igb: cleanup some of the code related to hw timestamping
The code for the hw timestamping is a bit bulky and making some of the functions difficult to read. In order to clean things up a bit I am moving the timestamping operations into seperate functions. Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
parent
4fc82adfb0
commit
c5b9bd5e4f
|
@ -66,6 +66,8 @@ extern void igb_rx_fifo_flush_82575(struct e1000_hw *hw);
|
|||
E1000_EICR_RX_QUEUE3)
|
||||
|
||||
/* Immediate Interrupt Rx (A.K.A. Low Latency Interrupt) */
|
||||
#define E1000_IMIREXT_SIZE_BP 0x00001000 /* Packet size bypass */
|
||||
#define E1000_IMIREXT_CTRL_BP 0x00080000 /* Bypass check of ctrl bits */
|
||||
|
||||
/* Receive Descriptor - Advanced */
|
||||
union e1000_adv_rx_desc {
|
||||
|
@ -98,6 +100,7 @@ union e1000_adv_rx_desc {
|
|||
|
||||
#define E1000_RXDADV_HDRBUFLEN_MASK 0x7FE0
|
||||
#define E1000_RXDADV_HDRBUFLEN_SHIFT 5
|
||||
#define E1000_RXDADV_STAT_TS 0x10000 /* Pkt was time stamped */
|
||||
|
||||
/* Transmit Descriptor - Advanced */
|
||||
union e1000_adv_tx_desc {
|
||||
|
@ -167,6 +170,17 @@ struct e1000_adv_tx_context_desc {
|
|||
#define E1000_DCA_TXCTRL_CPUID_SHIFT 24 /* Tx CPUID now in the last byte */
|
||||
#define E1000_DCA_RXCTRL_CPUID_SHIFT 24 /* Rx CPUID now in the last byte */
|
||||
|
||||
/* ETQF register bit definitions */
|
||||
#define E1000_ETQF_FILTER_ENABLE (1 << 26)
|
||||
#define E1000_ETQF_1588 (1 << 30)
|
||||
|
||||
/* FTQF register bit definitions */
|
||||
#define E1000_FTQF_VF_BP 0x00008000
|
||||
#define E1000_FTQF_1588_TIME_STAMP 0x08000000
|
||||
#define E1000_FTQF_MASK 0xF0000000
|
||||
#define E1000_FTQF_MASK_PROTO_BP 0x10000000
|
||||
#define E1000_FTQF_MASK_SOURCE_PORT_BP 0x80000000
|
||||
|
||||
#define E1000_NVM_APME_82575 0x0400
|
||||
#define MAX_NUM_VFS 8
|
||||
|
||||
|
|
|
@ -435,6 +435,39 @@
|
|||
/* Flow Control */
|
||||
#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */
|
||||
|
||||
#define E1000_TSYNCTXCTL_VALID 0x00000001 /* tx timestamp valid */
|
||||
#define E1000_TSYNCTXCTL_ENABLED 0x00000010 /* enable tx timestampping */
|
||||
|
||||
#define E1000_TSYNCRXCTL_VALID 0x00000001 /* rx timestamp valid */
|
||||
#define E1000_TSYNCRXCTL_TYPE_MASK 0x0000000E /* rx type mask */
|
||||
#define E1000_TSYNCRXCTL_TYPE_L2_V2 0x00
|
||||
#define E1000_TSYNCRXCTL_TYPE_L4_V1 0x02
|
||||
#define E1000_TSYNCRXCTL_TYPE_L2_L4_V2 0x04
|
||||
#define E1000_TSYNCRXCTL_TYPE_ALL 0x08
|
||||
#define E1000_TSYNCRXCTL_TYPE_EVENT_V2 0x0A
|
||||
#define E1000_TSYNCRXCTL_ENABLED 0x00000010 /* enable rx timestampping */
|
||||
|
||||
#define E1000_TSYNCRXCFG_PTP_V1_CTRLT_MASK 0x000000FF
|
||||
#define E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE 0x00
|
||||
#define E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE 0x01
|
||||
#define E1000_TSYNCRXCFG_PTP_V1_FOLLOWUP_MESSAGE 0x02
|
||||
#define E1000_TSYNCRXCFG_PTP_V1_DELAY_RESP_MESSAGE 0x03
|
||||
#define E1000_TSYNCRXCFG_PTP_V1_MANAGEMENT_MESSAGE 0x04
|
||||
|
||||
#define E1000_TSYNCRXCFG_PTP_V2_MSGID_MASK 0x00000F00
|
||||
#define E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE 0x0000
|
||||
#define E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE 0x0100
|
||||
#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_REQ_MESSAGE 0x0200
|
||||
#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_RESP_MESSAGE 0x0300
|
||||
#define E1000_TSYNCRXCFG_PTP_V2_FOLLOWUP_MESSAGE 0x0800
|
||||
#define E1000_TSYNCRXCFG_PTP_V2_DELAY_RESP_MESSAGE 0x0900
|
||||
#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_FOLLOWUP_MESSAGE 0x0A00
|
||||
#define E1000_TSYNCRXCFG_PTP_V2_ANNOUNCE_MESSAGE 0x0B00
|
||||
#define E1000_TSYNCRXCFG_PTP_V2_SIGNALLING_MESSAGE 0x0C00
|
||||
#define E1000_TSYNCRXCFG_PTP_V2_MANAGEMENT_MESSAGE 0x0D00
|
||||
|
||||
#define E1000_TIMINCA_16NS_SHIFT 24
|
||||
|
||||
/* PCI Express Control */
|
||||
#define E1000_GCR_CMPL_TMOUT_MASK 0x0000F000
|
||||
#define E1000_GCR_CMPL_TMOUT_10ms 0x00001000
|
||||
|
|
|
@ -76,59 +76,18 @@
|
|||
#define E1000_FCRTV 0x02460 /* Flow Control Refresh Timer Value - RW */
|
||||
|
||||
/* IEEE 1588 TIMESYNCH */
|
||||
#define E1000_TSYNCTXCTL 0x0B614
|
||||
#define E1000_TSYNCTXCTL_VALID (1<<0)
|
||||
#define E1000_TSYNCTXCTL_ENABLED (1<<4)
|
||||
#define E1000_TSYNCRXCTL 0x0B620
|
||||
#define E1000_TSYNCRXCTL_VALID (1<<0)
|
||||
#define E1000_TSYNCRXCTL_ENABLED (1<<4)
|
||||
enum {
|
||||
E1000_TSYNCRXCTL_TYPE_L2_V2 = 0,
|
||||
E1000_TSYNCRXCTL_TYPE_L4_V1 = (1<<1),
|
||||
E1000_TSYNCRXCTL_TYPE_L2_L4_V2 = (1<<2),
|
||||
E1000_TSYNCRXCTL_TYPE_ALL = (1<<3),
|
||||
E1000_TSYNCRXCTL_TYPE_EVENT_V2 = (1<<3) | (1<<1),
|
||||
};
|
||||
#define E1000_TSYNCRXCFG 0x05F50
|
||||
enum {
|
||||
E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE = 0<<0,
|
||||
E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE = 1<<0,
|
||||
E1000_TSYNCRXCFG_PTP_V1_FOLLOWUP_MESSAGE = 2<<0,
|
||||
E1000_TSYNCRXCFG_PTP_V1_DELAY_RESP_MESSAGE = 3<<0,
|
||||
E1000_TSYNCRXCFG_PTP_V1_MANAGEMENT_MESSAGE = 4<<0,
|
||||
|
||||
E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE = 0<<8,
|
||||
E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE = 1<<8,
|
||||
E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_REQ_MESSAGE = 2<<8,
|
||||
E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_RESP_MESSAGE = 3<<8,
|
||||
E1000_TSYNCRXCFG_PTP_V2_FOLLOWUP_MESSAGE = 8<<8,
|
||||
E1000_TSYNCRXCFG_PTP_V2_DELAY_RESP_MESSAGE = 9<<8,
|
||||
E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_FOLLOWUP_MESSAGE = 0xA<<8,
|
||||
E1000_TSYNCRXCFG_PTP_V2_ANNOUNCE_MESSAGE = 0xB<<8,
|
||||
E1000_TSYNCRXCFG_PTP_V2_SIGNALLING_MESSAGE = 0xC<<8,
|
||||
E1000_TSYNCRXCFG_PTP_V2_MANAGEMENT_MESSAGE = 0xD<<8,
|
||||
};
|
||||
#define E1000_SYSTIML 0x0B600
|
||||
#define E1000_SYSTIMH 0x0B604
|
||||
#define E1000_TIMINCA 0x0B608
|
||||
|
||||
#define E1000_RXMTRL 0x0B634
|
||||
#define E1000_RXSTMPL 0x0B624
|
||||
#define E1000_RXSTMPH 0x0B628
|
||||
#define E1000_RXSATRL 0x0B62C
|
||||
#define E1000_RXSATRH 0x0B630
|
||||
|
||||
#define E1000_TXSTMPL 0x0B618
|
||||
#define E1000_TXSTMPH 0x0B61C
|
||||
|
||||
#define E1000_ETQF0 0x05CB0
|
||||
#define E1000_ETQF1 0x05CB4
|
||||
#define E1000_ETQF2 0x05CB8
|
||||
#define E1000_ETQF3 0x05CBC
|
||||
#define E1000_ETQF4 0x05CC0
|
||||
#define E1000_ETQF5 0x05CC4
|
||||
#define E1000_ETQF6 0x05CC8
|
||||
#define E1000_ETQF7 0x05CCC
|
||||
#define E1000_TSYNCRXCTL 0x0B620 /* Rx Time Sync Control register - RW */
|
||||
#define E1000_TSYNCTXCTL 0x0B614 /* Tx Time Sync Control register - RW */
|
||||
#define E1000_TSYNCRXCFG 0x05F50 /* Time Sync Rx Configuration - RW */
|
||||
#define E1000_RXSTMPL 0x0B624 /* Rx timestamp Low - RO */
|
||||
#define E1000_RXSTMPH 0x0B628 /* Rx timestamp High - RO */
|
||||
#define E1000_RXSATRL 0x0B62C /* Rx timestamp attribute low - RO */
|
||||
#define E1000_RXSATRH 0x0B630 /* Rx timestamp attribute high - RO */
|
||||
#define E1000_TXSTMPL 0x0B618 /* Tx timestamp value Low - RO */
|
||||
#define E1000_TXSTMPH 0x0B61C /* Tx timestamp value High - RO */
|
||||
#define E1000_SYSTIML 0x0B600 /* System time register Low - RO */
|
||||
#define E1000_SYSTIMH 0x0B604 /* System time register High - RO */
|
||||
#define E1000_TIMINCA 0x0B608 /* Increment attributes register - RW */
|
||||
|
||||
/* Filtering Registers */
|
||||
#define E1000_SAQF(_n) (0x5980 + 4 * (_n))
|
||||
|
|
|
@ -323,6 +323,7 @@ struct igb_adapter {
|
|||
#define IGB_FLAG_QUAD_PORT_A (1 << 2)
|
||||
#define IGB_FLAG_QUEUE_PAIRS (1 << 3)
|
||||
|
||||
#define IGB_82576_TSYNC_SHIFT 19
|
||||
enum e1000_state_t {
|
||||
__IGB_TESTING,
|
||||
__IGB_RESETTING,
|
||||
|
|
|
@ -219,38 +219,6 @@ MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
|
|||
MODULE_LICENSE("GPL");
|
||||
MODULE_VERSION(DRV_VERSION);
|
||||
|
||||
/**
|
||||
* Scale the NIC clock cycle by a large factor so that
|
||||
* relatively small clock corrections can be added or
|
||||
* substracted at each clock tick. The drawbacks of a
|
||||
* large factor are a) that the clock register overflows
|
||||
* more quickly (not such a big deal) and b) that the
|
||||
* increment per tick has to fit into 24 bits.
|
||||
*
|
||||
* Note that
|
||||
* TIMINCA = IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS *
|
||||
* IGB_TSYNC_SCALE
|
||||
* TIMINCA += TIMINCA * adjustment [ppm] / 1e9
|
||||
*
|
||||
* The base scale factor is intentionally a power of two
|
||||
* so that the division in %struct timecounter can be done with
|
||||
* a shift.
|
||||
*/
|
||||
#define IGB_TSYNC_SHIFT (19)
|
||||
#define IGB_TSYNC_SCALE (1<<IGB_TSYNC_SHIFT)
|
||||
|
||||
/**
|
||||
* The duration of one clock cycle of the NIC.
|
||||
*
|
||||
* @todo This hard-coded value is part of the specification and might change
|
||||
* in future hardware revisions. Add revision check.
|
||||
*/
|
||||
#define IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS 16
|
||||
|
||||
#if (IGB_TSYNC_SCALE * IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS) >= (1<<24)
|
||||
# error IGB_TSYNC_SCALE and/or IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS are too large to fit into TIMINCA
|
||||
#endif
|
||||
|
||||
/**
|
||||
* igb_read_clock - read raw cycle counter (to be used by time counter)
|
||||
*/
|
||||
|
@ -259,11 +227,11 @@ static cycle_t igb_read_clock(const struct cyclecounter *tc)
|
|||
struct igb_adapter *adapter =
|
||||
container_of(tc, struct igb_adapter, cycles);
|
||||
struct e1000_hw *hw = &adapter->hw;
|
||||
u64 stamp;
|
||||
|
||||
stamp = rd32(E1000_SYSTIML);
|
||||
stamp |= (u64)rd32(E1000_SYSTIMH) << 32ULL;
|
||||
u64 stamp = 0;
|
||||
int shift = 0;
|
||||
|
||||
stamp |= (u64)rd32(E1000_SYSTIML) << shift;
|
||||
stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
|
||||
return stamp;
|
||||
}
|
||||
|
||||
|
@ -1669,8 +1637,11 @@ static int __devinit igb_probe(struct pci_dev *pdev,
|
|||
dev_info(&pdev->dev, "DCA enabled\n");
|
||||
igb_setup_dca(adapter);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
switch (hw->mac.type) {
|
||||
case e1000_82576:
|
||||
/*
|
||||
* Initialize hardware timer: we keep it running just in case
|
||||
* that some program needs it later on.
|
||||
|
@ -1679,28 +1650,28 @@ static int __devinit igb_probe(struct pci_dev *pdev,
|
|||
adapter->cycles.read = igb_read_clock;
|
||||
adapter->cycles.mask = CLOCKSOURCE_MASK(64);
|
||||
adapter->cycles.mult = 1;
|
||||
adapter->cycles.shift = IGB_TSYNC_SHIFT;
|
||||
/**
|
||||
* Scale the NIC clock cycle by a large factor so that
|
||||
* relatively small clock corrections can be added or
|
||||
* substracted at each clock tick. The drawbacks of a large
|
||||
* factor are a) that the clock register overflows more quickly
|
||||
* (not such a big deal) and b) that the increment per tick has
|
||||
* to fit into 24 bits. As a result we need to use a shift of
|
||||
* 19 so we can fit a value of 16 into the TIMINCA register.
|
||||
*/
|
||||
adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
|
||||
wr32(E1000_TIMINCA,
|
||||
(1<<24) |
|
||||
IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS * IGB_TSYNC_SCALE);
|
||||
#if 0
|
||||
/*
|
||||
* Avoid rollover while we initialize by resetting the time counter.
|
||||
*/
|
||||
wr32(E1000_SYSTIML, 0x00000000);
|
||||
wr32(E1000_SYSTIMH, 0x00000000);
|
||||
#else
|
||||
/*
|
||||
* Set registers so that rollover occurs soon to test this.
|
||||
*/
|
||||
(1 << E1000_TIMINCA_16NS_SHIFT) |
|
||||
(16 << IGB_82576_TSYNC_SHIFT));
|
||||
|
||||
/* Set registers so that rollover occurs soon to test this. */
|
||||
wr32(E1000_SYSTIML, 0x00000000);
|
||||
wr32(E1000_SYSTIMH, 0xFF800000);
|
||||
#endif
|
||||
wrfl();
|
||||
|
||||
timecounter_init(&adapter->clock,
|
||||
&adapter->cycles,
|
||||
ktime_to_ns(ktime_get_real()));
|
||||
|
||||
/*
|
||||
* Synchronize our NIC clock against system wall clock. NIC
|
||||
* time stamp reading requires ~3us per sample, each sample
|
||||
|
@ -1712,16 +1683,12 @@ static int __devinit igb_probe(struct pci_dev *pdev,
|
|||
adapter->compare.target = ktime_get_real;
|
||||
adapter->compare.num_samples = 10;
|
||||
timecompare_update(&adapter->compare, 0);
|
||||
|
||||
#ifdef DEBUG
|
||||
{
|
||||
char buffer[160];
|
||||
printk(KERN_DEBUG
|
||||
"igb: %s: hw %p initialized timer\n",
|
||||
igb_get_time_str(adapter, buffer),
|
||||
&adapter->hw);
|
||||
break;
|
||||
case e1000_82575:
|
||||
/* 82575 does not support timesync */
|
||||
default:
|
||||
break;
|
||||
}
|
||||
#endif
|
||||
|
||||
dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
|
||||
/* print bus type/speed/width info */
|
||||
|
@ -3596,7 +3563,7 @@ netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
|
|||
u8 hdr_len = 0;
|
||||
int count = 0;
|
||||
int tso = 0;
|
||||
union skb_shared_tx *shtx;
|
||||
union skb_shared_tx *shtx = skb_tx(skb);
|
||||
|
||||
/* need: 1 descriptor per page,
|
||||
* + 2 desc gap to keep tail from touching head,
|
||||
|
@ -3608,16 +3575,6 @@ netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
|
|||
return NETDEV_TX_BUSY;
|
||||
}
|
||||
|
||||
/*
|
||||
* TODO: check that there currently is no other packet with
|
||||
* time stamping in the queue
|
||||
*
|
||||
* When doing time stamping, keep the connection to the socket
|
||||
* a while longer: it is still needed by skb_hwtstamp_tx(),
|
||||
* called either in igb_tx_hwtstamp() or by our caller when
|
||||
* doing software time stamping.
|
||||
*/
|
||||
shtx = skb_tx(skb);
|
||||
if (unlikely(shtx->hardware)) {
|
||||
shtx->in_progress = 1;
|
||||
tx_flags |= IGB_TX_FLAGS_TSTAMP;
|
||||
|
@ -4633,37 +4590,54 @@ static int igb_poll(struct napi_struct *napi, int budget)
|
|||
}
|
||||
|
||||
/**
|
||||
* igb_hwtstamp - utility function which checks for TX time stamp
|
||||
* igb_systim_to_hwtstamp - convert system time value to hw timestamp
|
||||
* @adapter: board private structure
|
||||
* @shhwtstamps: timestamp structure to update
|
||||
* @regval: unsigned 64bit system time value.
|
||||
*
|
||||
* We need to convert the system time value stored in the RX/TXSTMP registers
|
||||
* into a hwtstamp which can be used by the upper level timestamping functions
|
||||
*/
|
||||
static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
|
||||
struct skb_shared_hwtstamps *shhwtstamps,
|
||||
u64 regval)
|
||||
{
|
||||
u64 ns;
|
||||
|
||||
ns = timecounter_cyc2time(&adapter->clock, regval);
|
||||
timecompare_update(&adapter->compare, ns);
|
||||
memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
|
||||
shhwtstamps->hwtstamp = ns_to_ktime(ns);
|
||||
shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
|
||||
}
|
||||
|
||||
/**
|
||||
* igb_tx_hwtstamp - utility function which checks for TX time stamp
|
||||
* @q_vector: pointer to q_vector containing needed info
|
||||
* @skb: packet that was just sent
|
||||
*
|
||||
* If we were asked to do hardware stamping and such a time stamp is
|
||||
* available, then it must have been for this skb here because we only
|
||||
* allow only one such packet into the queue.
|
||||
*/
|
||||
static void igb_tx_hwtstamp(struct igb_adapter *adapter, struct sk_buff *skb)
|
||||
static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
|
||||
{
|
||||
struct igb_adapter *adapter = q_vector->adapter;
|
||||
union skb_shared_tx *shtx = skb_tx(skb);
|
||||
struct e1000_hw *hw = &adapter->hw;
|
||||
|
||||
if (unlikely(shtx->hardware)) {
|
||||
u32 valid = rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID;
|
||||
if (valid) {
|
||||
u64 regval = rd32(E1000_TXSTMPL);
|
||||
u64 ns;
|
||||
struct skb_shared_hwtstamps shhwtstamps;
|
||||
u64 regval;
|
||||
|
||||
memset(&shhwtstamps, 0, sizeof(shhwtstamps));
|
||||
/* if skb does not support hw timestamp or TX stamp not valid exit */
|
||||
if (likely(!shtx->hardware) ||
|
||||
!(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
|
||||
return;
|
||||
|
||||
regval = rd32(E1000_TXSTMPL);
|
||||
regval |= (u64)rd32(E1000_TXSTMPH) << 32;
|
||||
ns = timecounter_cyc2time(&adapter->clock,
|
||||
regval);
|
||||
timecompare_update(&adapter->compare, ns);
|
||||
shhwtstamps.hwtstamp = ns_to_ktime(ns);
|
||||
shhwtstamps.syststamp =
|
||||
timecompare_transform(&adapter->compare, ns);
|
||||
|
||||
igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
|
||||
skb_tstamp_tx(skb, &shhwtstamps);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -4706,7 +4680,7 @@ static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
|
|||
total_packets += segs;
|
||||
total_bytes += bytecount;
|
||||
|
||||
igb_tx_hwtstamp(adapter, skb);
|
||||
igb_tx_hwtstamp(q_vector, skb);
|
||||
}
|
||||
|
||||
igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
|
||||
|
@ -4831,6 +4805,34 @@ static inline void igb_rx_checksum_adv(struct igb_ring *ring,
|
|||
dev_dbg(&ring->pdev->dev, "cksum success: bits %08X\n", status_err);
|
||||
}
|
||||
|
||||
static inline void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
|
||||
struct sk_buff *skb)
|
||||
{
|
||||
struct igb_adapter *adapter = q_vector->adapter;
|
||||
struct e1000_hw *hw = &adapter->hw;
|
||||
u64 regval;
|
||||
|
||||
/*
|
||||
* If this bit is set, then the RX registers contain the time stamp. No
|
||||
* other packet will be time stamped until we read these registers, so
|
||||
* read the registers to make them available again. Because only one
|
||||
* packet can be time stamped at a time, we know that the register
|
||||
* values must belong to this one here and therefore we don't need to
|
||||
* compare any of the additional attributes stored for it.
|
||||
*
|
||||
* If nothing went wrong, then it should have a skb_shared_tx that we
|
||||
* can turn into a skb_shared_hwtstamps.
|
||||
*/
|
||||
if (likely(!(staterr & E1000_RXDADV_STAT_TS)))
|
||||
return;
|
||||
if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
|
||||
return;
|
||||
|
||||
regval = rd32(E1000_RXSTMPL);
|
||||
regval |= (u64)rd32(E1000_RXSTMPH) << 32;
|
||||
|
||||
igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
|
||||
}
|
||||
static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
|
||||
union e1000_adv_rx_desc *rx_desc)
|
||||
{
|
||||
|
@ -4848,10 +4850,8 @@ static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
|
|||
static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
|
||||
int *work_done, int budget)
|
||||
{
|
||||
struct igb_adapter *adapter = q_vector->adapter;
|
||||
struct igb_ring *rx_ring = q_vector->rx_ring;
|
||||
struct net_device *netdev = rx_ring->netdev;
|
||||
struct e1000_hw *hw = &adapter->hw;
|
||||
struct pci_dev *pdev = rx_ring->pdev;
|
||||
union e1000_adv_rx_desc *rx_desc , *next_rxd;
|
||||
struct igb_buffer *buffer_info , *next_buffer;
|
||||
|
@ -4930,52 +4930,12 @@ static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
|
|||
goto next_desc;
|
||||
}
|
||||
send_up:
|
||||
/*
|
||||
* If this bit is set, then the RX registers contain
|
||||
* the time stamp. No other packet will be time
|
||||
* stamped until we read these registers, so read the
|
||||
* registers to make them available again. Because
|
||||
* only one packet can be time stamped at a time, we
|
||||
* know that the register values must belong to this
|
||||
* one here and therefore we don't need to compare
|
||||
* any of the additional attributes stored for it.
|
||||
*
|
||||
* If nothing went wrong, then it should have a
|
||||
* skb_shared_tx that we can turn into a
|
||||
* skb_shared_hwtstamps.
|
||||
*
|
||||
* TODO: can time stamping be triggered (thus locking
|
||||
* the registers) without the packet reaching this point
|
||||
* here? In that case RX time stamping would get stuck.
|
||||
*
|
||||
* TODO: in "time stamp all packets" mode this bit is
|
||||
* not set. Need a global flag for this mode and then
|
||||
* always read the registers. Cannot be done without
|
||||
* a race condition.
|
||||
*/
|
||||
if (unlikely(staterr & E1000_RXD_STAT_TS)) {
|
||||
u64 regval;
|
||||
u64 ns;
|
||||
struct skb_shared_hwtstamps *shhwtstamps =
|
||||
skb_hwtstamps(skb);
|
||||
|
||||
WARN(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID),
|
||||
"igb: no RX time stamp available for time stamped packet");
|
||||
regval = rd32(E1000_RXSTMPL);
|
||||
regval |= (u64)rd32(E1000_RXSTMPH) << 32;
|
||||
ns = timecounter_cyc2time(&adapter->clock, regval);
|
||||
timecompare_update(&adapter->compare, ns);
|
||||
memset(shhwtstamps, 0, sizeof(*shhwtstamps));
|
||||
shhwtstamps->hwtstamp = ns_to_ktime(ns);
|
||||
shhwtstamps->syststamp =
|
||||
timecompare_transform(&adapter->compare, ns);
|
||||
}
|
||||
|
||||
if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
|
||||
dev_kfree_skb_irq(skb);
|
||||
goto next_desc;
|
||||
}
|
||||
|
||||
igb_rx_hwtstamp(q_vector, staterr, skb);
|
||||
total_bytes += skb->len;
|
||||
total_packets++;
|
||||
|
||||
|
@ -5161,13 +5121,11 @@ static int igb_hwtstamp_ioctl(struct net_device *netdev,
|
|||
struct igb_adapter *adapter = netdev_priv(netdev);
|
||||
struct e1000_hw *hw = &adapter->hw;
|
||||
struct hwtstamp_config config;
|
||||
u32 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
|
||||
u32 tsync_rx_ctl_bit = E1000_TSYNCRXCTL_ENABLED;
|
||||
u32 tsync_rx_ctl_type = 0;
|
||||
u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
|
||||
u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
|
||||
u32 tsync_rx_cfg = 0;
|
||||
int is_l4 = 0;
|
||||
int is_l2 = 0;
|
||||
short port = 319; /* PTP */
|
||||
bool is_l4 = false;
|
||||
bool is_l2 = false;
|
||||
u32 regval;
|
||||
|
||||
if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
|
||||
|
@ -5179,10 +5137,8 @@ static int igb_hwtstamp_ioctl(struct net_device *netdev,
|
|||
|
||||
switch (config.tx_type) {
|
||||
case HWTSTAMP_TX_OFF:
|
||||
tsync_tx_ctl_bit = 0;
|
||||
break;
|
||||
tsync_tx_ctl = 0;
|
||||
case HWTSTAMP_TX_ON:
|
||||
tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
|
||||
break;
|
||||
default:
|
||||
return -ERANGE;
|
||||
|
@ -5190,7 +5146,7 @@ static int igb_hwtstamp_ioctl(struct net_device *netdev,
|
|||
|
||||
switch (config.rx_filter) {
|
||||
case HWTSTAMP_FILTER_NONE:
|
||||
tsync_rx_ctl_bit = 0;
|
||||
tsync_rx_ctl = 0;
|
||||
break;
|
||||
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
|
||||
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
|
||||
|
@ -5201,86 +5157,97 @@ static int igb_hwtstamp_ioctl(struct net_device *netdev,
|
|||
* possible to time stamp both Sync and Delay_Req messages
|
||||
* => fall back to time stamping all packets
|
||||
*/
|
||||
tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_ALL;
|
||||
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
|
||||
config.rx_filter = HWTSTAMP_FILTER_ALL;
|
||||
break;
|
||||
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
|
||||
tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
|
||||
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
|
||||
tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
|
||||
is_l4 = 1;
|
||||
is_l4 = true;
|
||||
break;
|
||||
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
|
||||
tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
|
||||
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
|
||||
tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
|
||||
is_l4 = 1;
|
||||
is_l4 = true;
|
||||
break;
|
||||
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
|
||||
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
|
||||
tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
|
||||
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
|
||||
tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
|
||||
is_l2 = 1;
|
||||
is_l4 = 1;
|
||||
is_l2 = true;
|
||||
is_l4 = true;
|
||||
config.rx_filter = HWTSTAMP_FILTER_SOME;
|
||||
break;
|
||||
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
|
||||
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
|
||||
tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
|
||||
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
|
||||
tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
|
||||
is_l2 = 1;
|
||||
is_l4 = 1;
|
||||
is_l2 = true;
|
||||
is_l4 = true;
|
||||
config.rx_filter = HWTSTAMP_FILTER_SOME;
|
||||
break;
|
||||
case HWTSTAMP_FILTER_PTP_V2_EVENT:
|
||||
case HWTSTAMP_FILTER_PTP_V2_SYNC:
|
||||
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
|
||||
tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_EVENT_V2;
|
||||
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
|
||||
config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
|
||||
is_l2 = 1;
|
||||
is_l2 = true;
|
||||
break;
|
||||
default:
|
||||
return -ERANGE;
|
||||
}
|
||||
|
||||
if (hw->mac.type == e1000_82575) {
|
||||
if (tsync_rx_ctl | tsync_tx_ctl)
|
||||
return -EINVAL;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* enable/disable TX */
|
||||
regval = rd32(E1000_TSYNCTXCTL);
|
||||
regval = (regval & ~E1000_TSYNCTXCTL_ENABLED) | tsync_tx_ctl_bit;
|
||||
regval &= ~E1000_TSYNCTXCTL_ENABLED;
|
||||
regval |= tsync_tx_ctl;
|
||||
wr32(E1000_TSYNCTXCTL, regval);
|
||||
|
||||
/* enable/disable RX, define which PTP packets are time stamped */
|
||||
/* enable/disable RX */
|
||||
regval = rd32(E1000_TSYNCRXCTL);
|
||||
regval = (regval & ~E1000_TSYNCRXCTL_ENABLED) | tsync_rx_ctl_bit;
|
||||
regval = (regval & ~0xE) | tsync_rx_ctl_type;
|
||||
regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
|
||||
regval |= tsync_rx_ctl;
|
||||
wr32(E1000_TSYNCRXCTL, regval);
|
||||
|
||||
/* define which PTP packets are time stamped */
|
||||
wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
|
||||
|
||||
/*
|
||||
* Ethertype Filter Queue Filter[0][15:0] = 0x88F7
|
||||
* (Ethertype to filter on)
|
||||
* Ethertype Filter Queue Filter[0][26] = 0x1 (Enable filter)
|
||||
* Ethertype Filter Queue Filter[0][30] = 0x1 (Enable Timestamping)
|
||||
*/
|
||||
wr32(E1000_ETQF0, is_l2 ? 0x440088f7 : 0);
|
||||
/* define ethertype filter for timestamped packets */
|
||||
if (is_l2)
|
||||
wr32(E1000_ETQF(3),
|
||||
(E1000_ETQF_FILTER_ENABLE | /* enable filter */
|
||||
E1000_ETQF_1588 | /* enable timestamping */
|
||||
ETH_P_1588)); /* 1588 eth protocol type */
|
||||
else
|
||||
wr32(E1000_ETQF(3), 0);
|
||||
|
||||
/* L4 Queue Filter[0]: only filter by source and destination port */
|
||||
wr32(E1000_SPQF0, htons(port));
|
||||
wr32(E1000_IMIREXT(0), is_l4 ?
|
||||
((1<<12) | (1<<19) /* bypass size and control flags */) : 0);
|
||||
wr32(E1000_IMIR(0), is_l4 ?
|
||||
(htons(port)
|
||||
| (0<<16) /* immediate interrupt disabled */
|
||||
| 0 /* (1<<17) bit cleared: do not bypass
|
||||
destination port check */)
|
||||
: 0);
|
||||
wr32(E1000_FTQF0, is_l4 ?
|
||||
(0x11 /* UDP */
|
||||
| (1<<15) /* VF not compared */
|
||||
| (1<<27) /* Enable Timestamping */
|
||||
| (7<<28) /* only source port filter enabled,
|
||||
source/target address and protocol
|
||||
masked */)
|
||||
: ((1<<15) | (15<<28) /* all mask bits set = filter not
|
||||
enabled */));
|
||||
#define PTP_PORT 319
|
||||
/* L4 Queue Filter[3]: filter by destination port and protocol */
|
||||
if (is_l4) {
|
||||
u32 ftqf = (IPPROTO_UDP /* UDP */
|
||||
| E1000_FTQF_VF_BP /* VF not compared */
|
||||
| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
|
||||
| E1000_FTQF_MASK); /* mask all inputs */
|
||||
ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
|
||||
|
||||
wr32(E1000_IMIR(3), htons(PTP_PORT));
|
||||
wr32(E1000_IMIREXT(3),
|
||||
(E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
|
||||
if (hw->mac.type == e1000_82576) {
|
||||
/* enable source port check */
|
||||
wr32(E1000_SPQF(3), htons(PTP_PORT));
|
||||
ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
|
||||
}
|
||||
wr32(E1000_FTQF(3), ftqf);
|
||||
} else {
|
||||
wr32(E1000_FTQF(3), E1000_FTQF_MASK);
|
||||
}
|
||||
wrfl();
|
||||
|
||||
adapter->hwtstamp_config = config;
|
||||
|
|
Loading…
Reference in New Issue