[PATCH] mm: ptd_alloc take ptlock
Second step in pushing down the page_table_lock. Remove the temporary bridging hack from __pud_alloc, __pmd_alloc, __pte_alloc: expect callers not to hold page_table_lock, whether it's on init_mm or a user mm; take page_table_lock internally to check if a racing task already allocated. Convert their callers from common code. But avoid coming back to change them again later: instead of moving the spin_lock(&mm->page_table_lock) down, switch over to new macros pte_alloc_map_lock and pte_unmap_unlock, which encapsulate the mapping+locking and unlocking+unmapping together, and in the end may use alternatives to the mm page_table_lock itself. These callers all hold mmap_sem (some exclusively, some not), so at no level can a page table be whipped away from beneath them; and pte_alloc uses the "atomic" pmd_present to test whether it needs to allocate. It appears that on all arches we can safely descend without page_table_lock. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This commit is contained in:
parent
1bb3630e89
commit
c74df32c72
14
fs/exec.c
14
fs/exec.c
|
@ -309,25 +309,24 @@ void install_arg_page(struct vm_area_struct *vma,
|
|||
pud_t * pud;
|
||||
pmd_t * pmd;
|
||||
pte_t * pte;
|
||||
spinlock_t *ptl;
|
||||
|
||||
if (unlikely(anon_vma_prepare(vma)))
|
||||
goto out_sig;
|
||||
goto out;
|
||||
|
||||
flush_dcache_page(page);
|
||||
pgd = pgd_offset(mm, address);
|
||||
|
||||
spin_lock(&mm->page_table_lock);
|
||||
pud = pud_alloc(mm, pgd, address);
|
||||
if (!pud)
|
||||
goto out;
|
||||
pmd = pmd_alloc(mm, pud, address);
|
||||
if (!pmd)
|
||||
goto out;
|
||||
pte = pte_alloc_map(mm, pmd, address);
|
||||
pte = pte_alloc_map_lock(mm, pmd, address, &ptl);
|
||||
if (!pte)
|
||||
goto out;
|
||||
if (!pte_none(*pte)) {
|
||||
pte_unmap(pte);
|
||||
pte_unmap_unlock(pte, ptl);
|
||||
goto out;
|
||||
}
|
||||
inc_mm_counter(mm, anon_rss);
|
||||
|
@ -335,14 +334,11 @@ void install_arg_page(struct vm_area_struct *vma,
|
|||
set_pte_at(mm, address, pte, pte_mkdirty(pte_mkwrite(mk_pte(
|
||||
page, vma->vm_page_prot))));
|
||||
page_add_anon_rmap(page, vma, address);
|
||||
pte_unmap(pte);
|
||||
spin_unlock(&mm->page_table_lock);
|
||||
pte_unmap_unlock(pte, ptl);
|
||||
|
||||
/* no need for flush_tlb */
|
||||
return;
|
||||
out:
|
||||
spin_unlock(&mm->page_table_lock);
|
||||
out_sig:
|
||||
__free_page(page);
|
||||
force_sig(SIGKILL, current);
|
||||
}
|
||||
|
|
|
@ -779,10 +779,28 @@ static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long a
|
|||
}
|
||||
#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
|
||||
|
||||
#define pte_offset_map_lock(mm, pmd, address, ptlp) \
|
||||
({ \
|
||||
spinlock_t *__ptl = &(mm)->page_table_lock; \
|
||||
pte_t *__pte = pte_offset_map(pmd, address); \
|
||||
*(ptlp) = __ptl; \
|
||||
spin_lock(__ptl); \
|
||||
__pte; \
|
||||
})
|
||||
|
||||
#define pte_unmap_unlock(pte, ptl) do { \
|
||||
spin_unlock(ptl); \
|
||||
pte_unmap(pte); \
|
||||
} while (0)
|
||||
|
||||
#define pte_alloc_map(mm, pmd, address) \
|
||||
((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
|
||||
NULL: pte_offset_map(pmd, address))
|
||||
|
||||
#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
|
||||
((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
|
||||
NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
|
||||
|
||||
#define pte_alloc_kernel(pmd, address) \
|
||||
((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
|
||||
NULL: pte_offset_kernel(pmd, address))
|
||||
|
|
|
@ -255,7 +255,6 @@ static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
|
|||
/*
|
||||
* Link in the new vma and copy the page table entries.
|
||||
*/
|
||||
spin_lock(&mm->page_table_lock);
|
||||
*pprev = tmp;
|
||||
pprev = &tmp->vm_next;
|
||||
|
||||
|
@ -265,7 +264,6 @@ static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
|
|||
|
||||
mm->map_count++;
|
||||
retval = copy_page_range(mm, oldmm, tmp);
|
||||
spin_unlock(&mm->page_table_lock);
|
||||
|
||||
if (tmp->vm_ops && tmp->vm_ops->open)
|
||||
tmp->vm_ops->open(tmp);
|
||||
|
|
48
mm/fremap.c
48
mm/fremap.c
|
@ -63,23 +63,20 @@ int install_page(struct mm_struct *mm, struct vm_area_struct *vma,
|
|||
pud_t *pud;
|
||||
pgd_t *pgd;
|
||||
pte_t pte_val;
|
||||
spinlock_t *ptl;
|
||||
|
||||
BUG_ON(vma->vm_flags & VM_RESERVED);
|
||||
|
||||
pgd = pgd_offset(mm, addr);
|
||||
spin_lock(&mm->page_table_lock);
|
||||
|
||||
pud = pud_alloc(mm, pgd, addr);
|
||||
if (!pud)
|
||||
goto err_unlock;
|
||||
|
||||
goto out;
|
||||
pmd = pmd_alloc(mm, pud, addr);
|
||||
if (!pmd)
|
||||
goto err_unlock;
|
||||
|
||||
pte = pte_alloc_map(mm, pmd, addr);
|
||||
goto out;
|
||||
pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
|
||||
if (!pte)
|
||||
goto err_unlock;
|
||||
goto out;
|
||||
|
||||
/*
|
||||
* This page may have been truncated. Tell the
|
||||
|
@ -89,10 +86,10 @@ int install_page(struct mm_struct *mm, struct vm_area_struct *vma,
|
|||
inode = vma->vm_file->f_mapping->host;
|
||||
size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
|
||||
if (!page->mapping || page->index >= size)
|
||||
goto err_unlock;
|
||||
goto unlock;
|
||||
err = -ENOMEM;
|
||||
if (page_mapcount(page) > INT_MAX/2)
|
||||
goto err_unlock;
|
||||
goto unlock;
|
||||
|
||||
if (pte_none(*pte) || !zap_pte(mm, vma, addr, pte))
|
||||
inc_mm_counter(mm, file_rss);
|
||||
|
@ -101,17 +98,15 @@ int install_page(struct mm_struct *mm, struct vm_area_struct *vma,
|
|||
set_pte_at(mm, addr, pte, mk_pte(page, prot));
|
||||
page_add_file_rmap(page);
|
||||
pte_val = *pte;
|
||||
pte_unmap(pte);
|
||||
update_mmu_cache(vma, addr, pte_val);
|
||||
|
||||
err = 0;
|
||||
err_unlock:
|
||||
spin_unlock(&mm->page_table_lock);
|
||||
unlock:
|
||||
pte_unmap_unlock(pte, ptl);
|
||||
out:
|
||||
return err;
|
||||
}
|
||||
EXPORT_SYMBOL(install_page);
|
||||
|
||||
|
||||
/*
|
||||
* Install a file pte to a given virtual memory address, release any
|
||||
* previously existing mapping.
|
||||
|
@ -125,23 +120,20 @@ int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma,
|
|||
pud_t *pud;
|
||||
pgd_t *pgd;
|
||||
pte_t pte_val;
|
||||
spinlock_t *ptl;
|
||||
|
||||
BUG_ON(vma->vm_flags & VM_RESERVED);
|
||||
|
||||
pgd = pgd_offset(mm, addr);
|
||||
spin_lock(&mm->page_table_lock);
|
||||
|
||||
pud = pud_alloc(mm, pgd, addr);
|
||||
if (!pud)
|
||||
goto err_unlock;
|
||||
|
||||
goto out;
|
||||
pmd = pmd_alloc(mm, pud, addr);
|
||||
if (!pmd)
|
||||
goto err_unlock;
|
||||
|
||||
pte = pte_alloc_map(mm, pmd, addr);
|
||||
goto out;
|
||||
pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
|
||||
if (!pte)
|
||||
goto err_unlock;
|
||||
goto out;
|
||||
|
||||
if (!pte_none(*pte) && zap_pte(mm, vma, addr, pte)) {
|
||||
update_hiwater_rss(mm);
|
||||
|
@ -150,17 +142,13 @@ int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma,
|
|||
|
||||
set_pte_at(mm, addr, pte, pgoff_to_pte(pgoff));
|
||||
pte_val = *pte;
|
||||
pte_unmap(pte);
|
||||
update_mmu_cache(vma, addr, pte_val);
|
||||
spin_unlock(&mm->page_table_lock);
|
||||
return 0;
|
||||
|
||||
err_unlock:
|
||||
spin_unlock(&mm->page_table_lock);
|
||||
pte_unmap_unlock(pte, ptl);
|
||||
err = 0;
|
||||
out:
|
||||
return err;
|
||||
}
|
||||
|
||||
|
||||
/***
|
||||
* sys_remap_file_pages - remap arbitrary pages of a shared backing store
|
||||
* file within an existing vma.
|
||||
|
|
12
mm/hugetlb.c
12
mm/hugetlb.c
|
@ -277,12 +277,15 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
|
|||
unsigned long addr;
|
||||
|
||||
for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
|
||||
src_pte = huge_pte_offset(src, addr);
|
||||
if (!src_pte)
|
||||
continue;
|
||||
dst_pte = huge_pte_alloc(dst, addr);
|
||||
if (!dst_pte)
|
||||
goto nomem;
|
||||
spin_lock(&dst->page_table_lock);
|
||||
spin_lock(&src->page_table_lock);
|
||||
src_pte = huge_pte_offset(src, addr);
|
||||
if (src_pte && !pte_none(*src_pte)) {
|
||||
if (!pte_none(*src_pte)) {
|
||||
entry = *src_pte;
|
||||
ptepage = pte_page(entry);
|
||||
get_page(ptepage);
|
||||
|
@ -290,6 +293,7 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
|
|||
set_huge_pte_at(dst, addr, dst_pte, entry);
|
||||
}
|
||||
spin_unlock(&src->page_table_lock);
|
||||
spin_unlock(&dst->page_table_lock);
|
||||
}
|
||||
return 0;
|
||||
|
||||
|
@ -354,7 +358,6 @@ int hugetlb_prefault(struct address_space *mapping, struct vm_area_struct *vma)
|
|||
|
||||
hugetlb_prefault_arch_hook(mm);
|
||||
|
||||
spin_lock(&mm->page_table_lock);
|
||||
for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
|
||||
unsigned long idx;
|
||||
pte_t *pte = huge_pte_alloc(mm, addr);
|
||||
|
@ -389,11 +392,12 @@ int hugetlb_prefault(struct address_space *mapping, struct vm_area_struct *vma)
|
|||
goto out;
|
||||
}
|
||||
}
|
||||
spin_lock(&mm->page_table_lock);
|
||||
add_mm_counter(mm, file_rss, HPAGE_SIZE / PAGE_SIZE);
|
||||
set_huge_pte_at(mm, addr, pte, make_huge_pte(vma, page));
|
||||
spin_unlock(&mm->page_table_lock);
|
||||
}
|
||||
out:
|
||||
spin_unlock(&mm->page_table_lock);
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
|
104
mm/memory.c
104
mm/memory.c
|
@ -282,14 +282,11 @@ void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
|
|||
|
||||
int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
|
||||
{
|
||||
struct page *new;
|
||||
|
||||
spin_unlock(&mm->page_table_lock);
|
||||
new = pte_alloc_one(mm, address);
|
||||
spin_lock(&mm->page_table_lock);
|
||||
struct page *new = pte_alloc_one(mm, address);
|
||||
if (!new)
|
||||
return -ENOMEM;
|
||||
|
||||
spin_lock(&mm->page_table_lock);
|
||||
if (pmd_present(*pmd)) /* Another has populated it */
|
||||
pte_free(new);
|
||||
else {
|
||||
|
@ -297,6 +294,7 @@ int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
|
|||
inc_page_state(nr_page_table_pages);
|
||||
pmd_populate(mm, pmd, new);
|
||||
}
|
||||
spin_unlock(&mm->page_table_lock);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -344,9 +342,6 @@ void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
|
|||
* copy one vm_area from one task to the other. Assumes the page tables
|
||||
* already present in the new task to be cleared in the whole range
|
||||
* covered by this vma.
|
||||
*
|
||||
* dst->page_table_lock is held on entry and exit,
|
||||
* but may be dropped within p[mg]d_alloc() and pte_alloc_map().
|
||||
*/
|
||||
|
||||
static inline void
|
||||
|
@ -419,17 +414,19 @@ static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
|
|||
unsigned long addr, unsigned long end)
|
||||
{
|
||||
pte_t *src_pte, *dst_pte;
|
||||
spinlock_t *src_ptl, *dst_ptl;
|
||||
int progress = 0;
|
||||
int rss[2];
|
||||
|
||||
again:
|
||||
rss[1] = rss[0] = 0;
|
||||
dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr);
|
||||
dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
|
||||
if (!dst_pte)
|
||||
return -ENOMEM;
|
||||
src_pte = pte_offset_map_nested(src_pmd, addr);
|
||||
src_ptl = &src_mm->page_table_lock;
|
||||
spin_lock(src_ptl);
|
||||
|
||||
spin_lock(&src_mm->page_table_lock);
|
||||
do {
|
||||
/*
|
||||
* We are holding two locks at this point - either of them
|
||||
|
@ -438,8 +435,8 @@ again:
|
|||
if (progress >= 32) {
|
||||
progress = 0;
|
||||
if (need_resched() ||
|
||||
need_lockbreak(&src_mm->page_table_lock) ||
|
||||
need_lockbreak(&dst_mm->page_table_lock))
|
||||
need_lockbreak(src_ptl) ||
|
||||
need_lockbreak(dst_ptl))
|
||||
break;
|
||||
}
|
||||
if (pte_none(*src_pte)) {
|
||||
|
@ -449,12 +446,12 @@ again:
|
|||
copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
|
||||
progress += 8;
|
||||
} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
|
||||
spin_unlock(&src_mm->page_table_lock);
|
||||
|
||||
spin_unlock(src_ptl);
|
||||
pte_unmap_nested(src_pte - 1);
|
||||
pte_unmap(dst_pte - 1);
|
||||
add_mm_rss(dst_mm, rss[0], rss[1]);
|
||||
cond_resched_lock(&dst_mm->page_table_lock);
|
||||
pte_unmap_unlock(dst_pte - 1, dst_ptl);
|
||||
cond_resched();
|
||||
if (addr != end)
|
||||
goto again;
|
||||
return 0;
|
||||
|
@ -1049,8 +1046,9 @@ static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
|
|||
unsigned long addr, unsigned long end, pgprot_t prot)
|
||||
{
|
||||
pte_t *pte;
|
||||
spinlock_t *ptl;
|
||||
|
||||
pte = pte_alloc_map(mm, pmd, addr);
|
||||
pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
|
||||
if (!pte)
|
||||
return -ENOMEM;
|
||||
do {
|
||||
|
@ -1062,7 +1060,7 @@ static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
|
|||
BUG_ON(!pte_none(*pte));
|
||||
set_pte_at(mm, addr, pte, zero_pte);
|
||||
} while (pte++, addr += PAGE_SIZE, addr != end);
|
||||
pte_unmap(pte - 1);
|
||||
pte_unmap_unlock(pte - 1, ptl);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -1112,14 +1110,12 @@ int zeromap_page_range(struct vm_area_struct *vma,
|
|||
BUG_ON(addr >= end);
|
||||
pgd = pgd_offset(mm, addr);
|
||||
flush_cache_range(vma, addr, end);
|
||||
spin_lock(&mm->page_table_lock);
|
||||
do {
|
||||
next = pgd_addr_end(addr, end);
|
||||
err = zeromap_pud_range(mm, pgd, addr, next, prot);
|
||||
if (err)
|
||||
break;
|
||||
} while (pgd++, addr = next, addr != end);
|
||||
spin_unlock(&mm->page_table_lock);
|
||||
return err;
|
||||
}
|
||||
|
||||
|
@ -1133,8 +1129,9 @@ static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
|
|||
unsigned long pfn, pgprot_t prot)
|
||||
{
|
||||
pte_t *pte;
|
||||
spinlock_t *ptl;
|
||||
|
||||
pte = pte_alloc_map(mm, pmd, addr);
|
||||
pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
|
||||
if (!pte)
|
||||
return -ENOMEM;
|
||||
do {
|
||||
|
@ -1142,7 +1139,7 @@ static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
|
|||
set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
|
||||
pfn++;
|
||||
} while (pte++, addr += PAGE_SIZE, addr != end);
|
||||
pte_unmap(pte - 1);
|
||||
pte_unmap_unlock(pte - 1, ptl);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -1210,7 +1207,6 @@ int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
|
|||
pfn -= addr >> PAGE_SHIFT;
|
||||
pgd = pgd_offset(mm, addr);
|
||||
flush_cache_range(vma, addr, end);
|
||||
spin_lock(&mm->page_table_lock);
|
||||
do {
|
||||
next = pgd_addr_end(addr, end);
|
||||
err = remap_pud_range(mm, pgd, addr, next,
|
||||
|
@ -1218,7 +1214,6 @@ int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
|
|||
if (err)
|
||||
break;
|
||||
} while (pgd++, addr = next, addr != end);
|
||||
spin_unlock(&mm->page_table_lock);
|
||||
return err;
|
||||
}
|
||||
EXPORT_SYMBOL(remap_pfn_range);
|
||||
|
@ -1985,17 +1980,9 @@ static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
|
|||
* with external mmu caches can use to update those (ie the Sparc or
|
||||
* PowerPC hashed page tables that act as extended TLBs).
|
||||
*
|
||||
* Note the "page_table_lock". It is to protect against kswapd removing
|
||||
* pages from under us. Note that kswapd only ever _removes_ pages, never
|
||||
* adds them. As such, once we have noticed that the page is not present,
|
||||
* we can drop the lock early.
|
||||
*
|
||||
* The adding of pages is protected by the MM semaphore (which we hold),
|
||||
* so we don't need to worry about a page being suddenly been added into
|
||||
* our VM.
|
||||
*
|
||||
* We enter with the pagetable spinlock held, we are supposed to
|
||||
* release it when done.
|
||||
* We enter with non-exclusive mmap_sem (to exclude vma changes,
|
||||
* but allow concurrent faults), and pte mapped but not yet locked.
|
||||
* We return with mmap_sem still held, but pte unmapped and unlocked.
|
||||
*/
|
||||
static inline int handle_pte_fault(struct mm_struct *mm,
|
||||
struct vm_area_struct *vma, unsigned long address,
|
||||
|
@ -2003,6 +1990,7 @@ static inline int handle_pte_fault(struct mm_struct *mm,
|
|||
{
|
||||
pte_t entry;
|
||||
|
||||
spin_lock(&mm->page_table_lock);
|
||||
entry = *pte;
|
||||
if (!pte_present(entry)) {
|
||||
if (pte_none(entry)) {
|
||||
|
@ -2051,30 +2039,18 @@ int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
|
|||
if (unlikely(is_vm_hugetlb_page(vma)))
|
||||
return hugetlb_fault(mm, vma, address, write_access);
|
||||
|
||||
/*
|
||||
* We need the page table lock to synchronize with kswapd
|
||||
* and the SMP-safe atomic PTE updates.
|
||||
*/
|
||||
pgd = pgd_offset(mm, address);
|
||||
spin_lock(&mm->page_table_lock);
|
||||
|
||||
pud = pud_alloc(mm, pgd, address);
|
||||
if (!pud)
|
||||
goto oom;
|
||||
|
||||
return VM_FAULT_OOM;
|
||||
pmd = pmd_alloc(mm, pud, address);
|
||||
if (!pmd)
|
||||
goto oom;
|
||||
|
||||
return VM_FAULT_OOM;
|
||||
pte = pte_alloc_map(mm, pmd, address);
|
||||
if (!pte)
|
||||
goto oom;
|
||||
|
||||
return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
|
||||
return VM_FAULT_OOM;
|
||||
|
||||
oom:
|
||||
spin_unlock(&mm->page_table_lock);
|
||||
return VM_FAULT_OOM;
|
||||
return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
|
||||
}
|
||||
|
||||
#ifndef __PAGETABLE_PUD_FOLDED
|
||||
|
@ -2084,24 +2060,16 @@ int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
|
|||
*/
|
||||
int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
|
||||
{
|
||||
pud_t *new;
|
||||
|
||||
if (mm != &init_mm) /* Temporary bridging hack */
|
||||
spin_unlock(&mm->page_table_lock);
|
||||
new = pud_alloc_one(mm, address);
|
||||
if (!new) {
|
||||
if (mm != &init_mm) /* Temporary bridging hack */
|
||||
spin_lock(&mm->page_table_lock);
|
||||
pud_t *new = pud_alloc_one(mm, address);
|
||||
if (!new)
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
spin_lock(&mm->page_table_lock);
|
||||
if (pgd_present(*pgd)) /* Another has populated it */
|
||||
pud_free(new);
|
||||
else
|
||||
pgd_populate(mm, pgd, new);
|
||||
if (mm == &init_mm) /* Temporary bridging hack */
|
||||
spin_unlock(&mm->page_table_lock);
|
||||
spin_unlock(&mm->page_table_lock);
|
||||
return 0;
|
||||
}
|
||||
#endif /* __PAGETABLE_PUD_FOLDED */
|
||||
|
@ -2113,16 +2081,9 @@ int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
|
|||
*/
|
||||
int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
|
||||
{
|
||||
pmd_t *new;
|
||||
|
||||
if (mm != &init_mm) /* Temporary bridging hack */
|
||||
spin_unlock(&mm->page_table_lock);
|
||||
new = pmd_alloc_one(mm, address);
|
||||
if (!new) {
|
||||
if (mm != &init_mm) /* Temporary bridging hack */
|
||||
spin_lock(&mm->page_table_lock);
|
||||
pmd_t *new = pmd_alloc_one(mm, address);
|
||||
if (!new)
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
spin_lock(&mm->page_table_lock);
|
||||
#ifndef __ARCH_HAS_4LEVEL_HACK
|
||||
|
@ -2136,8 +2097,7 @@ int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
|
|||
else
|
||||
pgd_populate(mm, pud, new);
|
||||
#endif /* __ARCH_HAS_4LEVEL_HACK */
|
||||
if (mm == &init_mm) /* Temporary bridging hack */
|
||||
spin_unlock(&mm->page_table_lock);
|
||||
spin_unlock(&mm->page_table_lock);
|
||||
return 0;
|
||||
}
|
||||
#endif /* __PAGETABLE_PMD_FOLDED */
|
||||
|
|
27
mm/mremap.c
27
mm/mremap.c
|
@ -28,9 +28,6 @@ static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr)
|
|||
pud_t *pud;
|
||||
pmd_t *pmd;
|
||||
|
||||
/*
|
||||
* We don't need page_table_lock: we have mmap_sem exclusively.
|
||||
*/
|
||||
pgd = pgd_offset(mm, addr);
|
||||
if (pgd_none_or_clear_bad(pgd))
|
||||
return NULL;
|
||||
|
@ -50,25 +47,20 @@ static pmd_t *alloc_new_pmd(struct mm_struct *mm, unsigned long addr)
|
|||
{
|
||||
pgd_t *pgd;
|
||||
pud_t *pud;
|
||||
pmd_t *pmd = NULL;
|
||||
pmd_t *pmd;
|
||||
|
||||
/*
|
||||
* We do need page_table_lock: because allocators expect that.
|
||||
*/
|
||||
spin_lock(&mm->page_table_lock);
|
||||
pgd = pgd_offset(mm, addr);
|
||||
pud = pud_alloc(mm, pgd, addr);
|
||||
if (!pud)
|
||||
goto out;
|
||||
return NULL;
|
||||
|
||||
pmd = pmd_alloc(mm, pud, addr);
|
||||
if (!pmd)
|
||||
goto out;
|
||||
return NULL;
|
||||
|
||||
if (!pmd_present(*pmd) && __pte_alloc(mm, pmd, addr))
|
||||
pmd = NULL;
|
||||
out:
|
||||
spin_unlock(&mm->page_table_lock);
|
||||
return NULL;
|
||||
|
||||
return pmd;
|
||||
}
|
||||
|
||||
|
@ -80,6 +72,7 @@ static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd,
|
|||
struct address_space *mapping = NULL;
|
||||
struct mm_struct *mm = vma->vm_mm;
|
||||
pte_t *old_pte, *new_pte, pte;
|
||||
spinlock_t *old_ptl;
|
||||
|
||||
if (vma->vm_file) {
|
||||
/*
|
||||
|
@ -95,9 +88,8 @@ static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd,
|
|||
new_vma->vm_truncate_count = 0;
|
||||
}
|
||||
|
||||
spin_lock(&mm->page_table_lock);
|
||||
old_pte = pte_offset_map(old_pmd, old_addr);
|
||||
new_pte = pte_offset_map_nested(new_pmd, new_addr);
|
||||
old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl);
|
||||
new_pte = pte_offset_map_nested(new_pmd, new_addr);
|
||||
|
||||
for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE,
|
||||
new_pte++, new_addr += PAGE_SIZE) {
|
||||
|
@ -110,8 +102,7 @@ static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd,
|
|||
}
|
||||
|
||||
pte_unmap_nested(new_pte - 1);
|
||||
pte_unmap(old_pte - 1);
|
||||
spin_unlock(&mm->page_table_lock);
|
||||
pte_unmap_unlock(old_pte - 1, old_ptl);
|
||||
if (mapping)
|
||||
spin_unlock(&mapping->i_mmap_lock);
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue