Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp: (26 commits) amd64_edac: add MAINTAINERS entry EDAC: do not enable modules by default amd64_edac: do not enable module by default amd64_edac: add module registration routines amd64_edac: add ECC reporting initializers amd64_edac: add EDAC core-related initializers amd64_edac: add error decoding logic amd64_edac: add ECC chipkill syndrome mapping table amd64_edac: add per-family descriptors amd64_edac: add F10h-and-later methods-p3 amd64_edac: add F10h-and-later methods-p2 amd64_edac: add F10h-and-later methods-p1 amd64_edac: add k8-specific methods amd64_edac: assign DRAM chip select base and mask in a family-specific way amd64_edac: add helper to dump relevant registers amd64_edac: add DRAM address type conversion facilities amd64_edac: add functionality to compute the DRAM hole amd64_edac: add sys addr to memory controller mapping helpers amd64_edac: add memory scrubber interface amd64_edac: add MCA error types ...
This commit is contained in:
commit
c29f5ec022
10
MAINTAINERS
10
MAINTAINERS
|
@ -1979,6 +1979,16 @@ F: Documentation/edac.txt
|
|||
F: drivers/edac/edac_*
|
||||
F: include/linux/edac.h
|
||||
|
||||
EDAC-AMD64
|
||||
P: Doug Thompson
|
||||
M: dougthompson@xmission.com
|
||||
P: Borislav Petkov
|
||||
M: borislav.petkov@amd.com
|
||||
L: bluesmoke-devel@lists.sourceforge.net (moderated for non-subscribers)
|
||||
W: bluesmoke.sourceforge.net
|
||||
S: Supported
|
||||
F: drivers/edac/amd64_edac*
|
||||
|
||||
EDAC-E752X
|
||||
P: Mark Gross
|
||||
M: mark.gross@intel.com
|
||||
|
|
|
@ -12,6 +12,17 @@
|
|||
|
||||
#include <asm/asm.h>
|
||||
#include <asm/errno.h>
|
||||
#include <asm/cpumask.h>
|
||||
|
||||
struct msr {
|
||||
union {
|
||||
struct {
|
||||
u32 l;
|
||||
u32 h;
|
||||
};
|
||||
u64 q;
|
||||
};
|
||||
};
|
||||
|
||||
static inline unsigned long long native_read_tscp(unsigned int *aux)
|
||||
{
|
||||
|
@ -216,6 +227,8 @@ do { \
|
|||
#ifdef CONFIG_SMP
|
||||
int rdmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h);
|
||||
int wrmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h);
|
||||
void rdmsr_on_cpus(const cpumask_t *mask, u32 msr_no, struct msr *msrs);
|
||||
void wrmsr_on_cpus(const cpumask_t *mask, u32 msr_no, struct msr *msrs);
|
||||
int rdmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h);
|
||||
int wrmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h);
|
||||
#else /* CONFIG_SMP */
|
||||
|
@ -229,6 +242,16 @@ static inline int wrmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h)
|
|||
wrmsr(msr_no, l, h);
|
||||
return 0;
|
||||
}
|
||||
static inline void rdmsr_on_cpus(const cpumask_t *m, u32 msr_no,
|
||||
struct msr *msrs)
|
||||
{
|
||||
rdmsr_on_cpu(0, msr_no, &(msrs[0].l), &(msrs[0].h));
|
||||
}
|
||||
static inline void wrmsr_on_cpus(const cpumask_t *m, u32 msr_no,
|
||||
struct msr *msrs)
|
||||
{
|
||||
wrmsr_on_cpu(0, msr_no, msrs[0].l, msrs[0].h);
|
||||
}
|
||||
static inline int rdmsr_safe_on_cpu(unsigned int cpu, u32 msr_no,
|
||||
u32 *l, u32 *h)
|
||||
{
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
# Makefile for x86 specific library files.
|
||||
#
|
||||
|
||||
obj-$(CONFIG_SMP) := msr-on-cpu.o
|
||||
obj-$(CONFIG_SMP) := msr.o
|
||||
|
||||
lib-y := delay.o
|
||||
lib-y += thunk_$(BITS).o
|
||||
|
|
|
@ -1,97 +0,0 @@
|
|||
#include <linux/module.h>
|
||||
#include <linux/preempt.h>
|
||||
#include <linux/smp.h>
|
||||
#include <asm/msr.h>
|
||||
|
||||
struct msr_info {
|
||||
u32 msr_no;
|
||||
u32 l, h;
|
||||
int err;
|
||||
};
|
||||
|
||||
static void __rdmsr_on_cpu(void *info)
|
||||
{
|
||||
struct msr_info *rv = info;
|
||||
|
||||
rdmsr(rv->msr_no, rv->l, rv->h);
|
||||
}
|
||||
|
||||
static void __wrmsr_on_cpu(void *info)
|
||||
{
|
||||
struct msr_info *rv = info;
|
||||
|
||||
wrmsr(rv->msr_no, rv->l, rv->h);
|
||||
}
|
||||
|
||||
int rdmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h)
|
||||
{
|
||||
int err;
|
||||
struct msr_info rv;
|
||||
|
||||
rv.msr_no = msr_no;
|
||||
err = smp_call_function_single(cpu, __rdmsr_on_cpu, &rv, 1);
|
||||
*l = rv.l;
|
||||
*h = rv.h;
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
int wrmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h)
|
||||
{
|
||||
int err;
|
||||
struct msr_info rv;
|
||||
|
||||
rv.msr_no = msr_no;
|
||||
rv.l = l;
|
||||
rv.h = h;
|
||||
err = smp_call_function_single(cpu, __wrmsr_on_cpu, &rv, 1);
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
/* These "safe" variants are slower and should be used when the target MSR
|
||||
may not actually exist. */
|
||||
static void __rdmsr_safe_on_cpu(void *info)
|
||||
{
|
||||
struct msr_info *rv = info;
|
||||
|
||||
rv->err = rdmsr_safe(rv->msr_no, &rv->l, &rv->h);
|
||||
}
|
||||
|
||||
static void __wrmsr_safe_on_cpu(void *info)
|
||||
{
|
||||
struct msr_info *rv = info;
|
||||
|
||||
rv->err = wrmsr_safe(rv->msr_no, rv->l, rv->h);
|
||||
}
|
||||
|
||||
int rdmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h)
|
||||
{
|
||||
int err;
|
||||
struct msr_info rv;
|
||||
|
||||
rv.msr_no = msr_no;
|
||||
err = smp_call_function_single(cpu, __rdmsr_safe_on_cpu, &rv, 1);
|
||||
*l = rv.l;
|
||||
*h = rv.h;
|
||||
|
||||
return err ? err : rv.err;
|
||||
}
|
||||
|
||||
int wrmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h)
|
||||
{
|
||||
int err;
|
||||
struct msr_info rv;
|
||||
|
||||
rv.msr_no = msr_no;
|
||||
rv.l = l;
|
||||
rv.h = h;
|
||||
err = smp_call_function_single(cpu, __wrmsr_safe_on_cpu, &rv, 1);
|
||||
|
||||
return err ? err : rv.err;
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL(rdmsr_on_cpu);
|
||||
EXPORT_SYMBOL(wrmsr_on_cpu);
|
||||
EXPORT_SYMBOL(rdmsr_safe_on_cpu);
|
||||
EXPORT_SYMBOL(wrmsr_safe_on_cpu);
|
|
@ -0,0 +1,183 @@
|
|||
#include <linux/module.h>
|
||||
#include <linux/preempt.h>
|
||||
#include <linux/smp.h>
|
||||
#include <asm/msr.h>
|
||||
|
||||
struct msr_info {
|
||||
u32 msr_no;
|
||||
struct msr reg;
|
||||
struct msr *msrs;
|
||||
int off;
|
||||
int err;
|
||||
};
|
||||
|
||||
static void __rdmsr_on_cpu(void *info)
|
||||
{
|
||||
struct msr_info *rv = info;
|
||||
struct msr *reg;
|
||||
int this_cpu = raw_smp_processor_id();
|
||||
|
||||
if (rv->msrs)
|
||||
reg = &rv->msrs[this_cpu - rv->off];
|
||||
else
|
||||
reg = &rv->reg;
|
||||
|
||||
rdmsr(rv->msr_no, reg->l, reg->h);
|
||||
}
|
||||
|
||||
static void __wrmsr_on_cpu(void *info)
|
||||
{
|
||||
struct msr_info *rv = info;
|
||||
struct msr *reg;
|
||||
int this_cpu = raw_smp_processor_id();
|
||||
|
||||
if (rv->msrs)
|
||||
reg = &rv->msrs[this_cpu - rv->off];
|
||||
else
|
||||
reg = &rv->reg;
|
||||
|
||||
wrmsr(rv->msr_no, reg->l, reg->h);
|
||||
}
|
||||
|
||||
int rdmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h)
|
||||
{
|
||||
int err;
|
||||
struct msr_info rv;
|
||||
|
||||
memset(&rv, 0, sizeof(rv));
|
||||
|
||||
rv.msr_no = msr_no;
|
||||
err = smp_call_function_single(cpu, __rdmsr_on_cpu, &rv, 1);
|
||||
*l = rv.reg.l;
|
||||
*h = rv.reg.h;
|
||||
|
||||
return err;
|
||||
}
|
||||
EXPORT_SYMBOL(rdmsr_on_cpu);
|
||||
|
||||
int wrmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h)
|
||||
{
|
||||
int err;
|
||||
struct msr_info rv;
|
||||
|
||||
memset(&rv, 0, sizeof(rv));
|
||||
|
||||
rv.msr_no = msr_no;
|
||||
rv.reg.l = l;
|
||||
rv.reg.h = h;
|
||||
err = smp_call_function_single(cpu, __wrmsr_on_cpu, &rv, 1);
|
||||
|
||||
return err;
|
||||
}
|
||||
EXPORT_SYMBOL(wrmsr_on_cpu);
|
||||
|
||||
/* rdmsr on a bunch of CPUs
|
||||
*
|
||||
* @mask: which CPUs
|
||||
* @msr_no: which MSR
|
||||
* @msrs: array of MSR values
|
||||
*
|
||||
*/
|
||||
void rdmsr_on_cpus(const cpumask_t *mask, u32 msr_no, struct msr *msrs)
|
||||
{
|
||||
struct msr_info rv;
|
||||
int this_cpu;
|
||||
|
||||
memset(&rv, 0, sizeof(rv));
|
||||
|
||||
rv.off = cpumask_first(mask);
|
||||
rv.msrs = msrs;
|
||||
rv.msr_no = msr_no;
|
||||
|
||||
preempt_disable();
|
||||
/*
|
||||
* FIXME: handle the CPU we're executing on separately for now until
|
||||
* smp_call_function_many has been fixed to not skip it.
|
||||
*/
|
||||
this_cpu = raw_smp_processor_id();
|
||||
smp_call_function_single(this_cpu, __rdmsr_on_cpu, &rv, 1);
|
||||
|
||||
smp_call_function_many(mask, __rdmsr_on_cpu, &rv, 1);
|
||||
preempt_enable();
|
||||
}
|
||||
EXPORT_SYMBOL(rdmsr_on_cpus);
|
||||
|
||||
/*
|
||||
* wrmsr on a bunch of CPUs
|
||||
*
|
||||
* @mask: which CPUs
|
||||
* @msr_no: which MSR
|
||||
* @msrs: array of MSR values
|
||||
*
|
||||
*/
|
||||
void wrmsr_on_cpus(const cpumask_t *mask, u32 msr_no, struct msr *msrs)
|
||||
{
|
||||
struct msr_info rv;
|
||||
int this_cpu;
|
||||
|
||||
memset(&rv, 0, sizeof(rv));
|
||||
|
||||
rv.off = cpumask_first(mask);
|
||||
rv.msrs = msrs;
|
||||
rv.msr_no = msr_no;
|
||||
|
||||
preempt_disable();
|
||||
/*
|
||||
* FIXME: handle the CPU we're executing on separately for now until
|
||||
* smp_call_function_many has been fixed to not skip it.
|
||||
*/
|
||||
this_cpu = raw_smp_processor_id();
|
||||
smp_call_function_single(this_cpu, __wrmsr_on_cpu, &rv, 1);
|
||||
|
||||
smp_call_function_many(mask, __wrmsr_on_cpu, &rv, 1);
|
||||
preempt_enable();
|
||||
}
|
||||
EXPORT_SYMBOL(wrmsr_on_cpus);
|
||||
|
||||
/* These "safe" variants are slower and should be used when the target MSR
|
||||
may not actually exist. */
|
||||
static void __rdmsr_safe_on_cpu(void *info)
|
||||
{
|
||||
struct msr_info *rv = info;
|
||||
|
||||
rv->err = rdmsr_safe(rv->msr_no, &rv->reg.l, &rv->reg.h);
|
||||
}
|
||||
|
||||
static void __wrmsr_safe_on_cpu(void *info)
|
||||
{
|
||||
struct msr_info *rv = info;
|
||||
|
||||
rv->err = wrmsr_safe(rv->msr_no, rv->reg.l, rv->reg.h);
|
||||
}
|
||||
|
||||
int rdmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h)
|
||||
{
|
||||
int err;
|
||||
struct msr_info rv;
|
||||
|
||||
memset(&rv, 0, sizeof(rv));
|
||||
|
||||
rv.msr_no = msr_no;
|
||||
err = smp_call_function_single(cpu, __rdmsr_safe_on_cpu, &rv, 1);
|
||||
*l = rv.reg.l;
|
||||
*h = rv.reg.h;
|
||||
|
||||
return err ? err : rv.err;
|
||||
}
|
||||
EXPORT_SYMBOL(rdmsr_safe_on_cpu);
|
||||
|
||||
int wrmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h)
|
||||
{
|
||||
int err;
|
||||
struct msr_info rv;
|
||||
|
||||
memset(&rv, 0, sizeof(rv));
|
||||
|
||||
rv.msr_no = msr_no;
|
||||
rv.reg.l = l;
|
||||
rv.reg.h = h;
|
||||
err = smp_call_function_single(cpu, __wrmsr_safe_on_cpu, &rv, 1);
|
||||
|
||||
return err ? err : rv.err;
|
||||
}
|
||||
EXPORT_SYMBOL(wrmsr_safe_on_cpu);
|
|
@ -49,7 +49,6 @@ config EDAC_DEBUG_VERBOSE
|
|||
|
||||
config EDAC_MM_EDAC
|
||||
tristate "Main Memory EDAC (Error Detection And Correction) reporting"
|
||||
default y
|
||||
help
|
||||
Some systems are able to detect and correct errors in main
|
||||
memory. EDAC can report statistics on memory error
|
||||
|
@ -58,6 +57,31 @@ config EDAC_MM_EDAC
|
|||
occurred so that a particular failing memory module can be
|
||||
replaced. If unsure, select 'Y'.
|
||||
|
||||
config EDAC_AMD64
|
||||
tristate "AMD64 (Opteron, Athlon64) K8, F10h, F11h"
|
||||
depends on EDAC_MM_EDAC && K8_NB && X86_64 && PCI
|
||||
help
|
||||
Support for error detection and correction on the AMD 64
|
||||
Families of Memory Controllers (K8, F10h and F11h)
|
||||
|
||||
config EDAC_AMD64_ERROR_INJECTION
|
||||
bool "Sysfs Error Injection facilities"
|
||||
depends on EDAC_AMD64
|
||||
help
|
||||
Recent Opterons (Family 10h and later) provide for Memory Error
|
||||
Injection into the ECC detection circuits. The amd64_edac module
|
||||
allows the operator/user to inject Uncorrectable and Correctable
|
||||
errors into DRAM.
|
||||
|
||||
When enabled, in each of the respective memory controller directories
|
||||
(/sys/devices/system/edac/mc/mcX), there are 3 input files:
|
||||
|
||||
- inject_section (0..3, 16-byte section of 64-byte cacheline),
|
||||
- inject_word (0..8, 16-bit word of 16-byte section),
|
||||
- inject_ecc_vector (hex ecc vector: select bits of inject word)
|
||||
|
||||
In addition, there are two control files, inject_read and inject_write,
|
||||
which trigger the DRAM ECC Read and Write respectively.
|
||||
|
||||
config EDAC_AMD76X
|
||||
tristate "AMD 76x (760, 762, 768)"
|
||||
|
|
|
@ -30,6 +30,13 @@ obj-$(CONFIG_EDAC_I3000) += i3000_edac.o
|
|||
obj-$(CONFIG_EDAC_X38) += x38_edac.o
|
||||
obj-$(CONFIG_EDAC_I82860) += i82860_edac.o
|
||||
obj-$(CONFIG_EDAC_R82600) += r82600_edac.o
|
||||
|
||||
amd64_edac_mod-y := amd64_edac_err_types.o amd64_edac.o
|
||||
amd64_edac_mod-$(CONFIG_EDAC_DEBUG) += amd64_edac_dbg.o
|
||||
amd64_edac_mod-$(CONFIG_EDAC_AMD64_ERROR_INJECTION) += amd64_edac_inj.o
|
||||
|
||||
obj-$(CONFIG_EDAC_AMD64) += amd64_edac_mod.o
|
||||
|
||||
obj-$(CONFIG_EDAC_PASEMI) += pasemi_edac.o
|
||||
obj-$(CONFIG_EDAC_MPC85XX) += mpc85xx_edac.o
|
||||
obj-$(CONFIG_EDAC_MV64X60) += mv64x60_edac.o
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,644 @@
|
|||
/*
|
||||
* AMD64 class Memory Controller kernel module
|
||||
*
|
||||
* Copyright (c) 2009 SoftwareBitMaker.
|
||||
* Copyright (c) 2009 Advanced Micro Devices, Inc.
|
||||
*
|
||||
* This file may be distributed under the terms of the
|
||||
* GNU General Public License.
|
||||
*
|
||||
* Originally Written by Thayne Harbaugh
|
||||
*
|
||||
* Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>:
|
||||
* - K8 CPU Revision D and greater support
|
||||
*
|
||||
* Changes by Dave Peterson <dsp@llnl.gov> <dave_peterson@pobox.com>:
|
||||
* - Module largely rewritten, with new (and hopefully correct)
|
||||
* code for dealing with node and chip select interleaving,
|
||||
* various code cleanup, and bug fixes
|
||||
* - Added support for memory hoisting using DRAM hole address
|
||||
* register
|
||||
*
|
||||
* Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>:
|
||||
* -K8 Rev (1207) revision support added, required Revision
|
||||
* specific mini-driver code to support Rev F as well as
|
||||
* prior revisions
|
||||
*
|
||||
* Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>:
|
||||
* -Family 10h revision support added. New PCI Device IDs,
|
||||
* indicating new changes. Actual registers modified
|
||||
* were slight, less than the Rev E to Rev F transition
|
||||
* but changing the PCI Device ID was the proper thing to
|
||||
* do, as it provides for almost automactic family
|
||||
* detection. The mods to Rev F required more family
|
||||
* information detection.
|
||||
*
|
||||
* Changes/Fixes by Borislav Petkov <borislav.petkov@amd.com>:
|
||||
* - misc fixes and code cleanups
|
||||
*
|
||||
* This module is based on the following documents
|
||||
* (available from http://www.amd.com/):
|
||||
*
|
||||
* Title: BIOS and Kernel Developer's Guide for AMD Athlon 64 and AMD
|
||||
* Opteron Processors
|
||||
* AMD publication #: 26094
|
||||
*` Revision: 3.26
|
||||
*
|
||||
* Title: BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh
|
||||
* Processors
|
||||
* AMD publication #: 32559
|
||||
* Revision: 3.00
|
||||
* Issue Date: May 2006
|
||||
*
|
||||
* Title: BIOS and Kernel Developer's Guide (BKDG) For AMD Family 10h
|
||||
* Processors
|
||||
* AMD publication #: 31116
|
||||
* Revision: 3.00
|
||||
* Issue Date: September 07, 2007
|
||||
*
|
||||
* Sections in the first 2 documents are no longer in sync with each other.
|
||||
* The Family 10h BKDG was totally re-written from scratch with a new
|
||||
* presentation model.
|
||||
* Therefore, comments that refer to a Document section might be off.
|
||||
*/
|
||||
|
||||
#include <linux/module.h>
|
||||
#include <linux/ctype.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/pci.h>
|
||||
#include <linux/pci_ids.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/mmzone.h>
|
||||
#include <linux/edac.h>
|
||||
#include <asm/msr.h>
|
||||
#include "edac_core.h"
|
||||
|
||||
#define amd64_printk(level, fmt, arg...) \
|
||||
edac_printk(level, "amd64", fmt, ##arg)
|
||||
|
||||
#define amd64_mc_printk(mci, level, fmt, arg...) \
|
||||
edac_mc_chipset_printk(mci, level, "amd64", fmt, ##arg)
|
||||
|
||||
/*
|
||||
* Throughout the comments in this code, the following terms are used:
|
||||
*
|
||||
* SysAddr, DramAddr, and InputAddr
|
||||
*
|
||||
* These terms come directly from the amd64 documentation
|
||||
* (AMD publication #26094). They are defined as follows:
|
||||
*
|
||||
* SysAddr:
|
||||
* This is a physical address generated by a CPU core or a device
|
||||
* doing DMA. If generated by a CPU core, a SysAddr is the result of
|
||||
* a virtual to physical address translation by the CPU core's address
|
||||
* translation mechanism (MMU).
|
||||
*
|
||||
* DramAddr:
|
||||
* A DramAddr is derived from a SysAddr by subtracting an offset that
|
||||
* depends on which node the SysAddr maps to and whether the SysAddr
|
||||
* is within a range affected by memory hoisting. The DRAM Base
|
||||
* (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers
|
||||
* determine which node a SysAddr maps to.
|
||||
*
|
||||
* If the DRAM Hole Address Register (DHAR) is enabled and the SysAddr
|
||||
* is within the range of addresses specified by this register, then
|
||||
* a value x from the DHAR is subtracted from the SysAddr to produce a
|
||||
* DramAddr. Here, x represents the base address for the node that
|
||||
* the SysAddr maps to plus an offset due to memory hoisting. See
|
||||
* section 3.4.8 and the comments in amd64_get_dram_hole_info() and
|
||||
* sys_addr_to_dram_addr() below for more information.
|
||||
*
|
||||
* If the SysAddr is not affected by the DHAR then a value y is
|
||||
* subtracted from the SysAddr to produce a DramAddr. Here, y is the
|
||||
* base address for the node that the SysAddr maps to. See section
|
||||
* 3.4.4 and the comments in sys_addr_to_dram_addr() below for more
|
||||
* information.
|
||||
*
|
||||
* InputAddr:
|
||||
* A DramAddr is translated to an InputAddr before being passed to the
|
||||
* memory controller for the node that the DramAddr is associated
|
||||
* with. The memory controller then maps the InputAddr to a csrow.
|
||||
* If node interleaving is not in use, then the InputAddr has the same
|
||||
* value as the DramAddr. Otherwise, the InputAddr is produced by
|
||||
* discarding the bits used for node interleaving from the DramAddr.
|
||||
* See section 3.4.4 for more information.
|
||||
*
|
||||
* The memory controller for a given node uses its DRAM CS Base and
|
||||
* DRAM CS Mask registers to map an InputAddr to a csrow. See
|
||||
* sections 3.5.4 and 3.5.5 for more information.
|
||||
*/
|
||||
|
||||
#define EDAC_AMD64_VERSION " Ver: 3.2.0 " __DATE__
|
||||
#define EDAC_MOD_STR "amd64_edac"
|
||||
|
||||
/* Extended Model from CPUID, for CPU Revision numbers */
|
||||
#define OPTERON_CPU_LE_REV_C 0
|
||||
#define OPTERON_CPU_REV_D 1
|
||||
#define OPTERON_CPU_REV_E 2
|
||||
|
||||
/* NPT processors have the following Extended Models */
|
||||
#define OPTERON_CPU_REV_F 4
|
||||
#define OPTERON_CPU_REV_FA 5
|
||||
|
||||
/* Hardware limit on ChipSelect rows per MC and processors per system */
|
||||
#define CHIPSELECT_COUNT 8
|
||||
#define DRAM_REG_COUNT 8
|
||||
|
||||
|
||||
/*
|
||||
* PCI-defined configuration space registers
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* Function 1 - Address Map
|
||||
*/
|
||||
#define K8_DRAM_BASE_LOW 0x40
|
||||
#define K8_DRAM_LIMIT_LOW 0x44
|
||||
#define K8_DHAR 0xf0
|
||||
|
||||
#define DHAR_VALID BIT(0)
|
||||
#define F10_DRAM_MEM_HOIST_VALID BIT(1)
|
||||
|
||||
#define DHAR_BASE_MASK 0xff000000
|
||||
#define dhar_base(dhar) (dhar & DHAR_BASE_MASK)
|
||||
|
||||
#define K8_DHAR_OFFSET_MASK 0x0000ff00
|
||||
#define k8_dhar_offset(dhar) ((dhar & K8_DHAR_OFFSET_MASK) << 16)
|
||||
|
||||
#define F10_DHAR_OFFSET_MASK 0x0000ff80
|
||||
/* NOTE: Extra mask bit vs K8 */
|
||||
#define f10_dhar_offset(dhar) ((dhar & F10_DHAR_OFFSET_MASK) << 16)
|
||||
|
||||
|
||||
/* F10 High BASE/LIMIT registers */
|
||||
#define F10_DRAM_BASE_HIGH 0x140
|
||||
#define F10_DRAM_LIMIT_HIGH 0x144
|
||||
|
||||
|
||||
/*
|
||||
* Function 2 - DRAM controller
|
||||
*/
|
||||
#define K8_DCSB0 0x40
|
||||
#define F10_DCSB1 0x140
|
||||
|
||||
#define K8_DCSB_CS_ENABLE BIT(0)
|
||||
#define K8_DCSB_NPT_SPARE BIT(1)
|
||||
#define K8_DCSB_NPT_TESTFAIL BIT(2)
|
||||
|
||||
/*
|
||||
* REV E: select [31:21] and [15:9] from DCSB and the shift amount to form
|
||||
* the address
|
||||
*/
|
||||
#define REV_E_DCSB_BASE_BITS (0xFFE0FE00ULL)
|
||||
#define REV_E_DCS_SHIFT 4
|
||||
#define REV_E_DCSM_COUNT 8
|
||||
|
||||
#define REV_F_F1Xh_DCSB_BASE_BITS (0x1FF83FE0ULL)
|
||||
#define REV_F_F1Xh_DCS_SHIFT 8
|
||||
|
||||
/*
|
||||
* REV F and later: selects [28:19] and [13:5] from DCSB and the shift amount
|
||||
* to form the address
|
||||
*/
|
||||
#define REV_F_DCSB_BASE_BITS (0x1FF83FE0ULL)
|
||||
#define REV_F_DCS_SHIFT 8
|
||||
#define REV_F_DCSM_COUNT 4
|
||||
#define F10_DCSM_COUNT 4
|
||||
#define F11_DCSM_COUNT 2
|
||||
|
||||
/* DRAM CS Mask Registers */
|
||||
#define K8_DCSM0 0x60
|
||||
#define F10_DCSM1 0x160
|
||||
|
||||
/* REV E: select [29:21] and [15:9] from DCSM */
|
||||
#define REV_E_DCSM_MASK_BITS 0x3FE0FE00
|
||||
|
||||
/* unused bits [24:20] and [12:0] */
|
||||
#define REV_E_DCS_NOTUSED_BITS 0x01F01FFF
|
||||
|
||||
/* REV F and later: select [28:19] and [13:5] from DCSM */
|
||||
#define REV_F_F1Xh_DCSM_MASK_BITS 0x1FF83FE0
|
||||
|
||||
/* unused bits [26:22] and [12:0] */
|
||||
#define REV_F_F1Xh_DCS_NOTUSED_BITS 0x07C01FFF
|
||||
|
||||
#define DBAM0 0x80
|
||||
#define DBAM1 0x180
|
||||
|
||||
/* Extract the DIMM 'type' on the i'th DIMM from the DBAM reg value passed */
|
||||
#define DBAM_DIMM(i, reg) ((((reg) >> (4*i))) & 0xF)
|
||||
|
||||
#define DBAM_MAX_VALUE 11
|
||||
|
||||
|
||||
#define F10_DCLR_0 0x90
|
||||
#define F10_DCLR_1 0x190
|
||||
#define REVE_WIDTH_128 BIT(16)
|
||||
#define F10_WIDTH_128 BIT(11)
|
||||
|
||||
|
||||
#define F10_DCHR_0 0x94
|
||||
#define F10_DCHR_1 0x194
|
||||
|
||||
#define F10_DCHR_FOUR_RANK_DIMM BIT(18)
|
||||
#define F10_DCHR_Ddr3Mode BIT(8)
|
||||
#define F10_DCHR_MblMode BIT(6)
|
||||
|
||||
|
||||
#define F10_DCTL_SEL_LOW 0x110
|
||||
|
||||
#define dct_sel_baseaddr(pvt) \
|
||||
((pvt->dram_ctl_select_low) & 0xFFFFF800)
|
||||
|
||||
#define dct_sel_interleave_addr(pvt) \
|
||||
(((pvt->dram_ctl_select_low) >> 6) & 0x3)
|
||||
|
||||
enum {
|
||||
F10_DCTL_SEL_LOW_DctSelHiRngEn = BIT(0),
|
||||
F10_DCTL_SEL_LOW_DctSelIntLvEn = BIT(2),
|
||||
F10_DCTL_SEL_LOW_DctGangEn = BIT(4),
|
||||
F10_DCTL_SEL_LOW_DctDatIntLv = BIT(5),
|
||||
F10_DCTL_SEL_LOW_DramEnable = BIT(8),
|
||||
F10_DCTL_SEL_LOW_MemCleared = BIT(10),
|
||||
};
|
||||
|
||||
#define dct_high_range_enabled(pvt) \
|
||||
(pvt->dram_ctl_select_low & F10_DCTL_SEL_LOW_DctSelHiRngEn)
|
||||
|
||||
#define dct_interleave_enabled(pvt) \
|
||||
(pvt->dram_ctl_select_low & F10_DCTL_SEL_LOW_DctSelIntLvEn)
|
||||
|
||||
#define dct_ganging_enabled(pvt) \
|
||||
(pvt->dram_ctl_select_low & F10_DCTL_SEL_LOW_DctGangEn)
|
||||
|
||||
#define dct_data_intlv_enabled(pvt) \
|
||||
(pvt->dram_ctl_select_low & F10_DCTL_SEL_LOW_DctDatIntLv)
|
||||
|
||||
#define dct_dram_enabled(pvt) \
|
||||
(pvt->dram_ctl_select_low & F10_DCTL_SEL_LOW_DramEnable)
|
||||
|
||||
#define dct_memory_cleared(pvt) \
|
||||
(pvt->dram_ctl_select_low & F10_DCTL_SEL_LOW_MemCleared)
|
||||
|
||||
|
||||
#define F10_DCTL_SEL_HIGH 0x114
|
||||
|
||||
|
||||
/*
|
||||
* Function 3 - Misc Control
|
||||
*/
|
||||
#define K8_NBCTL 0x40
|
||||
|
||||
/* Correctable ECC error reporting enable */
|
||||
#define K8_NBCTL_CECCEn BIT(0)
|
||||
|
||||
/* UnCorrectable ECC error reporting enable */
|
||||
#define K8_NBCTL_UECCEn BIT(1)
|
||||
|
||||
#define K8_NBCFG 0x44
|
||||
#define K8_NBCFG_CHIPKILL BIT(23)
|
||||
#define K8_NBCFG_ECC_ENABLE BIT(22)
|
||||
|
||||
#define K8_NBSL 0x48
|
||||
|
||||
|
||||
#define EXTRACT_HIGH_SYNDROME(x) (((x) >> 24) & 0xff)
|
||||
#define EXTRACT_EXT_ERROR_CODE(x) (((x) >> 16) & 0x1f)
|
||||
|
||||
/* Family F10h: Normalized Extended Error Codes */
|
||||
#define F10_NBSL_EXT_ERR_RES 0x0
|
||||
#define F10_NBSL_EXT_ERR_CRC 0x1
|
||||
#define F10_NBSL_EXT_ERR_SYNC 0x2
|
||||
#define F10_NBSL_EXT_ERR_MST 0x3
|
||||
#define F10_NBSL_EXT_ERR_TGT 0x4
|
||||
#define F10_NBSL_EXT_ERR_GART 0x5
|
||||
#define F10_NBSL_EXT_ERR_RMW 0x6
|
||||
#define F10_NBSL_EXT_ERR_WDT 0x7
|
||||
#define F10_NBSL_EXT_ERR_ECC 0x8
|
||||
#define F10_NBSL_EXT_ERR_DEV 0x9
|
||||
#define F10_NBSL_EXT_ERR_LINK_DATA 0xA
|
||||
|
||||
/* Next two are overloaded values */
|
||||
#define F10_NBSL_EXT_ERR_LINK_PROTO 0xB
|
||||
#define F10_NBSL_EXT_ERR_L3_PROTO 0xB
|
||||
|
||||
#define F10_NBSL_EXT_ERR_NB_ARRAY 0xC
|
||||
#define F10_NBSL_EXT_ERR_DRAM_PARITY 0xD
|
||||
#define F10_NBSL_EXT_ERR_LINK_RETRY 0xE
|
||||
|
||||
/* Next two are overloaded values */
|
||||
#define F10_NBSL_EXT_ERR_GART_WALK 0xF
|
||||
#define F10_NBSL_EXT_ERR_DEV_WALK 0xF
|
||||
|
||||
/* 0x10 to 0x1B: Reserved */
|
||||
#define F10_NBSL_EXT_ERR_L3_DATA 0x1C
|
||||
#define F10_NBSL_EXT_ERR_L3_TAG 0x1D
|
||||
#define F10_NBSL_EXT_ERR_L3_LRU 0x1E
|
||||
|
||||
/* K8: Normalized Extended Error Codes */
|
||||
#define K8_NBSL_EXT_ERR_ECC 0x0
|
||||
#define K8_NBSL_EXT_ERR_CRC 0x1
|
||||
#define K8_NBSL_EXT_ERR_SYNC 0x2
|
||||
#define K8_NBSL_EXT_ERR_MST 0x3
|
||||
#define K8_NBSL_EXT_ERR_TGT 0x4
|
||||
#define K8_NBSL_EXT_ERR_GART 0x5
|
||||
#define K8_NBSL_EXT_ERR_RMW 0x6
|
||||
#define K8_NBSL_EXT_ERR_WDT 0x7
|
||||
#define K8_NBSL_EXT_ERR_CHIPKILL_ECC 0x8
|
||||
#define K8_NBSL_EXT_ERR_DRAM_PARITY 0xD
|
||||
|
||||
#define EXTRACT_ERROR_CODE(x) ((x) & 0xffff)
|
||||
#define TEST_TLB_ERROR(x) (((x) & 0xFFF0) == 0x0010)
|
||||
#define TEST_MEM_ERROR(x) (((x) & 0xFF00) == 0x0100)
|
||||
#define TEST_BUS_ERROR(x) (((x) & 0xF800) == 0x0800)
|
||||
#define EXTRACT_TT_CODE(x) (((x) >> 2) & 0x3)
|
||||
#define EXTRACT_II_CODE(x) (((x) >> 2) & 0x3)
|
||||
#define EXTRACT_LL_CODE(x) (((x) >> 0) & 0x3)
|
||||
#define EXTRACT_RRRR_CODE(x) (((x) >> 4) & 0xf)
|
||||
#define EXTRACT_TO_CODE(x) (((x) >> 8) & 0x1)
|
||||
#define EXTRACT_PP_CODE(x) (((x) >> 9) & 0x3)
|
||||
|
||||
/*
|
||||
* The following are for BUS type errors AFTER values have been normalized by
|
||||
* shifting right
|
||||
*/
|
||||
#define K8_NBSL_PP_SRC 0x0
|
||||
#define K8_NBSL_PP_RES 0x1
|
||||
#define K8_NBSL_PP_OBS 0x2
|
||||
#define K8_NBSL_PP_GENERIC 0x3
|
||||
|
||||
|
||||
#define K8_NBSH 0x4C
|
||||
|
||||
#define K8_NBSH_VALID_BIT BIT(31)
|
||||
#define K8_NBSH_OVERFLOW BIT(30)
|
||||
#define K8_NBSH_UNCORRECTED_ERR BIT(29)
|
||||
#define K8_NBSH_ERR_ENABLE BIT(28)
|
||||
#define K8_NBSH_MISC_ERR_VALID BIT(27)
|
||||
#define K8_NBSH_VALID_ERROR_ADDR BIT(26)
|
||||
#define K8_NBSH_PCC BIT(25)
|
||||
#define K8_NBSH_CECC BIT(14)
|
||||
#define K8_NBSH_UECC BIT(13)
|
||||
#define K8_NBSH_ERR_SCRUBER BIT(8)
|
||||
#define K8_NBSH_CORE3 BIT(3)
|
||||
#define K8_NBSH_CORE2 BIT(2)
|
||||
#define K8_NBSH_CORE1 BIT(1)
|
||||
#define K8_NBSH_CORE0 BIT(0)
|
||||
|
||||
#define EXTRACT_LDT_LINK(x) (((x) >> 4) & 0x7)
|
||||
#define EXTRACT_ERR_CPU_MAP(x) ((x) & 0xF)
|
||||
#define EXTRACT_LOW_SYNDROME(x) (((x) >> 15) & 0xff)
|
||||
|
||||
|
||||
#define K8_NBEAL 0x50
|
||||
#define K8_NBEAH 0x54
|
||||
#define K8_SCRCTRL 0x58
|
||||
|
||||
#define F10_NB_CFG_LOW 0x88
|
||||
#define F10_NB_CFG_LOW_ENABLE_EXT_CFG BIT(14)
|
||||
|
||||
#define F10_NB_CFG_HIGH 0x8C
|
||||
|
||||
#define F10_ONLINE_SPARE 0xB0
|
||||
#define F10_ONLINE_SPARE_SWAPDONE0(x) ((x) & BIT(1))
|
||||
#define F10_ONLINE_SPARE_SWAPDONE1(x) ((x) & BIT(3))
|
||||
#define F10_ONLINE_SPARE_BADDRAM_CS0(x) (((x) >> 4) & 0x00000007)
|
||||
#define F10_ONLINE_SPARE_BADDRAM_CS1(x) (((x) >> 8) & 0x00000007)
|
||||
|
||||
#define F10_NB_ARRAY_ADDR 0xB8
|
||||
|
||||
#define F10_NB_ARRAY_DRAM_ECC 0x80000000
|
||||
|
||||
/* Bits [2:1] are used to select 16-byte section within a 64-byte cacheline */
|
||||
#define SET_NB_ARRAY_ADDRESS(section) (((section) & 0x3) << 1)
|
||||
|
||||
#define F10_NB_ARRAY_DATA 0xBC
|
||||
|
||||
#define SET_NB_DRAM_INJECTION_WRITE(word, bits) \
|
||||
(BIT(((word) & 0xF) + 20) | \
|
||||
BIT(17) | \
|
||||
((bits) & 0xF))
|
||||
|
||||
#define SET_NB_DRAM_INJECTION_READ(word, bits) \
|
||||
(BIT(((word) & 0xF) + 20) | \
|
||||
BIT(16) | \
|
||||
((bits) & 0xF))
|
||||
|
||||
#define K8_NBCAP 0xE8
|
||||
#define K8_NBCAP_CORES (BIT(12)|BIT(13))
|
||||
#define K8_NBCAP_CHIPKILL BIT(4)
|
||||
#define K8_NBCAP_SECDED BIT(3)
|
||||
#define K8_NBCAP_8_NODE BIT(2)
|
||||
#define K8_NBCAP_DUAL_NODE BIT(1)
|
||||
#define K8_NBCAP_DCT_DUAL BIT(0)
|
||||
|
||||
/*
|
||||
* MSR Regs
|
||||
*/
|
||||
#define K8_MSR_MCGCTL 0x017b
|
||||
#define K8_MSR_MCGCTL_NBE BIT(4)
|
||||
|
||||
#define K8_MSR_MC4CTL 0x0410
|
||||
#define K8_MSR_MC4STAT 0x0411
|
||||
#define K8_MSR_MC4ADDR 0x0412
|
||||
|
||||
/* AMD sets the first MC device at device ID 0x18. */
|
||||
static inline int get_mc_node_id_from_pdev(struct pci_dev *pdev)
|
||||
{
|
||||
return PCI_SLOT(pdev->devfn) - 0x18;
|
||||
}
|
||||
|
||||
enum amd64_chipset_families {
|
||||
K8_CPUS = 0,
|
||||
F10_CPUS,
|
||||
F11_CPUS,
|
||||
};
|
||||
|
||||
/*
|
||||
* Structure to hold:
|
||||
*
|
||||
* 1) dynamically read status and error address HW registers
|
||||
* 2) sysfs entered values
|
||||
* 3) MCE values
|
||||
*
|
||||
* Depends on entry into the modules
|
||||
*/
|
||||
struct amd64_error_info_regs {
|
||||
u32 nbcfg;
|
||||
u32 nbsh;
|
||||
u32 nbsl;
|
||||
u32 nbeah;
|
||||
u32 nbeal;
|
||||
};
|
||||
|
||||
/* Error injection control structure */
|
||||
struct error_injection {
|
||||
u32 section;
|
||||
u32 word;
|
||||
u32 bit_map;
|
||||
};
|
||||
|
||||
struct amd64_pvt {
|
||||
/* pci_device handles which we utilize */
|
||||
struct pci_dev *addr_f1_ctl;
|
||||
struct pci_dev *dram_f2_ctl;
|
||||
struct pci_dev *misc_f3_ctl;
|
||||
|
||||
int mc_node_id; /* MC index of this MC node */
|
||||
int ext_model; /* extended model value of this node */
|
||||
|
||||
struct low_ops *ops; /* pointer to per PCI Device ID func table */
|
||||
|
||||
int channel_count;
|
||||
|
||||
/* Raw registers */
|
||||
u32 dclr0; /* DRAM Configuration Low DCT0 reg */
|
||||
u32 dclr1; /* DRAM Configuration Low DCT1 reg */
|
||||
u32 dchr0; /* DRAM Configuration High DCT0 reg */
|
||||
u32 dchr1; /* DRAM Configuration High DCT1 reg */
|
||||
u32 nbcap; /* North Bridge Capabilities */
|
||||
u32 nbcfg; /* F10 North Bridge Configuration */
|
||||
u32 ext_nbcfg; /* Extended F10 North Bridge Configuration */
|
||||
u32 dhar; /* DRAM Hoist reg */
|
||||
u32 dbam0; /* DRAM Base Address Mapping reg for DCT0 */
|
||||
u32 dbam1; /* DRAM Base Address Mapping reg for DCT1 */
|
||||
|
||||
/* DRAM CS Base Address Registers F2x[1,0][5C:40] */
|
||||
u32 dcsb0[CHIPSELECT_COUNT];
|
||||
u32 dcsb1[CHIPSELECT_COUNT];
|
||||
|
||||
/* DRAM CS Mask Registers F2x[1,0][6C:60] */
|
||||
u32 dcsm0[CHIPSELECT_COUNT];
|
||||
u32 dcsm1[CHIPSELECT_COUNT];
|
||||
|
||||
/*
|
||||
* Decoded parts of DRAM BASE and LIMIT Registers
|
||||
* F1x[78,70,68,60,58,50,48,40]
|
||||
*/
|
||||
u64 dram_base[DRAM_REG_COUNT];
|
||||
u64 dram_limit[DRAM_REG_COUNT];
|
||||
u8 dram_IntlvSel[DRAM_REG_COUNT];
|
||||
u8 dram_IntlvEn[DRAM_REG_COUNT];
|
||||
u8 dram_DstNode[DRAM_REG_COUNT];
|
||||
u8 dram_rw_en[DRAM_REG_COUNT];
|
||||
|
||||
/*
|
||||
* The following fields are set at (load) run time, after CPU revision
|
||||
* has been determined, since the dct_base and dct_mask registers vary
|
||||
* based on revision
|
||||
*/
|
||||
u32 dcsb_base; /* DCSB base bits */
|
||||
u32 dcsm_mask; /* DCSM mask bits */
|
||||
u32 num_dcsm; /* Number of DCSM registers */
|
||||
u32 dcs_mask_notused; /* DCSM notused mask bits */
|
||||
u32 dcs_shift; /* DCSB and DCSM shift value */
|
||||
|
||||
u64 top_mem; /* top of memory below 4GB */
|
||||
u64 top_mem2; /* top of memory above 4GB */
|
||||
|
||||
u32 dram_ctl_select_low; /* DRAM Controller Select Low Reg */
|
||||
u32 dram_ctl_select_high; /* DRAM Controller Select High Reg */
|
||||
u32 online_spare; /* On-Line spare Reg */
|
||||
|
||||
/* temp storage for when input is received from sysfs */
|
||||
struct amd64_error_info_regs ctl_error_info;
|
||||
|
||||
/* place to store error injection parameters prior to issue */
|
||||
struct error_injection injection;
|
||||
|
||||
/* Save old hw registers' values before we modified them */
|
||||
u32 nbctl_mcgctl_saved; /* When true, following 2 are valid */
|
||||
u32 old_nbctl;
|
||||
unsigned long old_mcgctl; /* per core on this node */
|
||||
|
||||
/* MC Type Index value: socket F vs Family 10h */
|
||||
u32 mc_type_index;
|
||||
|
||||
/* misc settings */
|
||||
struct flags {
|
||||
unsigned long cf8_extcfg:1;
|
||||
} flags;
|
||||
};
|
||||
|
||||
struct scrubrate {
|
||||
u32 scrubval; /* bit pattern for scrub rate */
|
||||
u32 bandwidth; /* bandwidth consumed (bytes/sec) */
|
||||
};
|
||||
|
||||
extern struct scrubrate scrubrates[23];
|
||||
extern u32 revf_quad_ddr2_shift[16];
|
||||
extern const char *tt_msgs[4];
|
||||
extern const char *ll_msgs[4];
|
||||
extern const char *rrrr_msgs[16];
|
||||
extern const char *to_msgs[2];
|
||||
extern const char *pp_msgs[4];
|
||||
extern const char *ii_msgs[4];
|
||||
extern const char *ext_msgs[32];
|
||||
extern const char *htlink_msgs[8];
|
||||
|
||||
#ifdef CONFIG_EDAC_DEBUG
|
||||
#define NUM_DBG_ATTRS 9
|
||||
#else
|
||||
#define NUM_DBG_ATTRS 0
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
|
||||
#define NUM_INJ_ATTRS 5
|
||||
#else
|
||||
#define NUM_INJ_ATTRS 0
|
||||
#endif
|
||||
|
||||
extern struct mcidev_sysfs_attribute amd64_dbg_attrs[NUM_DBG_ATTRS],
|
||||
amd64_inj_attrs[NUM_INJ_ATTRS];
|
||||
|
||||
/*
|
||||
* Each of the PCI Device IDs types have their own set of hardware accessor
|
||||
* functions and per device encoding/decoding logic.
|
||||
*/
|
||||
struct low_ops {
|
||||
int (*probe_valid_hardware)(struct amd64_pvt *pvt);
|
||||
int (*early_channel_count)(struct amd64_pvt *pvt);
|
||||
|
||||
u64 (*get_error_address)(struct mem_ctl_info *mci,
|
||||
struct amd64_error_info_regs *info);
|
||||
void (*read_dram_base_limit)(struct amd64_pvt *pvt, int dram);
|
||||
void (*read_dram_ctl_register)(struct amd64_pvt *pvt);
|
||||
void (*map_sysaddr_to_csrow)(struct mem_ctl_info *mci,
|
||||
struct amd64_error_info_regs *info,
|
||||
u64 SystemAddr);
|
||||
int (*dbam_map_to_pages)(struct amd64_pvt *pvt, int dram_map);
|
||||
};
|
||||
|
||||
struct amd64_family_type {
|
||||
const char *ctl_name;
|
||||
u16 addr_f1_ctl;
|
||||
u16 misc_f3_ctl;
|
||||
struct low_ops ops;
|
||||
};
|
||||
|
||||
static struct amd64_family_type amd64_family_types[];
|
||||
|
||||
static inline const char *get_amd_family_name(int index)
|
||||
{
|
||||
return amd64_family_types[index].ctl_name;
|
||||
}
|
||||
|
||||
static inline struct low_ops *family_ops(int index)
|
||||
{
|
||||
return &amd64_family_types[index].ops;
|
||||
}
|
||||
|
||||
/*
|
||||
* For future CPU versions, verify the following as new 'slow' rates appear and
|
||||
* modify the necessary skip values for the supported CPU.
|
||||
*/
|
||||
#define K8_MIN_SCRUB_RATE_BITS 0x0
|
||||
#define F10_MIN_SCRUB_RATE_BITS 0x5
|
||||
#define F11_MIN_SCRUB_RATE_BITS 0x6
|
||||
|
||||
int amd64_process_error_info(struct mem_ctl_info *mci,
|
||||
struct amd64_error_info_regs *info,
|
||||
int handle_errors);
|
||||
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
|
||||
u64 *hole_offset, u64 *hole_size);
|
|
@ -0,0 +1,255 @@
|
|||
#include "amd64_edac.h"
|
||||
|
||||
/*
|
||||
* accept a hex value and store it into the virtual error register file, field:
|
||||
* nbeal and nbeah. Assume virtual error values have already been set for: NBSL,
|
||||
* NBSH and NBCFG. Then proceed to map the error values to a MC, CSROW and
|
||||
* CHANNEL
|
||||
*/
|
||||
static ssize_t amd64_nbea_store(struct mem_ctl_info *mci, const char *data,
|
||||
size_t count)
|
||||
{
|
||||
struct amd64_pvt *pvt = mci->pvt_info;
|
||||
unsigned long long value;
|
||||
int ret = 0;
|
||||
|
||||
ret = strict_strtoull(data, 16, &value);
|
||||
if (ret != -EINVAL) {
|
||||
debugf0("received NBEA= 0x%llx\n", value);
|
||||
|
||||
/* place the value into the virtual error packet */
|
||||
pvt->ctl_error_info.nbeal = (u32) value;
|
||||
value >>= 32;
|
||||
pvt->ctl_error_info.nbeah = (u32) value;
|
||||
|
||||
/* Process the Mapping request */
|
||||
/* TODO: Add race prevention */
|
||||
amd64_process_error_info(mci, &pvt->ctl_error_info, 1);
|
||||
|
||||
return count;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* display back what the last NBEA (MCA NB Address (MC4_ADDR)) was written */
|
||||
static ssize_t amd64_nbea_show(struct mem_ctl_info *mci, char *data)
|
||||
{
|
||||
struct amd64_pvt *pvt = mci->pvt_info;
|
||||
u64 value;
|
||||
|
||||
value = pvt->ctl_error_info.nbeah;
|
||||
value <<= 32;
|
||||
value |= pvt->ctl_error_info.nbeal;
|
||||
|
||||
return sprintf(data, "%llx\n", value);
|
||||
}
|
||||
|
||||
/* store the NBSL (MCA NB Status Low (MC4_STATUS)) value user desires */
|
||||
static ssize_t amd64_nbsl_store(struct mem_ctl_info *mci, const char *data,
|
||||
size_t count)
|
||||
{
|
||||
struct amd64_pvt *pvt = mci->pvt_info;
|
||||
unsigned long value;
|
||||
int ret = 0;
|
||||
|
||||
ret = strict_strtoul(data, 16, &value);
|
||||
if (ret != -EINVAL) {
|
||||
debugf0("received NBSL= 0x%lx\n", value);
|
||||
|
||||
pvt->ctl_error_info.nbsl = (u32) value;
|
||||
|
||||
return count;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* display back what the last NBSL value written */
|
||||
static ssize_t amd64_nbsl_show(struct mem_ctl_info *mci, char *data)
|
||||
{
|
||||
struct amd64_pvt *pvt = mci->pvt_info;
|
||||
u32 value;
|
||||
|
||||
value = pvt->ctl_error_info.nbsl;
|
||||
|
||||
return sprintf(data, "%x\n", value);
|
||||
}
|
||||
|
||||
/* store the NBSH (MCA NB Status High) value user desires */
|
||||
static ssize_t amd64_nbsh_store(struct mem_ctl_info *mci, const char *data,
|
||||
size_t count)
|
||||
{
|
||||
struct amd64_pvt *pvt = mci->pvt_info;
|
||||
unsigned long value;
|
||||
int ret = 0;
|
||||
|
||||
ret = strict_strtoul(data, 16, &value);
|
||||
if (ret != -EINVAL) {
|
||||
debugf0("received NBSH= 0x%lx\n", value);
|
||||
|
||||
pvt->ctl_error_info.nbsh = (u32) value;
|
||||
|
||||
return count;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* display back what the last NBSH value written */
|
||||
static ssize_t amd64_nbsh_show(struct mem_ctl_info *mci, char *data)
|
||||
{
|
||||
struct amd64_pvt *pvt = mci->pvt_info;
|
||||
u32 value;
|
||||
|
||||
value = pvt->ctl_error_info.nbsh;
|
||||
|
||||
return sprintf(data, "%x\n", value);
|
||||
}
|
||||
|
||||
/* accept and store the NBCFG (MCA NB Configuration) value user desires */
|
||||
static ssize_t amd64_nbcfg_store(struct mem_ctl_info *mci,
|
||||
const char *data, size_t count)
|
||||
{
|
||||
struct amd64_pvt *pvt = mci->pvt_info;
|
||||
unsigned long value;
|
||||
int ret = 0;
|
||||
|
||||
ret = strict_strtoul(data, 16, &value);
|
||||
if (ret != -EINVAL) {
|
||||
debugf0("received NBCFG= 0x%lx\n", value);
|
||||
|
||||
pvt->ctl_error_info.nbcfg = (u32) value;
|
||||
|
||||
return count;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* various show routines for the controls of a MCI */
|
||||
static ssize_t amd64_nbcfg_show(struct mem_ctl_info *mci, char *data)
|
||||
{
|
||||
struct amd64_pvt *pvt = mci->pvt_info;
|
||||
|
||||
return sprintf(data, "%x\n", pvt->ctl_error_info.nbcfg);
|
||||
}
|
||||
|
||||
|
||||
static ssize_t amd64_dhar_show(struct mem_ctl_info *mci, char *data)
|
||||
{
|
||||
struct amd64_pvt *pvt = mci->pvt_info;
|
||||
|
||||
return sprintf(data, "%x\n", pvt->dhar);
|
||||
}
|
||||
|
||||
|
||||
static ssize_t amd64_dbam_show(struct mem_ctl_info *mci, char *data)
|
||||
{
|
||||
struct amd64_pvt *pvt = mci->pvt_info;
|
||||
|
||||
return sprintf(data, "%x\n", pvt->dbam0);
|
||||
}
|
||||
|
||||
|
||||
static ssize_t amd64_topmem_show(struct mem_ctl_info *mci, char *data)
|
||||
{
|
||||
struct amd64_pvt *pvt = mci->pvt_info;
|
||||
|
||||
return sprintf(data, "%llx\n", pvt->top_mem);
|
||||
}
|
||||
|
||||
|
||||
static ssize_t amd64_topmem2_show(struct mem_ctl_info *mci, char *data)
|
||||
{
|
||||
struct amd64_pvt *pvt = mci->pvt_info;
|
||||
|
||||
return sprintf(data, "%llx\n", pvt->top_mem2);
|
||||
}
|
||||
|
||||
static ssize_t amd64_hole_show(struct mem_ctl_info *mci, char *data)
|
||||
{
|
||||
u64 hole_base = 0;
|
||||
u64 hole_offset = 0;
|
||||
u64 hole_size = 0;
|
||||
|
||||
amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, &hole_size);
|
||||
|
||||
return sprintf(data, "%llx %llx %llx\n", hole_base, hole_offset,
|
||||
hole_size);
|
||||
}
|
||||
|
||||
/*
|
||||
* update NUM_DBG_ATTRS in case you add new members
|
||||
*/
|
||||
struct mcidev_sysfs_attribute amd64_dbg_attrs[] = {
|
||||
|
||||
{
|
||||
.attr = {
|
||||
.name = "nbea_ctl",
|
||||
.mode = (S_IRUGO | S_IWUSR)
|
||||
},
|
||||
.show = amd64_nbea_show,
|
||||
.store = amd64_nbea_store,
|
||||
},
|
||||
{
|
||||
.attr = {
|
||||
.name = "nbsl_ctl",
|
||||
.mode = (S_IRUGO | S_IWUSR)
|
||||
},
|
||||
.show = amd64_nbsl_show,
|
||||
.store = amd64_nbsl_store,
|
||||
},
|
||||
{
|
||||
.attr = {
|
||||
.name = "nbsh_ctl",
|
||||
.mode = (S_IRUGO | S_IWUSR)
|
||||
},
|
||||
.show = amd64_nbsh_show,
|
||||
.store = amd64_nbsh_store,
|
||||
},
|
||||
{
|
||||
.attr = {
|
||||
.name = "nbcfg_ctl",
|
||||
.mode = (S_IRUGO | S_IWUSR)
|
||||
},
|
||||
.show = amd64_nbcfg_show,
|
||||
.store = amd64_nbcfg_store,
|
||||
},
|
||||
{
|
||||
.attr = {
|
||||
.name = "dhar",
|
||||
.mode = (S_IRUGO)
|
||||
},
|
||||
.show = amd64_dhar_show,
|
||||
.store = NULL,
|
||||
},
|
||||
{
|
||||
.attr = {
|
||||
.name = "dbam",
|
||||
.mode = (S_IRUGO)
|
||||
},
|
||||
.show = amd64_dbam_show,
|
||||
.store = NULL,
|
||||
},
|
||||
{
|
||||
.attr = {
|
||||
.name = "topmem",
|
||||
.mode = (S_IRUGO)
|
||||
},
|
||||
.show = amd64_topmem_show,
|
||||
.store = NULL,
|
||||
},
|
||||
{
|
||||
.attr = {
|
||||
.name = "topmem2",
|
||||
.mode = (S_IRUGO)
|
||||
},
|
||||
.show = amd64_topmem2_show,
|
||||
.store = NULL,
|
||||
},
|
||||
{
|
||||
.attr = {
|
||||
.name = "dram_hole",
|
||||
.mode = (S_IRUGO)
|
||||
},
|
||||
.show = amd64_hole_show,
|
||||
.store = NULL,
|
||||
},
|
||||
};
|
|
@ -0,0 +1,161 @@
|
|||
#include "amd64_edac.h"
|
||||
|
||||
/*
|
||||
* See F2x80 for K8 and F2x[1,0]80 for Fam10 and later. The table below is only
|
||||
* for DDR2 DRAM mapping.
|
||||
*/
|
||||
u32 revf_quad_ddr2_shift[] = {
|
||||
0, /* 0000b NULL DIMM (128mb) */
|
||||
28, /* 0001b 256mb */
|
||||
29, /* 0010b 512mb */
|
||||
29, /* 0011b 512mb */
|
||||
29, /* 0100b 512mb */
|
||||
30, /* 0101b 1gb */
|
||||
30, /* 0110b 1gb */
|
||||
31, /* 0111b 2gb */
|
||||
31, /* 1000b 2gb */
|
||||
32, /* 1001b 4gb */
|
||||
32, /* 1010b 4gb */
|
||||
33, /* 1011b 8gb */
|
||||
0, /* 1100b future */
|
||||
0, /* 1101b future */
|
||||
0, /* 1110b future */
|
||||
0 /* 1111b future */
|
||||
};
|
||||
|
||||
/*
|
||||
* Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
|
||||
* bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
|
||||
* or higher value'.
|
||||
*
|
||||
*FIXME: Produce a better mapping/linearisation.
|
||||
*/
|
||||
|
||||
struct scrubrate scrubrates[] = {
|
||||
{ 0x01, 1600000000UL},
|
||||
{ 0x02, 800000000UL},
|
||||
{ 0x03, 400000000UL},
|
||||
{ 0x04, 200000000UL},
|
||||
{ 0x05, 100000000UL},
|
||||
{ 0x06, 50000000UL},
|
||||
{ 0x07, 25000000UL},
|
||||
{ 0x08, 12284069UL},
|
||||
{ 0x09, 6274509UL},
|
||||
{ 0x0A, 3121951UL},
|
||||
{ 0x0B, 1560975UL},
|
||||
{ 0x0C, 781440UL},
|
||||
{ 0x0D, 390720UL},
|
||||
{ 0x0E, 195300UL},
|
||||
{ 0x0F, 97650UL},
|
||||
{ 0x10, 48854UL},
|
||||
{ 0x11, 24427UL},
|
||||
{ 0x12, 12213UL},
|
||||
{ 0x13, 6101UL},
|
||||
{ 0x14, 3051UL},
|
||||
{ 0x15, 1523UL},
|
||||
{ 0x16, 761UL},
|
||||
{ 0x00, 0UL}, /* scrubbing off */
|
||||
};
|
||||
|
||||
/*
|
||||
* string representation for the different MCA reported error types, see F3x48
|
||||
* or MSR0000_0411.
|
||||
*/
|
||||
const char *tt_msgs[] = { /* transaction type */
|
||||
"instruction",
|
||||
"data",
|
||||
"generic",
|
||||
"reserved"
|
||||
};
|
||||
|
||||
const char *ll_msgs[] = { /* cache level */
|
||||
"L0",
|
||||
"L1",
|
||||
"L2",
|
||||
"L3/generic"
|
||||
};
|
||||
|
||||
const char *rrrr_msgs[] = {
|
||||
"generic",
|
||||
"generic read",
|
||||
"generic write",
|
||||
"data read",
|
||||
"data write",
|
||||
"inst fetch",
|
||||
"prefetch",
|
||||
"evict",
|
||||
"snoop",
|
||||
"reserved RRRR= 9",
|
||||
"reserved RRRR= 10",
|
||||
"reserved RRRR= 11",
|
||||
"reserved RRRR= 12",
|
||||
"reserved RRRR= 13",
|
||||
"reserved RRRR= 14",
|
||||
"reserved RRRR= 15"
|
||||
};
|
||||
|
||||
const char *pp_msgs[] = { /* participating processor */
|
||||
"local node originated (SRC)",
|
||||
"local node responded to request (RES)",
|
||||
"local node observed as 3rd party (OBS)",
|
||||
"generic"
|
||||
};
|
||||
|
||||
const char *to_msgs[] = {
|
||||
"no timeout",
|
||||
"timed out"
|
||||
};
|
||||
|
||||
const char *ii_msgs[] = { /* memory or i/o */
|
||||
"mem access",
|
||||
"reserved",
|
||||
"i/o access",
|
||||
"generic"
|
||||
};
|
||||
|
||||
/* Map the 5 bits of Extended Error code to the string table. */
|
||||
const char *ext_msgs[] = { /* extended error */
|
||||
"K8 ECC error/F10 reserved", /* 0_0000b */
|
||||
"CRC error", /* 0_0001b */
|
||||
"sync error", /* 0_0010b */
|
||||
"mst abort", /* 0_0011b */
|
||||
"tgt abort", /* 0_0100b */
|
||||
"GART error", /* 0_0101b */
|
||||
"RMW error", /* 0_0110b */
|
||||
"Wdog timer error", /* 0_0111b */
|
||||
"F10-ECC/K8-Chipkill error", /* 0_1000b */
|
||||
"DEV Error", /* 0_1001b */
|
||||
"Link Data error", /* 0_1010b */
|
||||
"Link or L3 Protocol error", /* 0_1011b */
|
||||
"NB Array error", /* 0_1100b */
|
||||
"DRAM Parity error", /* 0_1101b */
|
||||
"Link Retry/GART Table Walk/DEV Table Walk error", /* 0_1110b */
|
||||
"Res 0x0ff error", /* 0_1111b */
|
||||
"Res 0x100 error", /* 1_0000b */
|
||||
"Res 0x101 error", /* 1_0001b */
|
||||
"Res 0x102 error", /* 1_0010b */
|
||||
"Res 0x103 error", /* 1_0011b */
|
||||
"Res 0x104 error", /* 1_0100b */
|
||||
"Res 0x105 error", /* 1_0101b */
|
||||
"Res 0x106 error", /* 1_0110b */
|
||||
"Res 0x107 error", /* 1_0111b */
|
||||
"Res 0x108 error", /* 1_1000b */
|
||||
"Res 0x109 error", /* 1_1001b */
|
||||
"Res 0x10A error", /* 1_1010b */
|
||||
"Res 0x10B error", /* 1_1011b */
|
||||
"L3 Cache Data error", /* 1_1100b */
|
||||
"L3 CacheTag error", /* 1_1101b */
|
||||
"L3 Cache LRU error", /* 1_1110b */
|
||||
"Res 0x1FF error" /* 1_1111b */
|
||||
};
|
||||
|
||||
const char *htlink_msgs[] = {
|
||||
"none",
|
||||
"1",
|
||||
"2",
|
||||
"1 2",
|
||||
"3",
|
||||
"1 3",
|
||||
"2 3",
|
||||
"1 2 3"
|
||||
};
|
|
@ -0,0 +1,185 @@
|
|||
#include "amd64_edac.h"
|
||||
|
||||
/*
|
||||
* store error injection section value which refers to one of 4 16-byte sections
|
||||
* within a 64-byte cacheline
|
||||
*
|
||||
* range: 0..3
|
||||
*/
|
||||
static ssize_t amd64_inject_section_store(struct mem_ctl_info *mci,
|
||||
const char *data, size_t count)
|
||||
{
|
||||
struct amd64_pvt *pvt = mci->pvt_info;
|
||||
unsigned long value;
|
||||
int ret = 0;
|
||||
|
||||
ret = strict_strtoul(data, 10, &value);
|
||||
if (ret != -EINVAL) {
|
||||
pvt->injection.section = (u32) value;
|
||||
return count;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* store error injection word value which refers to one of 9 16-bit word of the
|
||||
* 16-byte (128-bit + ECC bits) section
|
||||
*
|
||||
* range: 0..8
|
||||
*/
|
||||
static ssize_t amd64_inject_word_store(struct mem_ctl_info *mci,
|
||||
const char *data, size_t count)
|
||||
{
|
||||
struct amd64_pvt *pvt = mci->pvt_info;
|
||||
unsigned long value;
|
||||
int ret = 0;
|
||||
|
||||
ret = strict_strtoul(data, 10, &value);
|
||||
if (ret != -EINVAL) {
|
||||
|
||||
value = (value <= 8) ? value : 0;
|
||||
pvt->injection.word = (u32) value;
|
||||
|
||||
return count;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* store 16 bit error injection vector which enables injecting errors to the
|
||||
* corresponding bit within the error injection word above. When used during a
|
||||
* DRAM ECC read, it holds the contents of the of the DRAM ECC bits.
|
||||
*/
|
||||
static ssize_t amd64_inject_ecc_vector_store(struct mem_ctl_info *mci,
|
||||
const char *data, size_t count)
|
||||
{
|
||||
struct amd64_pvt *pvt = mci->pvt_info;
|
||||
unsigned long value;
|
||||
int ret = 0;
|
||||
|
||||
ret = strict_strtoul(data, 16, &value);
|
||||
if (ret != -EINVAL) {
|
||||
|
||||
pvt->injection.bit_map = (u32) value & 0xFFFF;
|
||||
|
||||
return count;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Do a DRAM ECC read. Assemble staged values in the pvt area, format into
|
||||
* fields needed by the injection registers and read the NB Array Data Port.
|
||||
*/
|
||||
static ssize_t amd64_inject_read_store(struct mem_ctl_info *mci,
|
||||
const char *data, size_t count)
|
||||
{
|
||||
struct amd64_pvt *pvt = mci->pvt_info;
|
||||
unsigned long value;
|
||||
u32 section, word_bits;
|
||||
int ret = 0;
|
||||
|
||||
ret = strict_strtoul(data, 10, &value);
|
||||
if (ret != -EINVAL) {
|
||||
|
||||
/* Form value to choose 16-byte section of cacheline */
|
||||
section = F10_NB_ARRAY_DRAM_ECC |
|
||||
SET_NB_ARRAY_ADDRESS(pvt->injection.section);
|
||||
pci_write_config_dword(pvt->misc_f3_ctl,
|
||||
F10_NB_ARRAY_ADDR, section);
|
||||
|
||||
word_bits = SET_NB_DRAM_INJECTION_READ(pvt->injection.word,
|
||||
pvt->injection.bit_map);
|
||||
|
||||
/* Issue 'word' and 'bit' along with the READ request */
|
||||
pci_write_config_dword(pvt->misc_f3_ctl,
|
||||
F10_NB_ARRAY_DATA, word_bits);
|
||||
|
||||
debugf0("section=0x%x word_bits=0x%x\n", section, word_bits);
|
||||
|
||||
return count;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Do a DRAM ECC write. Assemble staged values in the pvt area and format into
|
||||
* fields needed by the injection registers.
|
||||
*/
|
||||
static ssize_t amd64_inject_write_store(struct mem_ctl_info *mci,
|
||||
const char *data, size_t count)
|
||||
{
|
||||
struct amd64_pvt *pvt = mci->pvt_info;
|
||||
unsigned long value;
|
||||
u32 section, word_bits;
|
||||
int ret = 0;
|
||||
|
||||
ret = strict_strtoul(data, 10, &value);
|
||||
if (ret != -EINVAL) {
|
||||
|
||||
/* Form value to choose 16-byte section of cacheline */
|
||||
section = F10_NB_ARRAY_DRAM_ECC |
|
||||
SET_NB_ARRAY_ADDRESS(pvt->injection.section);
|
||||
pci_write_config_dword(pvt->misc_f3_ctl,
|
||||
F10_NB_ARRAY_ADDR, section);
|
||||
|
||||
word_bits = SET_NB_DRAM_INJECTION_WRITE(pvt->injection.word,
|
||||
pvt->injection.bit_map);
|
||||
|
||||
/* Issue 'word' and 'bit' along with the READ request */
|
||||
pci_write_config_dword(pvt->misc_f3_ctl,
|
||||
F10_NB_ARRAY_DATA, word_bits);
|
||||
|
||||
debugf0("section=0x%x word_bits=0x%x\n", section, word_bits);
|
||||
|
||||
return count;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* update NUM_INJ_ATTRS in case you add new members
|
||||
*/
|
||||
struct mcidev_sysfs_attribute amd64_inj_attrs[] = {
|
||||
|
||||
{
|
||||
.attr = {
|
||||
.name = "inject_section",
|
||||
.mode = (S_IRUGO | S_IWUSR)
|
||||
},
|
||||
.show = NULL,
|
||||
.store = amd64_inject_section_store,
|
||||
},
|
||||
{
|
||||
.attr = {
|
||||
.name = "inject_word",
|
||||
.mode = (S_IRUGO | S_IWUSR)
|
||||
},
|
||||
.show = NULL,
|
||||
.store = amd64_inject_word_store,
|
||||
},
|
||||
{
|
||||
.attr = {
|
||||
.name = "inject_ecc_vector",
|
||||
.mode = (S_IRUGO | S_IWUSR)
|
||||
},
|
||||
.show = NULL,
|
||||
.store = amd64_inject_ecc_vector_store,
|
||||
},
|
||||
{
|
||||
.attr = {
|
||||
.name = "inject_write",
|
||||
.mode = (S_IRUGO | S_IWUSR)
|
||||
},
|
||||
.show = NULL,
|
||||
.store = amd64_inject_write_store,
|
||||
},
|
||||
{
|
||||
.attr = {
|
||||
.name = "inject_read",
|
||||
.mode = (S_IRUGO | S_IWUSR)
|
||||
},
|
||||
.show = NULL,
|
||||
.store = amd64_inject_read_store,
|
||||
},
|
||||
};
|
|
@ -76,10 +76,11 @@
|
|||
extern int edac_debug_level;
|
||||
|
||||
#ifndef CONFIG_EDAC_DEBUG_VERBOSE
|
||||
#define edac_debug_printk(level, fmt, arg...) \
|
||||
do { \
|
||||
if (level <= edac_debug_level) \
|
||||
edac_printk(KERN_DEBUG, EDAC_DEBUG, fmt, ##arg); \
|
||||
#define edac_debug_printk(level, fmt, arg...) \
|
||||
do { \
|
||||
if (level <= edac_debug_level) \
|
||||
edac_printk(KERN_DEBUG, EDAC_DEBUG, \
|
||||
"%s: " fmt, __func__, ##arg); \
|
||||
} while (0)
|
||||
#else /* CONFIG_EDAC_DEBUG_VERBOSE */
|
||||
#define edac_debug_printk(level, fmt, arg...) \
|
||||
|
|
Loading…
Reference in New Issue