER_CTL_SRCH_FUDGE_WILD); FILTER_CTL_SRCH_FUDGE_WILD);
if (state->table[EFX_FILTER_TABLE_RX_MAC].size) { table = &state->table[EFX_FILTER_TABLE_RX_MAC];
if (table->size) {
EFX_SET_OWORD_FIELD( EFX_SET_OWORD_FIELD(
filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT, filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
state->search_depth[EFX_FILTER_RX_MAC_FULL] + table->search_depth[EFX_FILTER_MAC_FULL] +
FILTER_CTL_SRCH_FUDGE_FULL); FILTER_CTL_SRCH_FUDGE_FULL);
EFX_SET_OWORD_FIELD( EFX_SET_OWORD_FIELD(
filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT, filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
state->search_depth[EFX_FILTER_RX_MAC_WILD] + table->search_depth[EFX_FILTER_MAC_WILD] +
FILTER_CTL_SRCH_FUDGE_WILD); FILTER_CTL_SRCH_FUDGE_WILD);
} }
efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL); efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
} }
static inline void __efx_filter_set_ipv4(struct efx_filter_spec *spec,
__be32 host1, __be16 port1,
__be32 host2, __be16 port2)
{
spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
spec->data[2] = ntohl(host2);
}
/**
* efx_filter_set_ipv4_local - specify IPv4 host, transport protocol and port
* @spec: Specification to initialise
* @proto: Transport layer protocol number
* @host: Local host address (network byte order)
* @port: Local port (network byte order)
*/
int efx_filter_set_ipv4_local(struct efx_filter_spec *spec, u8 proto,
__be32 host, __be16 port)
{
__be32 host1;
__be16 port1;
EFX_BUG_ON_PARANOID(!(spec->flags & EFX_FILTER_FLAG_RX));
/* This cannot currently be combined with other filtering */
if (spec->type != EFX_FILTER_UNSPEC)
return -EPROTONOSUPPORT;
if (port == 0)
return -EINVAL;
switch (proto) {
case IPPROTO_TCP:
spec->type = EFX_FILTER_TCP_WILD;
break;
case IPPROTO_UDP:
spec->type = EFX_FILTER_UDP_WILD;
break;
default:
return -EPROTONOSUPPORT;
}
/* Filter is constructed in terms of source and destination,
* with the odd wrinkle that the ports are swapped in a UDP
* wildcard filter. We need to convert from local and remote
* (= zero for wildcard) addresses.
*/
host1 = 0;
if (proto != IPPROTO_UDP) {
port1 = 0;
} else {
port1 = port;
port = 0;
}
__efx_filter_set_ipv4(spec, host1, port1, host, port);
return 0;
}
/**
* efx_filter_set_ipv4_full - specify IPv4 hosts, transport protocol and ports
* @spec: Specification to initialise
* @proto: Transport layer protocol number
* @host: Local host address (network byte order)
* @port: Local port (network byte order)
* @rhost: Remote host address (network byte order)
* @rport: Remote port (network byte order)
*/
int efx_filter_set_ipv4_full(struct efx_filter_spec *spec, u8 proto,
__be32 host, __be16 port,
__be32 rhost, __be16 rport)
{
EFX_BUG_ON_PARANOID(!(spec->flags & EFX_FILTER_FLAG_RX));
/* This cannot currently be combined with other filtering */
if (spec->type != EFX_FILTER_UNSPEC)
return -EPROTONOSUPPORT;
if (port == 0 || rport == 0)
return -EINVAL;
switch (proto) {
case IPPROTO_TCP:
spec->type = EFX_FILTER_TCP_FULL;
break;
case IPPROTO_UDP:
spec->type = EFX_FILTER_UDP_FULL;
break;
default:
return -EPROTONOSUPPORT;
}
__efx_filter_set_ipv4(spec, rhost, rport, host, port);
return 0;
}
/**
* efx_filter_set_eth_local - specify local Ethernet address and optional VID
* @spec: Specification to initialise
* @vid: VLAN ID to match, or %EFX_FILTER_VID_UNSPEC
* @addr: Local Ethernet MAC address
*/
int efx_filter_set_eth_local(struct efx_filter_spec *spec,
u16 vid, const u8 *addr)
{
EFX_BUG_ON_PARANOID(!(spec->flags & EFX_FILTER_FLAG_RX));
/* This cannot currently be combined with other filtering */
if (spec->type != EFX_FILTER_UNSPEC)
return -EPROTONOSUPPORT;
if (vid == EFX_FILTER_VID_UNSPEC) {
spec->type = EFX_FILTER_MAC_WILD;
spec->data[0] = 0;
} else {
spec->type = EFX_FILTER_MAC_FULL;
spec->data[0] = vid;
}
spec->data[1] = addr[2] << 24 | addr[3] << 16 | addr[4] << 8 | addr[5];
spec->data[2] = addr[0] << 8 | addr[1];
return 0;
}
/* Build a filter entry and return its n-tuple key. */ /* Build a filter entry and return its n-tuple key. */
static u32 efx_filter_build(efx_oword_t *filter, struct efx_filter_spec *spec) static u32 efx_filter_build(efx_oword_t *filter, struct efx_filter_spec *spec)
{ {
u32 data3; u32 data3;
switch (efx_filter_type_table_id(spec->type)) { switch (efx_filter_spec_table_id(spec)) {
case EFX_FILTER_TABLE_RX_IP: { case EFX_FILTER_TABLE_RX_IP: {
bool is_udp = (spec->type == EFX_FILTER_RX_UDP_FULL || bool is_udp = (spec->type == EFX_FILTER_UDP_FULL ||
spec->type == EFX_FILTER_RX_UDP_WILD); spec->type == EFX_FILTER_UDP_WILD);
EFX_POPULATE_OWORD_7( EFX_POPULATE_OWORD_7(
*filter, *filter,
FRF_BZ_RSS_EN, FRF_BZ_RSS_EN,
@ -143,7 +286,7 @@ static u32 efx_filter_build(efx_oword_t *filter, struct efx_filter_spec *spec)
} }
case EFX_FILTER_TABLE_RX_MAC: { case EFX_FILTER_TABLE_RX_MAC: {
bool is_wild = spec->type == EFX_FILTER_RX_MAC_WILD; bool is_wild = spec->type == EFX_FILTER_MAC_WILD;
EFX_POPULATE_OWORD_8( EFX_POPULATE_OWORD_8(
*filter, *filter,
FRF_CZ_RMFT_RSS_EN, FRF_CZ_RMFT_RSS_EN,
@ -206,6 +349,14 @@ found:
return filter_idx; return filter_idx;
} }
/* Construct/deconstruct external filter IDs */
static inline int
efx_filter_make_id(enum efx_filter_table_id table_id, unsigned index)
{
return table_id << 16 | index;
}
/** /**
* efx_filter_insert_filter - add or replace a filter * efx_filter_insert_filter - add or replace a filter
* @efx: NIC in which to insert the filter * @efx: NIC in which to insert the filter
@ -213,30 +364,28 @@ found:
* @replace: Flag for whether the specified filter may replace a filter * @replace: Flag for whether the specified filter may replace a filter
* with an identical match expression and equal or lower priority * with an identical match expression and equal or lower priority
* *
* On success, return the filter index within its table. * On success, return the filter ID.
* On failure, return a negative error code. * On failure, return a negative error code.
*/ */
int efx_filter_insert_filter(struct efx_nic *efx, struct efx_filter_spec *spec, int efx_filter_insert_filter(struct efx_nic *efx, struct efx_filter_spec *spec,
bool replace) bool replace)
{ {
struct efx_filter_state *state = efx->filter_state; struct efx_filter_state *state = efx->filter_state;
enum efx_filter_table_id table_id = struct efx_filter_table *table = efx_filter_spec_table(state, spec);
efx_filter_type_table_id(spec->type);
struct efx_filter_table *table = &state->table[table_id];
struct efx_filter_spec *saved_spec; struct efx_filter_spec *saved_spec;
efx_oword_t filter; efx_oword_t filter;
int filter_idx, depth; int filter_idx, depth;
u32 key; u32 key;
int rc; int rc;
if (table->size == 0) if (!table || table->size == 0)
return -EINVAL; return -EINVAL;
key = efx_filter_build(&filter, spec); key = efx_filter_build(&filter, spec);
netif_vdbg(efx, hw, efx->net_dev, netif_vdbg(efx, hw, efx->net_dev,
"%s: type %d search_depth=%d", __func__, spec->type, "%s: type %d search_depth=%d", __func__, spec->type,
state->search_depth[spec->type]); table->search_depth[spec->type]);
spin_lock_bh(&state->lock); spin_lock_bh(&state->lock);
@ -263,8 +412,8 @@ int efx_filter_insert_filter(struct efx_nic *efx, struct efx_filter_spec *spec,
} }
*saved_spec = *spec; *saved_spec = *spec;
if (state->search_depth[spec->type] < depth) { if (table->search_depth[spec->type] < depth) {
state->search_depth[spec->type] = depth; table->search_depth[spec->type] = depth;
efx_filter_push_rx_limits(efx); efx_filter_push_rx_limits(efx);
} }
@ -273,6 +422,7 @@ int efx_filter_insert_filter(struct efx_nic *efx, struct efx_filter_spec *spec,
netif_vdbg(efx, hw, efx->net_dev, netif_vdbg(efx, hw, efx->net_dev,
"%s: filter type %d index %d rxq %u set", "%s: filter type %d index %d rxq %u set",
__func__, spec->type, filter_idx, spec->dmaq_id); __func__, spec->type, filter_idx, spec->dmaq_id);
rc = efx_filter_make_id(table->id, filter_idx);
out: out:
spin_unlock_bh(&state->lock); spin_unlock_bh(&state->lock);
@ -306,15 +456,16 @@ static void efx_filter_table_clear_entry(struct efx_nic *efx,
int efx_filter_remove_filter(struct efx_nic *efx, struct efx_filter_spec *spec) int efx_filter_remove_filter(struct efx_nic *efx, struct efx_filter_spec *spec)
{ {
struct efx_filter_state *state = efx->filter_state; struct efx_filter_state *state = efx->filter_state;
enum efx_filter_table_id table_id = struct efx_filter_table *table = efx_filter_spec_table(state, spec);
efx_filter_type_table_id(spec->type);
struct efx_filter_table *table = &state->table[table_id];
struct efx_filter_spec *saved_spec; struct efx_filter_spec *saved_spec;
efx_oword_t filter; efx_oword_t filter;
int filter_idx, depth; int filter_idx, depth;
u32 key; u32 key;
int rc; int rc;
if (!table)
return -EINVAL;
key = efx_filter_build(&filter, spec); key = efx_filter_build(&filter, spec);
spin_lock_bh(&state->lock); spin_lock_bh(&state->lock);
@ -332,7 +483,7 @@ int efx_filter_remove_filter(struct efx_nic *efx, struct efx_filter_spec *spec)
efx_filter_table_clear_entry(efx, table, filter_idx); efx_filter_table_clear_entry(efx, table, filter_idx);
if (table->used == 0) if (table->used == 0)
efx_filter_table_reset_search_depth(state, table_id); efx_filter_table_reset_search_depth(table);
rc = 0; rc = 0;
out: out:
@ -340,15 +491,9 @@ out:
return rc; return rc;
} }
/** static void efx_filter_table_clear(struct efx_nic *efx,
* efx_filter_table_clear - remove filters from a table by priority enum efx_filter_table_id table_id,
* @efx: NIC from which to remove the filters enum efx_filter_priority priority)
* @table_id: Table from which to remove the filters
* @priority: Maximum priority to remove
*/
void efx_filter_table_clear(struct efx_nic *efx,
enum efx_filter_table_id table_id,
enum efx_filter_priority priority)
{ {
struct efx_filter_state *state = efx->filter_state; struct efx_filter_state *state = efx->filter_state;
struct efx_filter_table *table = &state->table[table_id]; struct efx_filter_table *table = &state->table[table_id];
@ -360,11 +505,22 @@ void efx_filter_table_clear(struct efx_nic *efx,
if (table->spec[filter_idx].priority <= priority) if (table->spec[filter_idx].priority <= priority)
efx_filter_table_clear_entry(efx, table, filter_idx); efx_filter_table_clear_entry(efx, table, filter_idx);
if (table->used == 0) if (table->used == 0)
efx_filter_table_reset_search_depth(state, table_id); efx_filter_table_reset_search_depth(table);
spin_unlock_bh(&state->lock); spin_unlock_bh(&state->lock);
} }
/**
* efx_filter_clear_rx - remove RX filters by priority
* @efx: NIC from which to remove the filters
* @priority: Maximum priority to remove
*/
void efx_filter_clear_rx(struct efx_nic *efx, enum efx_filter_priority priority)
{
efx_filter_table_clear(efx, EFX_FILTER_TABLE_RX_IP, priority);
efx_filter_table_clear(efx, EFX_FILTER_TABLE_RX_MAC, priority);
}
/* Restore filter stater after reset */ /* Restore filter stater after reset */
void efx_restore_filters(struct efx_nic *efx) void efx_restore_filters(struct efx_nic *efx)
{ {
@ -407,6 +563,7 @@ int efx_probe_filters(struct efx_nic *efx)
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
table = &state->table[EFX_FILTER_TABLE_RX_IP]; table = &state->table[EFX_FILTER_TABLE_RX_IP];
table->id = EFX_FILTER_TABLE_RX_IP;
table->offset = FR_BZ_RX_FILTER_TBL0; table->offset = FR_BZ_RX_FILTER_TBL0;
table->size = FR_BZ_RX_FILTER_TBL0_ROWS; table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
table->step = FR_BZ_RX_FILTER_TBL0_STEP; table->step = FR_BZ_RX_FILTER_TBL0_STEP;
@ -414,6 +571,7 @@ int efx_probe_filters(struct efx_nic *efx)
if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) { if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
table = &state->table[EFX_FILTER_TABLE_RX_MAC]; table = &state->table[EFX_FILTER_TABLE_RX_MAC];
table->id = EFX_FILTER_TABLE_RX_MAC;
table->offset = FR_CZ_RX_MAC_FILTER_TBL0; table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS; table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP; table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;

View File

@ -12,31 +12,27 @@
#include <linux/types.h> #include <linux/types.h>
enum efx_filter_table_id {
EFX_FILTER_TABLE_RX_IP = 0,
EFX_FILTER_TABLE_RX_MAC,
EFX_FILTER_TABLE_COUNT,
};
/** /**
* enum efx_filter_type - type of hardware filter * enum efx_filter_type - type of hardware filter
* @EFX_FILTER_RX_TCP_FULL: RX, matching TCP/IPv4 4-tuple * @EFX_FILTER_TCP_FULL: Matching TCP/IPv4 4-tuple
* @EFX_FILTER_RX_TCP_WILD: RX, matching TCP/IPv4 destination (host, port) * @EFX_FILTER_TCP_WILD: Matching TCP/IPv4 destination (host, port)
* @EFX_FILTER_RX_UDP_FULL: RX, matching UDP/IPv4 4-tuple * @EFX_FILTER_UDP_FULL: Matching UDP/IPv4 4-tuple
* @EFX_FILTER_RX_UDP_WILD: RX, matching UDP/IPv4 destination (host, port) * @EFX_FILTER_UDP_WILD: Matching UDP/IPv4 destination (host, port)
* @EFX_FILTER_RX_MAC_FULL: RX, matching Ethernet destination MAC address, VID * @EFX_FILTER_MAC_FULL: Matching Ethernet destination MAC address, VID
* @EFX_FILTER_RX_MAC_WILD: RX, matching Ethernet destination MAC address * @EFX_FILTER_MAC_WILD: Matching Ethernet destination MAC address
* @EFX_FILTER_UNSPEC: Match type is unspecified
* *
* Falcon NICs only support the RX TCP/IPv4 and UDP/IPv4 filter types. * Falcon NICs only support the TCP/IPv4 and UDP/IPv4 filter types.
*/ */
enum efx_filter_type { enum efx_filter_type {
EFX_FILTER_RX_TCP_FULL = 0, EFX_FILTER_TCP_FULL = 0,
EFX_FILTER_RX_TCP_WILD, EFX_FILTER_TCP_WILD,
EFX_FILTER_RX_UDP_FULL, EFX_FILTER_UDP_FULL,
EFX_FILTER_RX_UDP_WILD, EFX_FILTER_UDP_WILD,
EFX_FILTER_RX_MAC_FULL = 4, EFX_FILTER_MAC_FULL = 4,
EFX_FILTER_RX_MAC_WILD, EFX_FILTER_MAC_WILD,
EFX_FILTER_TYPE_COUNT, EFX_FILTER_TYPE_COUNT, /* number of specific types */
EFX_FILTER_UNSPEC = 0xf,
}; };
/** /**
@ -63,13 +59,13 @@ enum efx_filter_priority {
* @EFX_FILTER_FLAG_RX_OVERRIDE_IP: Enables a MAC filter to override * @EFX_FILTER_FLAG_RX_OVERRIDE_IP: Enables a MAC filter to override
* any IP filter that matches the same packet. By default, IP * any IP filter that matches the same packet. By default, IP
* filters take precedence. * filters take precedence.
* * @EFX_FILTER_FLAG_RX: Filter is for RX
* Currently, no flags are defined for TX filters.
*/ */
enum efx_filter_flags { enum efx_filter_flags {
EFX_FILTER_FLAG_RX_RSS = 0x01, EFX_FILTER_FLAG_RX_RSS = 0x01,
EFX_FILTER_FLAG_RX_SCATTER = 0x02, EFX_FILTER_FLAG_RX_SCATTER = 0x02,
EFX_FILTER_FLAG_RX_OVERRIDE_IP = 0x04, EFX_FILTER_FLAG_RX_OVERRIDE_IP = 0x04,
EFX_FILTER_FLAG_RX = 0x08,
}; };
/** /**
@ -91,99 +87,26 @@ struct efx_filter_spec {
u32 data[3]; u32 data[3];
}; };
/** static inline void efx_filter_init_rx(struct efx_filter_spec *spec,
* efx_filter_set_rx_tcp_full - specify RX filter with TCP/IPv4 full match enum efx_filter_priority priority,
* @spec: Specification to initialise enum efx_filter_flags flags,
* @shost: Source host address (host byte order) unsigned rxq_id)
* @sport: Source port (host byte order)
* @dhost: Destination host address (host byte order)
* @dport: Destination port (host byte order)
*/
static inline void
efx_filter_set_rx_tcp_full(struct efx_filter_spec *spec,
u32 shost, u16 sport, u32 dhost, u16 dport)
{ {
spec->type = EFX_FILTER_RX_TCP_FULL; spec->type = EFX_FILTER_UNSPEC;
spec->data[0] = sport | shost << 16; spec->priority = priority;
spec->data[1] = dport << 16 | shost >> 16; spec->flags = EFX_FILTER_FLAG_RX | flags;
spec->data[2] = dhost; spec->dmaq_id = rxq_id;
} }
/** extern int efx_filter_set_ipv4_local(struct efx_filter_spec *spec, u8 proto,
* efx_filter_set_rx_tcp_wild - specify RX filter with TCP/IPv4 wildcard match __be32 host, __be16 port);
* @spec: Specification to initialise extern int efx_filter_set_ipv4_full(struct efx_filter_spec *spec, u8 proto,
* @dhost: Destination host address (host byte order) __be32 host, __be16 port,
* @dport: Destination port (host byte order) __be32 rhost, __be16 rport);
*/ extern int efx_filter_set_eth_local(struct efx_filter_spec *spec,
static inline void u16 vid, const u8 *addr);
efx_filter_set_rx_tcp_wild(struct efx_filter_spec *spec, u32 dhost, u16 dport) enum {
{ EFX_FILTER_VID_UNSPEC = 0xffff,
spec->type = EFX_FILTER_RX_TCP_WILD; };
spec->data[0] = 0;
spec->data[1] = dport << 16;
spec->data[2] = dhost;
}
/**
* efx_filter_set_rx_udp_full - specify RX filter with UDP/IPv4 full match
* @spec: Specification to initialise
* @shost: Source host address (host byte order)
* @sport: Source port (host byte order)
* @dhost: Destination host address (host byte order)
* @dport: Destination port (host byte order)
*/
static inline void
efx_filter_set_rx_udp_full(struct efx_filter_spec *spec,
u32 shost, u16 sport, u32 dhost, u16 dport)
{
spec->type = EFX_FILTER_RX_UDP_FULL;
spec->data[0] = sport | shost << 16;
spec->data[1] = dport << 16 | shost >> 16;
spec->data[2] = dhost;
}
/**
* efx_filter_set_rx_udp_wild - specify RX filter with UDP/IPv4 wildcard match
* @spec: Specification to initialise
* @dhost: Destination host address (host byte order)
* @dport: Destination port (host byte order)
*/
static inline void
efx_filter_set_rx_udp_wild(struct efx_filter_spec *spec, u32 dhost, u16 dport)
{
spec->type = EFX_FILTER_RX_UDP_WILD;
spec->data[0] = dport;
spec->data[1] = 0;
spec->data[2] = dhost;
}
/**
* efx_filter_set_rx_mac_full - specify RX filter with MAC full match
* @spec: Specification to initialise
* @vid: VLAN ID
* @addr: Destination MAC address
*/
static inline void efx_filter_set_rx_mac_full(struct efx_filter_spec *spec,
u16 vid, const u8 *addr)
{
spec->type = EFX_FILTER_RX_MAC_FULL;
spec->data[0] = vid;
spec->data[1] = addr[2] << 24 | addr[3] << 16 | addr[4] << 8 | addr[5];
spec->data[2] = addr[0] << 8 | addr[1];
}
/**
* efx_filter_set_rx_mac_full - specify RX filter with MAC wildcard match
* @spec: Specification to initialise
* @addr: Destination MAC address
*/
static inline void efx_filter_set_rx_mac_wild(struct efx_filter_spec *spec,
const u8 *addr)
{
spec->type = EFX_FILTER_RX_MAC_WILD;
spec->data[0] = 0;
spec->data[1] = addr[2] << 24 | addr[3] << 16 | addr[4] << 8 | addr[5];
spec->data[2] = addr[0] << 8 | addr[1];
}
#endif /* EFX_FILTER_H */ #endif /* EFX_FILTER_H */

View File

@ -22,28 +22,39 @@
* *
* Notes on locking strategy: * Notes on locking strategy:
* *
* Most NIC registers require 16-byte (or 8-byte, for SRAM) atomic writes * Most CSRs are 128-bit (oword) and therefore cannot be read or
* which necessitates locking. * written atomically. Access from the host is buffered by the Bus
* Under normal operation few writes to NIC registers are made and these * Interface Unit (BIU). Whenever the host reads from the lowest
* registers (EVQ_RPTR_REG, RX_DESC_UPD_REG and TX_DESC_UPD_REG) are special * address of such a register, or from the address of a different such
* cased to allow 4-byte (hence lockless) accesses. * register, the BIU latches the register's value. Subsequent reads
* from higher addresses of the same register will read the latched
* value. Whenever the host writes part of such a register, the BIU
* collects the written value and does not write to the underlying
* register until all 4 dwords have been written. A similar buffering
* scheme applies to host access to the NIC's 64-bit SRAM.
* *
* It *is* safe to write to these 4-byte registers in the middle of an * Access to different CSRs and 64-bit SRAM words must be serialised,
* access to an 8-byte or 16-byte register. We therefore use a * since interleaved access can result in lost writes or lost
* spinlock to protect accesses to the larger registers, but no locks * information from read-to-clear fields. We use efx_nic::biu_lock
* for the 4-byte registers. * for this. (We could use separate locks for read and write, but
* this is not normally a performance bottleneck.)
* *
* A write barrier is needed to ensure that DW3 is written after DW0/1/2 * The DMA descriptor pointers (RX_DESC_UPD and TX_DESC_UPD) are
* due to the way the 16byte registers are "collected" in the BIU. * 128-bit but are special-cased in the BIU to avoid the need for
* locking in the host:
* *
* We also lock when carrying out reads, to ensure consistency of the * - They are write-only.
* data (made possible since the BIU reads all 128 bits into a cache). * - The semantics of writing to these registers are such that
* Reads are very rare, so this isn't a significant performance * replacing the low 96 bits with zero does not affect functionality.
* impact. (Most data transferred from NIC to host is DMAed directly * - If the host writes to the last dword address of such a register
* into host memory). * (i.e. the high 32 bits) the underlying register will always be
* * written. If the collector does not hold values for the low 96
* I/O BAR access uses locks for both reads and writes (but is only provided * bits of the register, they will be written as zero. Writing to
* for testing purposes). * the last qword does not have this effect and must not be done.
* - If the host writes to the address of any other part of such a
* register while the collector already holds values for some other
* register, the write is discarded and the collector maintains its
* current state.
*/ */
#if BITS_PER_LONG == 64 #if BITS_PER_LONG == 64
@ -72,7 +83,7 @@ static inline __le32 _efx_readd(struct efx_nic *efx, unsigned int reg)
return (__force __le32)__raw_readl(efx->membase + reg); return (__force __le32)__raw_readl(efx->membase + reg);
} }
/* Writes to a normal 16-byte Efx register, locking as appropriate. */ /* Write a normal 128-bit CSR, locking as appropriate. */
static inline void efx_writeo(struct efx_nic *efx, efx_oword_t *value, static inline void efx_writeo(struct efx_nic *efx, efx_oword_t *value,
unsigned int reg) unsigned int reg)
{ {
@ -85,21 +96,18 @@ static inline void efx_writeo(struct efx_nic *efx, efx_oword_t *value,
spin_lock_irqsave(&efx->biu_lock, flags); spin_lock_irqsave(&efx->biu_lock, flags);
#ifdef EFX_USE_QWORD_IO #ifdef EFX_USE_QWORD_IO
_efx_writeq(efx, value->u64[0], reg + 0); _efx_writeq(efx, value->u64[0], reg + 0);
wmb();
_efx_writeq(efx, value->u64[1], reg + 8); _efx_writeq(efx, value->u64[1], reg + 8);
#else #else
_efx_writed(efx, value->u32[0], reg + 0); _efx_writed(efx, value->u32[0], reg + 0);
_efx_writed(efx, value->u32[1], reg + 4); _efx_writed(efx, value->u32[1], reg + 4);
_efx_writed(efx, value->u32[2], reg + 8); _efx_writed(efx, value->u32[2], reg + 8);
wmb();
_efx_writed(efx, value->u32[3], reg + 12); _efx_writed(efx, value->u32[3], reg + 12);
#endif #endif
mmiowb(); mmiowb();
spin_unlock_irqrestore(&efx->biu_lock, flags); spin_unlock_irqrestore(&efx->biu_lock, flags);
} }
/* Write an 8-byte NIC SRAM entry through the supplied mapping, /* Write 64-bit SRAM through the supplied mapping, locking as appropriate. */
* locking as appropriate. */
static inline void efx_sram_writeq(struct efx_nic *efx, void __iomem *membase, static inline void efx_sram_writeq(struct efx_nic *efx, void __iomem *membase,
efx_qword_t *value, unsigned int index) efx_qword_t *value, unsigned int index)
{ {
@ -115,36 +123,25 @@ static inline void efx_sram_writeq(struct efx_nic *efx, void __iomem *membase,
__raw_writeq((__force u64)value->u64[0], membase + addr); __raw_writeq((__force u64)value->u64[0], membase + addr);
#else #else
__raw_writel((__force u32)value->u32[0], membase + addr); __raw_writel((__force u32)value->u32[0], membase + addr);
wmb();
__raw_writel((__force u32)value->u32[1], membase + addr + 4); __raw_writel((__force u32)value->u32[1], membase + addr + 4);
#endif #endif
mmiowb(); mmiowb();
spin_unlock_irqrestore(&efx->biu_lock, flags); spin_unlock_irqrestore(&efx->biu_lock, flags);
} }
/* Write dword to NIC register that allows partial writes /* Write a 32-bit CSR or the last dword of a special 128-bit CSR */
*
* Some registers (EVQ_RPTR_REG, RX_DESC_UPD_REG and
* TX_DESC_UPD_REG) can be written to as a single dword. This allows
* for lockless writes.
*/
static inline void efx_writed(struct efx_nic *efx, efx_dword_t *value, static inline void efx_writed(struct efx_nic *efx, efx_dword_t *value,
unsigned int reg) unsigned int reg)
{ {
netif_vdbg(efx, hw, efx->net_dev, netif_vdbg(efx, hw, efx->net_dev,
"writing partial register %x with "EFX_DWORD_FMT"\n", "writing register %x with "EFX_DWORD_FMT"\n",
reg, EFX_DWORD_VAL(*value)); reg, EFX_DWORD_VAL(*value));
/* No lock required */ /* No lock required */
_efx_writed(efx, value->u32[0], reg); _efx_writed(efx, value->u32[0], reg);
} }
/* Read from a NIC register /* Read a 128-bit CSR, locking as appropriate. */
*
* This reads an entire 16-byte register in one go, locking as
* appropriate. It is essential to read the first dword first, as this
* prompts the NIC to load the current value into the shadow register.
*/
static inline void efx_reado(struct efx_nic *efx, efx_oword_t *value, static inline void efx_reado(struct efx_nic *efx, efx_oword_t *value,
unsigned int reg) unsigned int reg)
{ {
@ -152,7 +149,6 @@ static inline void efx_reado(struct efx_nic *efx, efx_oword_t *value,
spin_lock_irqsave(&efx->biu_lock, flags); spin_lock_irqsave(&efx->biu_lock, flags);
value->u32[0] = _efx_readd(efx, reg + 0); value->u32[0] = _efx_readd(efx, reg + 0);
rmb();
value->u32[1] = _efx_readd(efx, reg + 4); value->u32[1] = _efx_readd(efx, reg + 4);
value->u32[2] = _efx_readd(efx, reg + 8); value->u32[2] = _efx_readd(efx, reg + 8);
value->u32[3] = _efx_readd(efx, reg + 12); value->u32[3] = _efx_readd(efx, reg + 12);
@ -163,8 +159,7 @@ static inline void efx_reado(struct efx_nic *efx, efx_oword_t *value,
EFX_OWORD_VAL(*value)); EFX_OWORD_VAL(*value));
} }
/* Read an 8-byte SRAM entry through supplied mapping, /* Read 64-bit SRAM through the supplied mapping, locking as appropriate. */
* locking as appropriate. */
static inline void efx_sram_readq(struct efx_nic *efx, void __iomem *membase, static inline void efx_sram_readq(struct efx_nic *efx, void __iomem *membase,
efx_qword_t *value, unsigned int index) efx_qword_t *value, unsigned int index)
{ {
@ -176,7 +171,6 @@ static inline void efx_sram_readq(struct efx_nic *efx, void __iomem *membase,
value->u64[0] = (__force __le64)__raw_readq(membase + addr); value->u64[0] = (__force __le64)__raw_readq(membase + addr);
#else #else
value->u32[0] = (__force __le32)__raw_readl(membase + addr); value->u32[0] = (__force __le32)__raw_readl(membase + addr);
rmb();
value->u32[1] = (__force __le32)__raw_readl(membase + addr + 4); value->u32[1] = (__force __le32)__raw_readl(membase + addr + 4);
#endif #endif
spin_unlock_irqrestore(&efx->biu_lock, flags); spin_unlock_irqrestore(&efx->biu_lock, flags);
@ -186,7 +180,7 @@ static inline void efx_sram_readq(struct efx_nic *efx, void __iomem *membase,
addr, EFX_QWORD_VAL(*value)); addr, EFX_QWORD_VAL(*value));
} }
/* Read dword from register that allows partial writes (sic) */ /* Read a 32-bit CSR or SRAM */
static inline void efx_readd(struct efx_nic *efx, efx_dword_t *value, static inline void efx_readd(struct efx_nic *efx, efx_dword_t *value,
unsigned int reg) unsigned int reg)
{ {
@ -196,28 +190,28 @@ static inline void efx_readd(struct efx_nic *efx, efx_dword_t *value,
reg, EFX_DWORD_VAL(*value)); reg, EFX_DWORD_VAL(*value));
} }
/* Write to a register forming part of a table */ /* Write a 128-bit CSR forming part of a table */
static inline void efx_writeo_table(struct efx_nic *efx, efx_oword_t *value, static inline void efx_writeo_table(struct efx_nic *efx, efx_oword_t *value,
unsigned int reg, unsigned int index) unsigned int reg, unsigned int index)
{ {
efx_writeo(efx, value, reg + index * sizeof(efx_oword_t)); efx_writeo(efx, value, reg + index * sizeof(efx_oword_t));
} }
/* Read to a register forming part of a table */ /* Read a 128-bit CSR forming part of a table */
static inline void efx_reado_table(struct efx_nic *efx, efx_oword_t *value, static inline void efx_reado_table(struct efx_nic *efx, efx_oword_t *value,
unsigned int reg, unsigned int index) unsigned int reg, unsigned int index)
{ {
efx_reado(efx, value, reg + index * sizeof(efx_oword_t)); efx_reado(efx, value, reg + index * sizeof(efx_oword_t));
} }
/* Write to a dword register forming part of a table */ /* Write a 32-bit CSR forming part of a table, or 32-bit SRAM */
static inline void efx_writed_table(struct efx_nic *efx, efx_dword_t *value, static inline void efx_writed_table(struct efx_nic *efx, efx_dword_t *value,
unsigned int reg, unsigned int index) unsigned int reg, unsigned int index)
{ {
efx_writed(efx, value, reg + index * sizeof(efx_oword_t)); efx_writed(efx, value, reg + index * sizeof(efx_oword_t));
} }
/* Read from a dword register forming part of a table */ /* Read a 32-bit CSR forming part of a table, or 32-bit SRAM */
static inline void efx_readd_table(struct efx_nic *efx, efx_dword_t *value, static inline void efx_readd_table(struct efx_nic *efx, efx_dword_t *value,
unsigned int reg, unsigned int index) unsigned int reg, unsigned int index)
{ {
@ -231,29 +225,54 @@ static inline void efx_readd_table(struct efx_nic *efx, efx_dword_t *value,
#define EFX_PAGED_REG(page, reg) \ #define EFX_PAGED_REG(page, reg) \
((page) * EFX_PAGE_BLOCK_SIZE + (reg)) ((page) * EFX_PAGE_BLOCK_SIZE + (reg))
/* As for efx_writeo(), but for a page-mapped register. */ /* Write the whole of RX_DESC_UPD or TX_DESC_UPD */
static inline void efx_writeo_page(struct efx_nic *efx, efx_oword_t *value, static inline void _efx_writeo_page(struct efx_nic *efx, efx_oword_t *value,
unsigned int reg, unsigned int page) unsigned int reg, unsigned int page)
{ {
efx_writeo(efx, value, EFX_PAGED_REG(page, reg)); reg = EFX_PAGED_REG(page, reg);
}
/* As for efx_writed(), but for a page-mapped register. */ netif_vdbg(efx, hw, efx->net_dev,
static inline void efx_writed_page(struct efx_nic *efx, efx_dword_t *value, "writing register %x with " EFX_OWORD_FMT "\n", reg,
unsigned int reg, unsigned int page) EFX_OWORD_VAL(*value));
#ifdef EFX_USE_QWORD_IO
_efx_writeq(efx, value->u64[0], reg + 0);
#else
_efx_writed(efx, value->u32[0], reg + 0);
_efx_writed(efx, value->u32[1], reg + 4);
#endif
_efx_writed(efx, value->u32[2], reg + 8);
_efx_writed(efx, value->u32[3], reg + 12);
}
#define efx_writeo_page(efx, value, reg, page) \
_efx_writeo_page(efx, value, \
reg + \
BUILD_BUG_ON_ZERO((reg) != 0x830 && (reg) != 0xa10), \
page)
/* Write a page-mapped 32-bit CSR (EVQ_RPTR or the high bits of
* RX_DESC_UPD or TX_DESC_UPD)
*/
static inline void _efx_writed_page(struct efx_nic *efx, efx_dword_t *value,
unsigned int reg, unsigned int page)
{ {
efx_writed(efx, value, EFX_PAGED_REG(page, reg)); efx_writed(efx, value, EFX_PAGED_REG(page, reg));
} }
#define efx_writed_page(efx, value, reg, page) \
_efx_writed_page(efx, value, \
reg + \
BUILD_BUG_ON_ZERO((reg) != 0x400 && (reg) != 0x83c \
&& (reg) != 0xa1c), \
page)
/* Write dword to page-mapped register with an extra lock. /* Write TIMER_COMMAND. This is a page-mapped 32-bit CSR, but a bug
* * in the BIU means that writes to TIMER_COMMAND[0] invalidate the
* As for efx_writed_page(), but for a register that suffers from * collector register.
* SFC bug 3181. Take out a lock so the BIU collector cannot be */
* confused. */ static inline void _efx_writed_page_locked(struct efx_nic *efx,
static inline void efx_writed_page_locked(struct efx_nic *efx, efx_dword_t *value,
efx_dword_t *value, unsigned int reg,
unsigned int reg, unsigned int page)
unsigned int page)
{ {
unsigned long flags __attribute__ ((unused)); unsigned long flags __attribute__ ((unused));
@ -265,5 +284,9 @@ static inline void efx_writed_page_locked(struct efx_nic *efx,
efx_writed(efx, value, EFX_PAGED_REG(page, reg)); efx_writed(efx, value, EFX_PAGED_REG(page, reg));
} }
} }
#define efx_writed_page_locked(efx, value, reg, page) \
_efx_writed_page_locked(efx, value, \
reg + BUILD_BUG_ON_ZERO((reg) != 0x420), \
page)
#endif /* EFX_IO_H */ #endif /* EFX_IO_H */

View File

@ -142,6 +142,12 @@ struct efx_tx_buffer {
* @flushed: Used when handling queue flushing * @flushed: Used when handling queue flushing
* @read_count: Current read pointer. * @read_count: Current read pointer.
* This is the number of buffers that have been removed from both rings. * This is the number of buffers that have been removed from both rings.
* @old_write_count: The value of @write_count when last checked.
* This is here for performance reasons. The xmit path will
* only get the up-to-date value of @write_count if this
* variable indicates that the queue is empty. This is to
* avoid cache-line ping-pong between the xmit path and the
* completion path.
* @stopped: Stopped count. * @stopped: Stopped count.
* Set if this TX queue is currently stopping its port. * Set if this TX queue is currently stopping its port.
* @insert_count: Current insert pointer * @insert_count: Current insert pointer
@ -163,6 +169,10 @@ struct efx_tx_buffer {
* @tso_long_headers: Number of packets with headers too long for standard * @tso_long_headers: Number of packets with headers too long for standard
* blocks * blocks
* @tso_packets: Number of packets via the TSO xmit path * @tso_packets: Number of packets via the TSO xmit path
* @pushes: Number of times the TX push feature has been used
* @empty_read_count: If the completion path has seen the queue as empty
* and the transmission path has not yet checked this, the value of
* @read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
*/ */
struct efx_tx_queue { struct efx_tx_queue {
/* Members which don't change on the fast path */ /* Members which don't change on the fast path */
@ -177,6 +187,7 @@ struct efx_tx_queue {
/* Members used mainly on the completion path */ /* Members used mainly on the completion path */
unsigned int read_count ____cacheline_aligned_in_smp; unsigned int read_count ____cacheline_aligned_in_smp;
unsigned int old_write_count;
int stopped; int stopped;
/* Members used only on the xmit path */ /* Members used only on the xmit path */
@ -187,6 +198,11 @@ struct efx_tx_queue {
unsigned int tso_bursts; unsigned int tso_bursts;
unsigned int tso_long_headers; unsigned int tso_long_headers;
unsigned int tso_packets; unsigned int tso_packets;
unsigned int pushes;
/* Members shared between paths and sometimes updated */
unsigned int empty_read_count ____cacheline_aligned_in_smp;
#define EFX_EMPTY_COUNT_VALID 0x80000000
}; };
/** /**
@ -626,10 +642,8 @@ struct efx_filter_state;
* Work items do not hold and must not acquire RTNL. * Work items do not hold and must not acquire RTNL.
* @workqueue_name: Name of workqueue * @workqueue_name: Name of workqueue
* @reset_work: Scheduled reset workitem * @reset_work: Scheduled reset workitem
* @monitor_work: Hardware monitor workitem
* @membase_phys: Memory BAR value as physical address * @membase_phys: Memory BAR value as physical address
* @membase: Memory BAR value * @membase: Memory BAR value
* @biu_lock: BIU (bus interface unit) lock
* @interrupt_mode: Interrupt mode * @interrupt_mode: Interrupt mode
* @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
* @irq_rx_moderation: IRQ moderation time for RX event queues * @irq_rx_moderation: IRQ moderation time for RX event queues
@ -653,14 +667,9 @@ struct efx_filter_state;
* @int_error_count: Number of internal errors seen recently * @int_error_count: Number of internal errors seen recently
* @int_error_expire: Time at which error count will be expired * @int_error_expire: Time at which error count will be expired
* @irq_status: Interrupt status buffer * @irq_status: Interrupt status buffer
* @last_irq_cpu: Last CPU to handle interrupt.
* This register is written with the SMP processor ID whenever an
* interrupt is handled. It is used by efx_nic_test_interrupt()
* to verify that an interrupt has occurred.
* @irq_zero_count: Number of legacy IRQs seen with queue flags == 0 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
* @fatal_irq_level: IRQ level (bit number) used for serious errors * @fatal_irq_level: IRQ level (bit number) used for serious errors
* @mtd_list: List of MTDs attached to the NIC * @mtd_list: List of MTDs attached to the NIC
* @n_rx_nodesc_drop_cnt: RX no descriptor drop count
* @nic_data: Hardware dependant state * @nic_data: Hardware dependant state
* @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode, * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
* @port_inhibited, efx_monitor() and efx_reconfigure_port() * @port_inhibited, efx_monitor() and efx_reconfigure_port()
@ -673,11 +682,7 @@ struct efx_filter_state;
* @port_initialized: Port initialized? * @port_initialized: Port initialized?
* @net_dev: Operating system network device. Consider holding the rtnl lock * @net_dev: Operating system network device. Consider holding the rtnl lock
* @rx_checksum_enabled: RX checksumming enabled * @rx_checksum_enabled: RX checksumming enabled
* @mac_stats: MAC statistics. These include all statistics the MACs
* can provide. Generic code converts these into a standard
* &struct net_device_stats.
* @stats_buffer: DMA buffer for statistics * @stats_buffer: DMA buffer for statistics
* @stats_lock: Statistics update lock. Serialises statistics fetches
* @mac_op: MAC interface * @mac_op: MAC interface
* @phy_type: PHY type * @phy_type: PHY type
* @phy_op: PHY interface * @phy_op: PHY interface
@ -695,10 +700,23 @@ struct efx_filter_state;
* @loopback_mode: Loopback status * @loopback_mode: Loopback status
* @loopback_modes: Supported loopback mode bitmask * @loopback_modes: Supported loopback mode bitmask
* @loopback_selftest: Offline self-test private state * @loopback_selftest: Offline self-test private state
* @monitor_work: Hardware monitor workitem
* @biu_lock: BIU (bus interface unit) lock
* @last_irq_cpu: Last CPU to handle interrupt.
* This register is written with the SMP processor ID whenever an
* interrupt is handled. It is used by efx_nic_test_interrupt()
* to verify that an interrupt has occurred.
* @n_rx_nodesc_drop_cnt: RX no descriptor drop count
* @mac_stats: MAC statistics. These include all statistics the MACs
* can provide. Generic code converts these into a standard
* &struct net_device_stats.
* @stats_lock: Statistics update lock. Serialises statistics fetches
* *
* This is stored in the private area of the &struct net_device. * This is stored in the private area of the &struct net_device.
*/ */
struct efx_nic { struct efx_nic {
/* The following fields should be written very rarely */
char name[IFNAMSIZ]; char name[IFNAMSIZ];
struct pci_dev *pci_dev; struct pci_dev *pci_dev;
const struct efx_nic_type *type; const struct efx_nic_type *type;
@ -707,10 +725,9 @@ struct efx_nic {
struct workqueue_struct *workqueue; struct workqueue_struct *workqueue;
char workqueue_name[16]; char workqueue_name[16];
struct work_struct reset_work; struct work_struct reset_work;
struct delayed_work monitor_work;
resource_size_t membase_phys; resource_size_t membase_phys;
void __iomem *membase; void __iomem *membase;
spinlock_t biu_lock;
enum efx_int_mode interrupt_mode; enum efx_int_mode interrupt_mode;
bool irq_rx_adaptive; bool irq_rx_adaptive;
unsigned int irq_rx_moderation; unsigned int irq_rx_moderation;
@ -737,7 +754,6 @@ struct efx_nic {
unsigned long int_error_expire; unsigned long int_error_expire;
struct efx_buffer irq_status; struct efx_buffer irq_status;
volatile signed int last_irq_cpu;
unsigned irq_zero_count; unsigned irq_zero_count;
unsigned fatal_irq_level; unsigned fatal_irq_level;
@ -745,8 +761,6 @@ struct efx_nic {
struct list_head mtd_list; struct list_head mtd_list;
#endif #endif
unsigned n_rx_nodesc_drop_cnt;
void *nic_data; void *nic_data;
struct mutex mac_lock; struct mutex mac_lock;
@ -758,9 +772,7 @@ struct efx_nic {
struct net_device *net_dev; struct net_device *net_dev;
bool rx_checksum_enabled; bool rx_checksum_enabled;
struct efx_mac_stats mac_stats;
struct efx_buffer stats_buffer; struct efx_buffer stats_buffer;
spinlock_t stats_lock;
struct efx_mac_operations *mac_op; struct efx_mac_operations *mac_op;
@ -786,6 +798,15 @@ struct efx_nic {
void *loopback_selftest; void *loopback_selftest;
struct efx_filter_state *filter_state; struct efx_filter_state *filter_state;
/* The following fields may be written more often */
struct delayed_work monitor_work ____cacheline_aligned_in_smp;
spinlock_t biu_lock;
volatile signed int last_irq_cpu;
unsigned n_rx_nodesc_drop_cnt;
struct efx_mac_stats mac_stats;
spinlock_t stats_lock;
}; };
static inline int efx_dev_registered(struct efx_nic *efx) static inline int efx_dev_registered(struct efx_nic *efx)

View File

@ -362,6 +362,35 @@ static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue); FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
} }
/* Write pointer and first descriptor for TX descriptor ring */
static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
const efx_qword_t *txd)
{
unsigned write_ptr;
efx_oword_t reg;
BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
FRF_AZ_TX_DESC_WPTR, write_ptr);
reg.qword[0] = *txd;
efx_writeo_page(tx_queue->efx, &reg,
FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
}
static inline bool
efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
{
unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
if (empty_read_count == 0)
return false;
tx_queue->empty_read_count = 0;
return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
}
/* For each entry inserted into the software descriptor ring, create a /* For each entry inserted into the software descriptor ring, create a
* descriptor in the hardware TX descriptor ring (in host memory), and * descriptor in the hardware TX descriptor ring (in host memory), and
@ -373,6 +402,7 @@ void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
struct efx_tx_buffer *buffer; struct efx_tx_buffer *buffer;
efx_qword_t *txd; efx_qword_t *txd;
unsigned write_ptr; unsigned write_ptr;
unsigned old_write_count = tx_queue->write_count;
BUG_ON(tx_queue->write_count == tx_queue->insert_count); BUG_ON(tx_queue->write_count == tx_queue->insert_count);
@ -391,7 +421,15 @@ void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
} while (tx_queue->write_count != tx_queue->insert_count); } while (tx_queue->write_count != tx_queue->insert_count);
wmb(); /* Ensure descriptors are written before they are fetched */ wmb(); /* Ensure descriptors are written before they are fetched */
efx_notify_tx_desc(tx_queue);
if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
txd = efx_tx_desc(tx_queue,
old_write_count & tx_queue->ptr_mask);
efx_push_tx_desc(tx_queue, txd);
++tx_queue->pushes;
} else {
efx_notify_tx_desc(tx_queue);
}
} }
/* Allocate hardware resources for a TX queue */ /* Allocate hardware resources for a TX queue */
@ -1632,7 +1670,7 @@ void efx_nic_init_common(struct efx_nic *efx)
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe); EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1); EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1); EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 0); EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1); EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
/* Enable SW_EV to inherit in char driver - assume harmless here */ /* Enable SW_EV to inherit in char driver - assume harmless here */
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1); EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);

View File

@ -240,8 +240,7 @@ netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
* of read_count. */ * of read_count. */
smp_mb(); smp_mb();
tx_queue->old_read_count = tx_queue->old_read_count =
*(volatile unsigned *) ACCESS_ONCE(tx_queue->read_count);
&tx_queue->read_count;
fill_level = (tx_queue->insert_count fill_level = (tx_queue->insert_count
- tx_queue->old_read_count); - tx_queue->old_read_count);
q_space = efx->txq_entries - 1 - fill_level; q_space = efx->txq_entries - 1 - fill_level;
@ -429,6 +428,16 @@ void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
__netif_tx_unlock(queue); __netif_tx_unlock(queue);
} }
} }
/* Check whether the hardware queue is now empty */
if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
if (tx_queue->read_count == tx_queue->old_write_count) {
smp_mb();
tx_queue->empty_read_count =
tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
}
}
} }
int efx_probe_tx_queue(struct efx_tx_queue *tx_queue) int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
@ -474,8 +483,10 @@ void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
tx_queue->insert_count = 0; tx_queue->insert_count = 0;
tx_queue->write_count = 0; tx_queue->write_count = 0;
tx_queue->old_write_count = 0;
tx_queue->read_count = 0; tx_queue->read_count = 0;
tx_queue->old_read_count = 0; tx_queue->old_read_count = 0;
tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
BUG_ON(tx_queue->stopped); BUG_ON(tx_queue->stopped);
/* Set up TX descriptor ring */ /* Set up TX descriptor ring */
@ -764,7 +775,7 @@ static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
* stopped from the access of read_count. */ * stopped from the access of read_count. */
smp_mb(); smp_mb();
tx_queue->old_read_count = tx_queue->old_read_count =
*(volatile unsigned *)&tx_queue->read_count; ACCESS_ONCE(tx_queue->read_count);
fill_level = (tx_queue->insert_count fill_level = (tx_queue->insert_count
- tx_queue->old_read_count); - tx_queue->old_read_count);
q_space = efx->txq_entries - 1 - fill_level; q_space = efx->txq_entries - 1 - fill_level;