Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/perfcounters into perfcounters/core

This commit is contained in:
Ingo Molnar 2009-01-11 02:44:08 +01:00
commit c0d362a832
15 changed files with 1607 additions and 10 deletions

View File

@ -131,5 +131,36 @@ static inline int irqs_disabled_flags(unsigned long flags)
*/ */
struct hw_interrupt_type; struct hw_interrupt_type;
#ifdef CONFIG_PERF_COUNTERS
static inline unsigned long get_perf_counter_pending(void)
{
unsigned long x;
asm volatile("lbz %0,%1(13)"
: "=r" (x)
: "i" (offsetof(struct paca_struct, perf_counter_pending)));
return x;
}
static inline void set_perf_counter_pending(int x)
{
asm volatile("stb %0,%1(13)" : :
"r" (x),
"i" (offsetof(struct paca_struct, perf_counter_pending)));
}
extern void perf_counter_do_pending(void);
#else
static inline unsigned long get_perf_counter_pending(void)
{
return 0;
}
static inline void set_perf_counter_pending(int x) {}
static inline void perf_counter_do_pending(void) {}
#endif /* CONFIG_PERF_COUNTERS */
#endif /* __KERNEL__ */ #endif /* __KERNEL__ */
#endif /* _ASM_POWERPC_HW_IRQ_H */ #endif /* _ASM_POWERPC_HW_IRQ_H */

View File

@ -99,6 +99,7 @@ struct paca_struct {
u8 soft_enabled; /* irq soft-enable flag */ u8 soft_enabled; /* irq soft-enable flag */
u8 hard_enabled; /* set if irqs are enabled in MSR */ u8 hard_enabled; /* set if irqs are enabled in MSR */
u8 io_sync; /* writel() needs spin_unlock sync */ u8 io_sync; /* writel() needs spin_unlock sync */
u8 perf_counter_pending; /* PM interrupt while soft-disabled */
/* Stuff for accurate time accounting */ /* Stuff for accurate time accounting */
u64 user_time; /* accumulated usermode TB ticks */ u64 user_time; /* accumulated usermode TB ticks */

View File

@ -0,0 +1,72 @@
/*
* Performance counter support - PowerPC-specific definitions.
*
* Copyright 2008-2009 Paul Mackerras, IBM Corporation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/types.h>
#define MAX_HWCOUNTERS 8
#define MAX_EVENT_ALTERNATIVES 8
/*
* This struct provides the constants and functions needed to
* describe the PMU on a particular POWER-family CPU.
*/
struct power_pmu {
int n_counter;
int max_alternatives;
u64 add_fields;
u64 test_adder;
int (*compute_mmcr)(unsigned int events[], int n_ev,
unsigned int hwc[], u64 mmcr[]);
int (*get_constraint)(unsigned int event, u64 *mskp, u64 *valp);
int (*get_alternatives)(unsigned int event, unsigned int alt[]);
void (*disable_pmc)(unsigned int pmc, u64 mmcr[]);
int n_generic;
int *generic_events;
};
extern struct power_pmu *ppmu;
/*
* The power_pmu.get_constraint function returns a 64-bit value and
* a 64-bit mask that express the constraints between this event and
* other events.
*
* The value and mask are divided up into (non-overlapping) bitfields
* of three different types:
*
* Select field: this expresses the constraint that some set of bits
* in MMCR* needs to be set to a specific value for this event. For a
* select field, the mask contains 1s in every bit of the field, and
* the value contains a unique value for each possible setting of the
* MMCR* bits. The constraint checking code will ensure that two events
* that set the same field in their masks have the same value in their
* value dwords.
*
* Add field: this expresses the constraint that there can be at most
* N events in a particular class. A field of k bits can be used for
* N <= 2^(k-1) - 1. The mask has the most significant bit of the field
* set (and the other bits 0), and the value has only the least significant
* bit of the field set. In addition, the 'add_fields' and 'test_adder'
* in the struct power_pmu for this processor come into play. The
* add_fields value contains 1 in the LSB of the field, and the
* test_adder contains 2^(k-1) - 1 - N in the field.
*
* NAND field: this expresses the constraint that you may not have events
* in all of a set of classes. (For example, on PPC970, you can't select
* events from the FPU, ISU and IDU simultaneously, although any two are
* possible.) For N classes, the field is N+1 bits wide, and each class
* is assigned one bit from the least-significant N bits. The mask has
* only the most-significant bit set, and the value has only the bit
* for the event's class set. The test_adder has the least significant
* bit set in the field.
*
* If an event is not subject to the constraint expressed by a particular
* field, then it will have 0 in both the mask and value for that field.
*/

View File

@ -322,3 +322,4 @@ SYSCALL_SPU(epoll_create1)
SYSCALL_SPU(dup3) SYSCALL_SPU(dup3)
SYSCALL_SPU(pipe2) SYSCALL_SPU(pipe2)
SYSCALL(inotify_init1) SYSCALL(inotify_init1)
SYSCALL(perf_counter_open)

View File

@ -341,10 +341,11 @@
#define __NR_dup3 316 #define __NR_dup3 316
#define __NR_pipe2 317 #define __NR_pipe2 317
#define __NR_inotify_init1 318 #define __NR_inotify_init1 318
#define __NR_perf_counter_open 319
#ifdef __KERNEL__ #ifdef __KERNEL__
#define __NR_syscalls 319 #define __NR_syscalls 320
#define __NR__exit __NR_exit #define __NR__exit __NR_exit
#define NR_syscalls __NR_syscalls #define NR_syscalls __NR_syscalls

View File

@ -94,6 +94,7 @@ obj-$(CONFIG_AUDIT) += audit.o
obj64-$(CONFIG_AUDIT) += compat_audit.o obj64-$(CONFIG_AUDIT) += compat_audit.o
obj-$(CONFIG_DYNAMIC_FTRACE) += ftrace.o obj-$(CONFIG_DYNAMIC_FTRACE) += ftrace.o
obj-$(CONFIG_PERF_COUNTERS) += perf_counter.o ppc970-pmu.o power6-pmu.o
obj-$(CONFIG_8XX_MINIMAL_FPEMU) += softemu8xx.o obj-$(CONFIG_8XX_MINIMAL_FPEMU) += softemu8xx.o

View File

@ -127,6 +127,7 @@ int main(void)
DEFINE(PACAKMSR, offsetof(struct paca_struct, kernel_msr)); DEFINE(PACAKMSR, offsetof(struct paca_struct, kernel_msr));
DEFINE(PACASOFTIRQEN, offsetof(struct paca_struct, soft_enabled)); DEFINE(PACASOFTIRQEN, offsetof(struct paca_struct, soft_enabled));
DEFINE(PACAHARDIRQEN, offsetof(struct paca_struct, hard_enabled)); DEFINE(PACAHARDIRQEN, offsetof(struct paca_struct, hard_enabled));
DEFINE(PACAPERFPEND, offsetof(struct paca_struct, perf_counter_pending));
DEFINE(PACASLBCACHE, offsetof(struct paca_struct, slb_cache)); DEFINE(PACASLBCACHE, offsetof(struct paca_struct, slb_cache));
DEFINE(PACASLBCACHEPTR, offsetof(struct paca_struct, slb_cache_ptr)); DEFINE(PACASLBCACHEPTR, offsetof(struct paca_struct, slb_cache_ptr));
DEFINE(PACACONTEXTID, offsetof(struct paca_struct, context.id)); DEFINE(PACACONTEXTID, offsetof(struct paca_struct, context.id));

View File

@ -526,6 +526,15 @@ ALT_FW_FTR_SECTION_END_IFCLR(FW_FEATURE_ISERIES)
2: 2:
TRACE_AND_RESTORE_IRQ(r5); TRACE_AND_RESTORE_IRQ(r5);
#ifdef CONFIG_PERF_COUNTERS
/* check paca->perf_counter_pending if we're enabling ints */
lbz r3,PACAPERFPEND(r13)
and. r3,r3,r5
beq 27f
bl .perf_counter_do_pending
27:
#endif /* CONFIG_PERF_COUNTERS */
/* extract EE bit and use it to restore paca->hard_enabled */ /* extract EE bit and use it to restore paca->hard_enabled */
ld r3,_MSR(r1) ld r3,_MSR(r1)
rldicl r4,r3,49,63 /* r0 = (r3 >> 15) & 1 */ rldicl r4,r3,49,63 /* r0 = (r3 >> 15) & 1 */

View File

@ -104,6 +104,13 @@ static inline notrace void set_soft_enabled(unsigned long enable)
: : "r" (enable), "i" (offsetof(struct paca_struct, soft_enabled))); : : "r" (enable), "i" (offsetof(struct paca_struct, soft_enabled)));
} }
#ifdef CONFIG_PERF_COUNTERS
notrace void __weak perf_counter_do_pending(void)
{
set_perf_counter_pending(0);
}
#endif
notrace void raw_local_irq_restore(unsigned long en) notrace void raw_local_irq_restore(unsigned long en)
{ {
/* /*
@ -135,6 +142,9 @@ notrace void raw_local_irq_restore(unsigned long en)
iseries_handle_interrupts(); iseries_handle_interrupts();
} }
if (get_perf_counter_pending())
perf_counter_do_pending();
/* /*
* if (get_paca()->hard_enabled) return; * if (get_paca()->hard_enabled) return;
* But again we need to take care that gcc gets hard_enabled directly * But again we need to take care that gcc gets hard_enabled directly

View File

@ -0,0 +1,771 @@
/*
* Performance counter support - powerpc architecture code
*
* Copyright 2008-2009 Paul Mackerras, IBM Corporation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/perf_counter.h>
#include <linux/percpu.h>
#include <linux/hardirq.h>
#include <asm/reg.h>
#include <asm/pmc.h>
struct cpu_hw_counters {
int n_counters;
int n_percpu;
int disabled;
int n_added;
struct perf_counter *counter[MAX_HWCOUNTERS];
unsigned int events[MAX_HWCOUNTERS];
u64 mmcr[3];
};
DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters);
struct power_pmu *ppmu;
void perf_counter_print_debug(void)
{
}
/*
* Return 1 for a software counter, 0 for a hardware counter
*/
static inline int is_software_counter(struct perf_counter *counter)
{
return !counter->hw_event.raw && counter->hw_event.type < 0;
}
/*
* Read one performance monitor counter (PMC).
*/
static unsigned long read_pmc(int idx)
{
unsigned long val;
switch (idx) {
case 1:
val = mfspr(SPRN_PMC1);
break;
case 2:
val = mfspr(SPRN_PMC2);
break;
case 3:
val = mfspr(SPRN_PMC3);
break;
case 4:
val = mfspr(SPRN_PMC4);
break;
case 5:
val = mfspr(SPRN_PMC5);
break;
case 6:
val = mfspr(SPRN_PMC6);
break;
case 7:
val = mfspr(SPRN_PMC7);
break;
case 8:
val = mfspr(SPRN_PMC8);
break;
default:
printk(KERN_ERR "oops trying to read PMC%d\n", idx);
val = 0;
}
return val;
}
/*
* Write one PMC.
*/
static void write_pmc(int idx, unsigned long val)
{
switch (idx) {
case 1:
mtspr(SPRN_PMC1, val);
break;
case 2:
mtspr(SPRN_PMC2, val);
break;
case 3:
mtspr(SPRN_PMC3, val);
break;
case 4:
mtspr(SPRN_PMC4, val);
break;
case 5:
mtspr(SPRN_PMC5, val);
break;
case 6:
mtspr(SPRN_PMC6, val);
break;
case 7:
mtspr(SPRN_PMC7, val);
break;
case 8:
mtspr(SPRN_PMC8, val);
break;
default:
printk(KERN_ERR "oops trying to write PMC%d\n", idx);
}
}
/*
* Check if a set of events can all go on the PMU at once.
* If they can't, this will look at alternative codes for the events
* and see if any combination of alternative codes is feasible.
* The feasible set is returned in event[].
*/
static int power_check_constraints(unsigned int event[], int n_ev)
{
u64 mask, value, nv;
unsigned int alternatives[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
u64 amasks[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
u64 avalues[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
u64 smasks[MAX_HWCOUNTERS], svalues[MAX_HWCOUNTERS];
int n_alt[MAX_HWCOUNTERS], choice[MAX_HWCOUNTERS];
int i, j;
u64 addf = ppmu->add_fields;
u64 tadd = ppmu->test_adder;
if (n_ev > ppmu->n_counter)
return -1;
/* First see if the events will go on as-is */
for (i = 0; i < n_ev; ++i) {
alternatives[i][0] = event[i];
if (ppmu->get_constraint(event[i], &amasks[i][0],
&avalues[i][0]))
return -1;
choice[i] = 0;
}
value = mask = 0;
for (i = 0; i < n_ev; ++i) {
nv = (value | avalues[i][0]) + (value & avalues[i][0] & addf);
if ((((nv + tadd) ^ value) & mask) != 0 ||
(((nv + tadd) ^ avalues[i][0]) & amasks[i][0]) != 0)
break;
value = nv;
mask |= amasks[i][0];
}
if (i == n_ev)
return 0; /* all OK */
/* doesn't work, gather alternatives... */
if (!ppmu->get_alternatives)
return -1;
for (i = 0; i < n_ev; ++i) {
n_alt[i] = ppmu->get_alternatives(event[i], alternatives[i]);
for (j = 1; j < n_alt[i]; ++j)
ppmu->get_constraint(alternatives[i][j],
&amasks[i][j], &avalues[i][j]);
}
/* enumerate all possibilities and see if any will work */
i = 0;
j = -1;
value = mask = nv = 0;
while (i < n_ev) {
if (j >= 0) {
/* we're backtracking, restore context */
value = svalues[i];
mask = smasks[i];
j = choice[i];
}
/*
* See if any alternative k for event i,
* where k > j, will satisfy the constraints.
*/
while (++j < n_alt[i]) {
nv = (value | avalues[i][j]) +
(value & avalues[i][j] & addf);
if ((((nv + tadd) ^ value) & mask) == 0 &&
(((nv + tadd) ^ avalues[i][j])
& amasks[i][j]) == 0)
break;
}
if (j >= n_alt[i]) {
/*
* No feasible alternative, backtrack
* to event i-1 and continue enumerating its
* alternatives from where we got up to.
*/
if (--i < 0)
return -1;
} else {
/*
* Found a feasible alternative for event i,
* remember where we got up to with this event,
* go on to the next event, and start with
* the first alternative for it.
*/
choice[i] = j;
svalues[i] = value;
smasks[i] = mask;
value = nv;
mask |= amasks[i][j];
++i;
j = -1;
}
}
/* OK, we have a feasible combination, tell the caller the solution */
for (i = 0; i < n_ev; ++i)
event[i] = alternatives[i][choice[i]];
return 0;
}
static void power_perf_read(struct perf_counter *counter)
{
long val, delta, prev;
if (!counter->hw.idx)
return;
/*
* Performance monitor interrupts come even when interrupts
* are soft-disabled, as long as interrupts are hard-enabled.
* Therefore we treat them like NMIs.
*/
do {
prev = atomic64_read(&counter->hw.prev_count);
barrier();
val = read_pmc(counter->hw.idx);
} while (atomic64_cmpxchg(&counter->hw.prev_count, prev, val) != prev);
/* The counters are only 32 bits wide */
delta = (val - prev) & 0xfffffffful;
atomic64_add(delta, &counter->count);
atomic64_sub(delta, &counter->hw.period_left);
}
/*
* Disable all counters to prevent PMU interrupts and to allow
* counters to be added or removed.
*/
u64 hw_perf_save_disable(void)
{
struct cpu_hw_counters *cpuhw;
unsigned long ret;
unsigned long flags;
local_irq_save(flags);
cpuhw = &__get_cpu_var(cpu_hw_counters);
ret = cpuhw->disabled;
if (!ret) {
cpuhw->disabled = 1;
cpuhw->n_added = 0;
/*
* Set the 'freeze counters' bit.
* The barrier is to make sure the mtspr has been
* executed and the PMU has frozen the counters
* before we return.
*/
mtspr(SPRN_MMCR0, mfspr(SPRN_MMCR0) | MMCR0_FC);
mb();
}
local_irq_restore(flags);
return ret;
}
/*
* Re-enable all counters if disable == 0.
* If we were previously disabled and counters were added, then
* put the new config on the PMU.
*/
void hw_perf_restore(u64 disable)
{
struct perf_counter *counter;
struct cpu_hw_counters *cpuhw;
unsigned long flags;
long i;
unsigned long val;
s64 left;
unsigned int hwc_index[MAX_HWCOUNTERS];
if (disable)
return;
local_irq_save(flags);
cpuhw = &__get_cpu_var(cpu_hw_counters);
cpuhw->disabled = 0;
/*
* If we didn't change anything, or only removed counters,
* no need to recalculate MMCR* settings and reset the PMCs.
* Just reenable the PMU with the current MMCR* settings
* (possibly updated for removal of counters).
*/
if (!cpuhw->n_added) {
mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
mtspr(SPRN_MMCR0, cpuhw->mmcr[0]);
goto out;
}
/*
* Compute MMCR* values for the new set of counters
*/
if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_counters, hwc_index,
cpuhw->mmcr)) {
/* shouldn't ever get here */
printk(KERN_ERR "oops compute_mmcr failed\n");
goto out;
}
/*
* Write the new configuration to MMCR* with the freeze
* bit set and set the hardware counters to their initial values.
* Then unfreeze the counters.
*/
mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
| MMCR0_FC);
/*
* Read off any pre-existing counters that need to move
* to another PMC.
*/
for (i = 0; i < cpuhw->n_counters; ++i) {
counter = cpuhw->counter[i];
if (counter->hw.idx && counter->hw.idx != hwc_index[i] + 1) {
power_perf_read(counter);
write_pmc(counter->hw.idx, 0);
counter->hw.idx = 0;
}
}
/*
* Initialize the PMCs for all the new and moved counters.
*/
for (i = 0; i < cpuhw->n_counters; ++i) {
counter = cpuhw->counter[i];
if (counter->hw.idx)
continue;
val = 0;
if (counter->hw_event.irq_period) {
left = atomic64_read(&counter->hw.period_left);
if (left < 0x80000000L)
val = 0x80000000L - left;
}
atomic64_set(&counter->hw.prev_count, val);
counter->hw.idx = hwc_index[i] + 1;
write_pmc(counter->hw.idx, val);
}
mb();
cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
mtspr(SPRN_MMCR0, cpuhw->mmcr[0]);
out:
local_irq_restore(flags);
}
static int collect_events(struct perf_counter *group, int max_count,
struct perf_counter *ctrs[], unsigned int *events)
{
int n = 0;
struct perf_counter *counter;
if (!is_software_counter(group)) {
if (n >= max_count)
return -1;
ctrs[n] = group;
events[n++] = group->hw.config;
}
list_for_each_entry(counter, &group->sibling_list, list_entry) {
if (!is_software_counter(counter) &&
counter->state != PERF_COUNTER_STATE_OFF) {
if (n >= max_count)
return -1;
ctrs[n] = counter;
events[n++] = counter->hw.config;
}
}
return n;
}
static void counter_sched_in(struct perf_counter *counter, int cpu)
{
counter->state = PERF_COUNTER_STATE_ACTIVE;
counter->oncpu = cpu;
if (is_software_counter(counter))
counter->hw_ops->enable(counter);
}
/*
* Called to enable a whole group of counters.
* Returns 1 if the group was enabled, or -EAGAIN if it could not be.
* Assumes the caller has disabled interrupts and has
* frozen the PMU with hw_perf_save_disable.
*/
int hw_perf_group_sched_in(struct perf_counter *group_leader,
struct perf_cpu_context *cpuctx,
struct perf_counter_context *ctx, int cpu)
{
struct cpu_hw_counters *cpuhw;
long i, n, n0;
struct perf_counter *sub;
cpuhw = &__get_cpu_var(cpu_hw_counters);
n0 = cpuhw->n_counters;
n = collect_events(group_leader, ppmu->n_counter - n0,
&cpuhw->counter[n0], &cpuhw->events[n0]);
if (n < 0)
return -EAGAIN;
if (power_check_constraints(cpuhw->events, n + n0))
return -EAGAIN;
cpuhw->n_counters = n0 + n;
cpuhw->n_added += n;
/*
* OK, this group can go on; update counter states etc.,
* and enable any software counters
*/
for (i = n0; i < n0 + n; ++i)
cpuhw->counter[i]->hw.config = cpuhw->events[i];
n = 1;
counter_sched_in(group_leader, cpu);
list_for_each_entry(sub, &group_leader->sibling_list, list_entry) {
if (sub->state != PERF_COUNTER_STATE_OFF) {
counter_sched_in(sub, cpu);
++n;
}
}
cpuctx->active_oncpu += n;
ctx->nr_active += n;
return 1;
}
/*
* Add a counter to the PMU.
* If all counters are not already frozen, then we disable and
* re-enable the PMU in order to get hw_perf_restore to do the
* actual work of reconfiguring the PMU.
*/
static int power_perf_enable(struct perf_counter *counter)
{
struct cpu_hw_counters *cpuhw;
unsigned long flags;
u64 pmudis;
int n0;
int ret = -EAGAIN;
local_irq_save(flags);
pmudis = hw_perf_save_disable();
/*
* Add the counter to the list (if there is room)
* and check whether the total set is still feasible.
*/
cpuhw = &__get_cpu_var(cpu_hw_counters);
n0 = cpuhw->n_counters;
if (n0 >= ppmu->n_counter)
goto out;
cpuhw->counter[n0] = counter;
cpuhw->events[n0] = counter->hw.config;
if (power_check_constraints(cpuhw->events, n0 + 1))
goto out;
counter->hw.config = cpuhw->events[n0];
++cpuhw->n_counters;
++cpuhw->n_added;
ret = 0;
out:
hw_perf_restore(pmudis);
local_irq_restore(flags);
return ret;
}
/*
* Remove a counter from the PMU.
*/
static void power_perf_disable(struct perf_counter *counter)
{
struct cpu_hw_counters *cpuhw;
long i;
u64 pmudis;
unsigned long flags;
local_irq_save(flags);
pmudis = hw_perf_save_disable();
power_perf_read(counter);
cpuhw = &__get_cpu_var(cpu_hw_counters);
for (i = 0; i < cpuhw->n_counters; ++i) {
if (counter == cpuhw->counter[i]) {
while (++i < cpuhw->n_counters)
cpuhw->counter[i-1] = cpuhw->counter[i];
--cpuhw->n_counters;
ppmu->disable_pmc(counter->hw.idx - 1, cpuhw->mmcr);
write_pmc(counter->hw.idx, 0);
counter->hw.idx = 0;
break;
}
}
if (cpuhw->n_counters == 0) {
/* disable exceptions if no counters are running */
cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
}
hw_perf_restore(pmudis);
local_irq_restore(flags);
}
struct hw_perf_counter_ops power_perf_ops = {
.enable = power_perf_enable,
.disable = power_perf_disable,
.read = power_perf_read
};
const struct hw_perf_counter_ops *
hw_perf_counter_init(struct perf_counter *counter)
{
unsigned long ev;
struct perf_counter *ctrs[MAX_HWCOUNTERS];
unsigned int events[MAX_HWCOUNTERS];
int n;
if (!ppmu)
return NULL;
if ((s64)counter->hw_event.irq_period < 0)
return NULL;
ev = counter->hw_event.type;
if (!counter->hw_event.raw) {
if (ev >= ppmu->n_generic ||
ppmu->generic_events[ev] == 0)
return NULL;
ev = ppmu->generic_events[ev];
}
counter->hw.config_base = ev;
counter->hw.idx = 0;
/*
* If this is in a group, check if it can go on with all the
* other hardware counters in the group. We assume the counter
* hasn't been linked into its leader's sibling list at this point.
*/
n = 0;
if (counter->group_leader != counter) {
n = collect_events(counter->group_leader, ppmu->n_counter - 1,
ctrs, events);
if (n < 0)
return NULL;
}
events[n++] = ev;
if (power_check_constraints(events, n))
return NULL;
counter->hw.config = events[n - 1];
atomic64_set(&counter->hw.period_left, counter->hw_event.irq_period);
return &power_perf_ops;
}
/*
* Handle wakeups.
*/
void perf_counter_do_pending(void)
{
int i;
struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters);
struct perf_counter *counter;
set_perf_counter_pending(0);
for (i = 0; i < cpuhw->n_counters; ++i) {
counter = cpuhw->counter[i];
if (counter && counter->wakeup_pending) {
counter->wakeup_pending = 0;
wake_up(&counter->waitq);
}
}
}
/*
* Record data for an irq counter.
* This function was lifted from the x86 code; maybe it should
* go in the core?
*/
static void perf_store_irq_data(struct perf_counter *counter, u64 data)
{
struct perf_data *irqdata = counter->irqdata;
if (irqdata->len > PERF_DATA_BUFLEN - sizeof(u64)) {
irqdata->overrun++;
} else {
u64 *p = (u64 *) &irqdata->data[irqdata->len];
*p = data;
irqdata->len += sizeof(u64);
}
}
/*
* Record all the values of the counters in a group
*/
static void perf_handle_group(struct perf_counter *counter)
{
struct perf_counter *leader, *sub;
leader = counter->group_leader;
list_for_each_entry(sub, &leader->sibling_list, list_entry) {
if (sub != counter)
sub->hw_ops->read(sub);
perf_store_irq_data(counter, sub->hw_event.type);
perf_store_irq_data(counter, atomic64_read(&sub->count));
}
}
/*
* A counter has overflowed; update its count and record
* things if requested. Note that interrupts are hard-disabled
* here so there is no possibility of being interrupted.
*/
static void record_and_restart(struct perf_counter *counter, long val,
struct pt_regs *regs)
{
s64 prev, delta, left;
int record = 0;
/* we don't have to worry about interrupts here */
prev = atomic64_read(&counter->hw.prev_count);
delta = (val - prev) & 0xfffffffful;
atomic64_add(delta, &counter->count);
/*
* See if the total period for this counter has expired,
* and update for the next period.
*/
val = 0;
left = atomic64_read(&counter->hw.period_left) - delta;
if (counter->hw_event.irq_period) {
if (left <= 0) {
left += counter->hw_event.irq_period;
if (left <= 0)
left = counter->hw_event.irq_period;
record = 1;
}
if (left < 0x80000000L)
val = 0x80000000L - left;
}
write_pmc(counter->hw.idx, val);
atomic64_set(&counter->hw.prev_count, val);
atomic64_set(&counter->hw.period_left, left);
/*
* Finally record data if requested.
*/
if (record) {
switch (counter->hw_event.record_type) {
case PERF_RECORD_SIMPLE:
break;
case PERF_RECORD_IRQ:
perf_store_irq_data(counter, instruction_pointer(regs));
counter->wakeup_pending = 1;
break;
case PERF_RECORD_GROUP:
perf_handle_group(counter);
counter->wakeup_pending = 1;
break;
}
}
}
/*
* Performance monitor interrupt stuff
*/
static void perf_counter_interrupt(struct pt_regs *regs)
{
int i;
struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters);
struct perf_counter *counter;
long val;
int need_wakeup = 0, found = 0;
for (i = 0; i < cpuhw->n_counters; ++i) {
counter = cpuhw->counter[i];
val = read_pmc(counter->hw.idx);
if ((int)val < 0) {
/* counter has overflowed */
found = 1;
record_and_restart(counter, val, regs);
if (counter->wakeup_pending)
need_wakeup = 1;
}
}
/*
* In case we didn't find and reset the counter that caused
* the interrupt, scan all counters and reset any that are
* negative, to avoid getting continual interrupts.
* Any that we processed in the previous loop will not be negative.
*/
if (!found) {
for (i = 0; i < ppmu->n_counter; ++i) {
val = read_pmc(i + 1);
if ((int)val < 0)
write_pmc(i + 1, 0);
}
}
/*
* Reset MMCR0 to its normal value. This will set PMXE and
* clear FC (freeze counters) and PMAO (perf mon alert occurred)
* and thus allow interrupts to occur again.
* XXX might want to use MSR.PM to keep the counters frozen until
* we get back out of this interrupt.
*/
mtspr(SPRN_MMCR0, cpuhw->mmcr[0]);
/*
* If we need a wakeup, check whether interrupts were soft-enabled
* when we took the interrupt. If they were, we can wake stuff up
* immediately; otherwise we'll have to set a flag and do the
* wakeup when interrupts get soft-enabled.
*/
if (need_wakeup) {
if (regs->softe) {
irq_enter();
perf_counter_do_pending();
irq_exit();
} else {
set_perf_counter_pending(1);
}
}
}
extern struct power_pmu ppc970_pmu;
extern struct power_pmu power6_pmu;
static int init_perf_counters(void)
{
unsigned long pvr;
if (reserve_pmc_hardware(perf_counter_interrupt)) {
printk(KERN_ERR "Couldn't init performance monitor subsystem\n");
return -EBUSY;
}
/* XXX should get this from cputable */
pvr = mfspr(SPRN_PVR);
switch (PVR_VER(pvr)) {
case PV_970:
case PV_970FX:
case PV_970MP:
ppmu = &ppc970_pmu;
break;
case 0x3e:
ppmu = &power6_pmu;
break;
}
return 0;
}
arch_initcall(init_perf_counters);

View File

@ -0,0 +1,283 @@
/*
* Performance counter support for POWER6 processors.
*
* Copyright 2008-2009 Paul Mackerras, IBM Corporation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/perf_counter.h>
#include <asm/reg.h>
/*
* Bits in event code for POWER6
*/
#define PM_PMC_SH 20 /* PMC number (1-based) for direct events */
#define PM_PMC_MSK 0x7
#define PM_PMC_MSKS (PM_PMC_MSK << PM_PMC_SH)
#define PM_UNIT_SH 16 /* Unit event comes (TTMxSEL encoding) */
#define PM_UNIT_MSK 0xf
#define PM_UNIT_MSKS (PM_UNIT_MSK << PM_UNIT_SH)
#define PM_LLAV 0x8000 /* Load lookahead match value */
#define PM_LLA 0x4000 /* Load lookahead match enable */
#define PM_BYTE_SH 12 /* Byte of event bus to use */
#define PM_BYTE_MSK 3
#define PM_SUBUNIT_SH 8 /* Subunit event comes from (NEST_SEL enc.) */
#define PM_SUBUNIT_MSK 7
#define PM_SUBUNIT_MSKS (PM_SUBUNIT_MSK << PM_SUBUNIT_SH)
#define PM_PMCSEL_MSK 0xff /* PMCxSEL value */
#define PM_BUSEVENT_MSK 0xf3700
/*
* Bits in MMCR1 for POWER6
*/
#define MMCR1_TTM0SEL_SH 60
#define MMCR1_TTMSEL_SH(n) (MMCR1_TTM0SEL_SH - (n) * 4)
#define MMCR1_TTMSEL_MSK 0xf
#define MMCR1_TTMSEL(m, n) (((m) >> MMCR1_TTMSEL_SH(n)) & MMCR1_TTMSEL_MSK)
#define MMCR1_NESTSEL_SH 45
#define MMCR1_NESTSEL_MSK 0x7
#define MMCR1_NESTSEL(m) (((m) >> MMCR1_NESTSEL_SH) & MMCR1_NESTSEL_MSK)
#define MMCR1_PMC1_LLA ((u64)1 << 44)
#define MMCR1_PMC1_LLA_VALUE ((u64)1 << 39)
#define MMCR1_PMC1_ADDR_SEL ((u64)1 << 35)
#define MMCR1_PMC1SEL_SH 24
#define MMCR1_PMCSEL_SH(n) (MMCR1_PMC1SEL_SH - (n) * 8)
#define MMCR1_PMCSEL_MSK 0xff
/*
* Assign PMC numbers and compute MMCR1 value for a set of events
*/
static int p6_compute_mmcr(unsigned int event[], int n_ev,
unsigned int hwc[], u64 mmcr[])
{
u64 mmcr1 = 0;
int i;
unsigned int pmc, ev, b, u, s, psel;
unsigned int ttmset = 0;
unsigned int pmc_inuse = 0;
if (n_ev > 4)
return -1;
for (i = 0; i < n_ev; ++i) {
pmc = (event[i] >> PM_PMC_SH) & PM_PMC_MSK;
if (pmc) {
if (pmc_inuse & (1 << (pmc - 1)))
return -1; /* collision! */
pmc_inuse |= 1 << (pmc - 1);
}
}
for (i = 0; i < n_ev; ++i) {
ev = event[i];
pmc = (ev >> PM_PMC_SH) & PM_PMC_MSK;
if (pmc) {
--pmc;
} else {
/* can go on any PMC; find a free one */
for (pmc = 0; pmc < 4; ++pmc)
if (!(pmc_inuse & (1 << pmc)))
break;
pmc_inuse |= 1 << pmc;
}
hwc[i] = pmc;
psel = ev & PM_PMCSEL_MSK;
if (ev & PM_BUSEVENT_MSK) {
/* this event uses the event bus */
b = (ev >> PM_BYTE_SH) & PM_BYTE_MSK;
u = (ev >> PM_UNIT_SH) & PM_UNIT_MSK;
/* check for conflict on this byte of event bus */
if ((ttmset & (1 << b)) && MMCR1_TTMSEL(mmcr1, b) != u)
return -1;
mmcr1 |= (u64)u << MMCR1_TTMSEL_SH(b);
ttmset |= 1 << b;
if (u == 5) {
/* Nest events have a further mux */
s = (ev >> PM_SUBUNIT_SH) & PM_SUBUNIT_MSK;
if ((ttmset & 0x10) &&
MMCR1_NESTSEL(mmcr1) != s)
return -1;
ttmset |= 0x10;
mmcr1 |= (u64)s << MMCR1_NESTSEL_SH;
}
if (0x30 <= psel && psel <= 0x3d) {
/* these need the PMCx_ADDR_SEL bits */
if (b >= 2)
mmcr1 |= MMCR1_PMC1_ADDR_SEL >> pmc;
}
/* bus select values are different for PMC3/4 */
if (pmc >= 2 && (psel & 0x90) == 0x80)
psel ^= 0x20;
}
if (ev & PM_LLA) {
mmcr1 |= MMCR1_PMC1_LLA >> pmc;
if (ev & PM_LLAV)
mmcr1 |= MMCR1_PMC1_LLA_VALUE >> pmc;
}
mmcr1 |= (u64)psel << MMCR1_PMCSEL_SH(pmc);
}
mmcr[0] = 0;
if (pmc_inuse & 1)
mmcr[0] = MMCR0_PMC1CE;
if (pmc_inuse & 0xe)
mmcr[0] |= MMCR0_PMCjCE;
mmcr[1] = mmcr1;
mmcr[2] = 0;
return 0;
}
/*
* Layout of constraint bits:
*
* 0-1 add field: number of uses of PMC1 (max 1)
* 2-3, 4-5, 6-7: ditto for PMC2, 3, 4
* 8-10 select field: nest (subunit) event selector
* 16-19 select field: unit on byte 0 of event bus
* 20-23, 24-27, 28-31 ditto for bytes 1, 2, 3
*/
static int p6_get_constraint(unsigned int event, u64 *maskp, u64 *valp)
{
int pmc, byte, sh;
unsigned int mask = 0, value = 0;
pmc = (event >> PM_PMC_SH) & PM_PMC_MSK;
if (pmc) {
if (pmc > 4)
return -1;
sh = (pmc - 1) * 2;
mask |= 2 << sh;
value |= 1 << sh;
}
if (event & PM_BUSEVENT_MSK) {
byte = (event >> PM_BYTE_SH) & PM_BYTE_MSK;
sh = byte * 4;
mask |= PM_UNIT_MSKS << sh;
value |= (event & PM_UNIT_MSKS) << sh;
if ((event & PM_UNIT_MSKS) == (5 << PM_UNIT_SH)) {
mask |= PM_SUBUNIT_MSKS;
value |= event & PM_SUBUNIT_MSKS;
}
}
*maskp = mask;
*valp = value;
return 0;
}
#define MAX_ALT 4 /* at most 4 alternatives for any event */
static const unsigned int event_alternatives[][MAX_ALT] = {
{ 0x0130e8, 0x2000f6, 0x3000fc }, /* PM_PTEG_RELOAD_VALID */
{ 0x080080, 0x10000d, 0x30000c, 0x4000f0 }, /* PM_LD_MISS_L1 */
{ 0x080088, 0x200054, 0x3000f0 }, /* PM_ST_MISS_L1 */
{ 0x10000a, 0x2000f4 }, /* PM_RUN_CYC */
{ 0x10000b, 0x2000f5 }, /* PM_RUN_COUNT */
{ 0x10000e, 0x400010 }, /* PM_PURR */
{ 0x100010, 0x4000f8 }, /* PM_FLUSH */
{ 0x10001a, 0x200010 }, /* PM_MRK_INST_DISP */
{ 0x100026, 0x3000f8 }, /* PM_TB_BIT_TRANS */
{ 0x100054, 0x2000f0 }, /* PM_ST_FIN */
{ 0x100056, 0x2000fc }, /* PM_L1_ICACHE_MISS */
{ 0x1000f0, 0x40000a }, /* PM_INST_IMC_MATCH_CMPL */
{ 0x1000f8, 0x200008 }, /* PM_GCT_EMPTY_CYC */
{ 0x1000fc, 0x400006 }, /* PM_LSU_DERAT_MISS_CYC */
{ 0x20000e, 0x400007 }, /* PM_LSU_DERAT_MISS */
{ 0x200012, 0x300012 }, /* PM_INST_DISP */
{ 0x2000f2, 0x3000f2 }, /* PM_INST_DISP */
{ 0x2000f8, 0x300010 }, /* PM_EXT_INT */
{ 0x2000fe, 0x300056 }, /* PM_DATA_FROM_L2MISS */
{ 0x2d0030, 0x30001a }, /* PM_MRK_FPU_FIN */
{ 0x30000a, 0x400018 }, /* PM_MRK_INST_FIN */
{ 0x3000f6, 0x40000e }, /* PM_L1_DCACHE_RELOAD_VALID */
{ 0x3000fe, 0x400056 }, /* PM_DATA_FROM_L3MISS */
};
/*
* This could be made more efficient with a binary search on
* a presorted list, if necessary
*/
static int find_alternatives_list(unsigned int event)
{
int i, j;
unsigned int alt;
for (i = 0; i < ARRAY_SIZE(event_alternatives); ++i) {
if (event < event_alternatives[i][0])
return -1;
for (j = 0; j < MAX_ALT; ++j) {
alt = event_alternatives[i][j];
if (!alt || event < alt)
break;
if (event == alt)
return i;
}
}
return -1;
}
static int p6_get_alternatives(unsigned int event, unsigned int alt[])
{
int i, j;
unsigned int aevent, psel, pmc;
unsigned int nalt = 1;
alt[0] = event;
/* check the alternatives table */
i = find_alternatives_list(event);
if (i >= 0) {
/* copy out alternatives from list */
for (j = 0; j < MAX_ALT; ++j) {
aevent = event_alternatives[i][j];
if (!aevent)
break;
if (aevent != event)
alt[nalt++] = aevent;
}
} else {
/* Check for alternative ways of computing sum events */
/* PMCSEL 0x32 counter N == PMCSEL 0x34 counter 5-N */
psel = event & (PM_PMCSEL_MSK & ~1); /* ignore edge bit */
pmc = (event >> PM_PMC_SH) & PM_PMC_MSK;
if (pmc && (psel == 0x32 || psel == 0x34))
alt[nalt++] = ((event ^ 0x6) & ~PM_PMC_MSKS) |
((5 - pmc) << PM_PMC_SH);
/* PMCSEL 0x38 counter N == PMCSEL 0x3a counter N+/-2 */
if (pmc && (psel == 0x38 || psel == 0x3a))
alt[nalt++] = ((event ^ 0x2) & ~PM_PMC_MSKS) |
((pmc > 2? pmc - 2: pmc + 2) << PM_PMC_SH);
}
return nalt;
}
static void p6_disable_pmc(unsigned int pmc, u64 mmcr[])
{
/* Set PMCxSEL to 0 to disable PMCx */
mmcr[1] &= ~(0xffUL << MMCR1_PMCSEL_SH(pmc));
}
static int power6_generic_events[] = {
[PERF_COUNT_CPU_CYCLES] = 0x1e,
[PERF_COUNT_INSTRUCTIONS] = 2,
[PERF_COUNT_CACHE_REFERENCES] = 0x280030, /* LD_REF_L1 */
[PERF_COUNT_CACHE_MISSES] = 0x30000c, /* LD_MISS_L1 */
[PERF_COUNT_BRANCH_INSTRUCTIONS] = 0x410a0, /* BR_PRED */
[PERF_COUNT_BRANCH_MISSES] = 0x400052, /* BR_MPRED */
};
struct power_pmu power6_pmu = {
.n_counter = 4,
.max_alternatives = MAX_ALT,
.add_fields = 0x55,
.test_adder = 0,
.compute_mmcr = p6_compute_mmcr,
.get_constraint = p6_get_constraint,
.get_alternatives = p6_get_alternatives,
.disable_pmc = p6_disable_pmc,
.n_generic = ARRAY_SIZE(power6_generic_events),
.generic_events = power6_generic_events,
};

View File

@ -0,0 +1,375 @@
/*
* Performance counter support for PPC970-family processors.
*
* Copyright 2008-2009 Paul Mackerras, IBM Corporation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/string.h>
#include <linux/perf_counter.h>
#include <asm/reg.h>
/*
* Bits in event code for PPC970
*/
#define PM_PMC_SH 12 /* PMC number (1-based) for direct events */
#define PM_PMC_MSK 0xf
#define PM_UNIT_SH 8 /* TTMMUX number and setting - unit select */
#define PM_UNIT_MSK 0xf
#define PM_BYTE_SH 4 /* Byte number of event bus to use */
#define PM_BYTE_MSK 3
#define PM_PMCSEL_MSK 0xf
/* Values in PM_UNIT field */
#define PM_NONE 0
#define PM_FPU 1
#define PM_VPU 2
#define PM_ISU 3
#define PM_IFU 4
#define PM_IDU 5
#define PM_STS 6
#define PM_LSU0 7
#define PM_LSU1U 8
#define PM_LSU1L 9
#define PM_LASTUNIT 9
/*
* Bits in MMCR0 for PPC970
*/
#define MMCR0_PMC1SEL_SH 8
#define MMCR0_PMC2SEL_SH 1
#define MMCR_PMCSEL_MSK 0x1f
/*
* Bits in MMCR1 for PPC970
*/
#define MMCR1_TTM0SEL_SH 62
#define MMCR1_TTM1SEL_SH 59
#define MMCR1_TTM3SEL_SH 53
#define MMCR1_TTMSEL_MSK 3
#define MMCR1_TD_CP_DBG0SEL_SH 50
#define MMCR1_TD_CP_DBG1SEL_SH 48
#define MMCR1_TD_CP_DBG2SEL_SH 46
#define MMCR1_TD_CP_DBG3SEL_SH 44
#define MMCR1_PMC1_ADDER_SEL_SH 39
#define MMCR1_PMC2_ADDER_SEL_SH 38
#define MMCR1_PMC6_ADDER_SEL_SH 37
#define MMCR1_PMC5_ADDER_SEL_SH 36
#define MMCR1_PMC8_ADDER_SEL_SH 35
#define MMCR1_PMC7_ADDER_SEL_SH 34
#define MMCR1_PMC3_ADDER_SEL_SH 33
#define MMCR1_PMC4_ADDER_SEL_SH 32
#define MMCR1_PMC3SEL_SH 27
#define MMCR1_PMC4SEL_SH 22
#define MMCR1_PMC5SEL_SH 17
#define MMCR1_PMC6SEL_SH 12
#define MMCR1_PMC7SEL_SH 7
#define MMCR1_PMC8SEL_SH 2
static short mmcr1_adder_bits[8] = {
MMCR1_PMC1_ADDER_SEL_SH,
MMCR1_PMC2_ADDER_SEL_SH,
MMCR1_PMC3_ADDER_SEL_SH,
MMCR1_PMC4_ADDER_SEL_SH,
MMCR1_PMC5_ADDER_SEL_SH,
MMCR1_PMC6_ADDER_SEL_SH,
MMCR1_PMC7_ADDER_SEL_SH,
MMCR1_PMC8_ADDER_SEL_SH
};
/*
* Bits in MMCRA
*/
/*
* Layout of constraint bits:
* 6666555555555544444444443333333333222222222211111111110000000000
* 3210987654321098765432109876543210987654321098765432109876543210
* <><>[ >[ >[ >< >< >< >< ><><><><><><><><>
* T0T1 UC PS1 PS2 B0 B1 B2 B3 P1P2P3P4P5P6P7P8
*
* T0 - TTM0 constraint
* 46-47: TTM0SEL value (0=FPU, 2=IFU, 3=VPU) 0xC000_0000_0000
*
* T1 - TTM1 constraint
* 44-45: TTM1SEL value (0=IDU, 3=STS) 0x3000_0000_0000
*
* UC - unit constraint: can't have all three of FPU|IFU|VPU, ISU, IDU|STS
* 43: UC3 error 0x0800_0000_0000
* 42: FPU|IFU|VPU events needed 0x0400_0000_0000
* 41: ISU events needed 0x0200_0000_0000
* 40: IDU|STS events needed 0x0100_0000_0000
*
* PS1
* 39: PS1 error 0x0080_0000_0000
* 36-38: count of events needing PMC1/2/5/6 0x0070_0000_0000
*
* PS2
* 35: PS2 error 0x0008_0000_0000
* 32-34: count of events needing PMC3/4/7/8 0x0007_0000_0000
*
* B0
* 28-31: Byte 0 event source 0xf000_0000
* Encoding as for the event code
*
* B1, B2, B3
* 24-27, 20-23, 16-19: Byte 1, 2, 3 event sources
*
* P1
* 15: P1 error 0x8000
* 14-15: Count of events needing PMC1
*
* P2..P8
* 0-13: Count of events needing PMC2..PMC8
*/
/* Masks and values for using events from the various units */
static u64 unit_cons[PM_LASTUNIT+1][2] = {
[PM_FPU] = { 0xc80000000000ull, 0x040000000000ull },
[PM_VPU] = { 0xc80000000000ull, 0xc40000000000ull },
[PM_ISU] = { 0x080000000000ull, 0x020000000000ull },
[PM_IFU] = { 0xc80000000000ull, 0x840000000000ull },
[PM_IDU] = { 0x380000000000ull, 0x010000000000ull },
[PM_STS] = { 0x380000000000ull, 0x310000000000ull },
};
static int p970_get_constraint(unsigned int event, u64 *maskp, u64 *valp)
{
int pmc, byte, unit, sh;
u64 mask = 0, value = 0;
int grp = -1;
pmc = (event >> PM_PMC_SH) & PM_PMC_MSK;
if (pmc) {
if (pmc > 8)
return -1;
sh = (pmc - 1) * 2;
mask |= 2 << sh;
value |= 1 << sh;
grp = ((pmc - 1) >> 1) & 1;
}
unit = (event >> PM_UNIT_SH) & PM_UNIT_MSK;
if (unit) {
if (unit > PM_LASTUNIT)
return -1;
mask |= unit_cons[unit][0];
value |= unit_cons[unit][1];
byte = (event >> PM_BYTE_SH) & PM_BYTE_MSK;
/*
* Bus events on bytes 0 and 2 can be counted
* on PMC1/2/5/6; bytes 1 and 3 on PMC3/4/7/8.
*/
if (!pmc)
grp = byte & 1;
/* Set byte lane select field */
mask |= 0xfULL << (28 - 4 * byte);
value |= (u64)unit << (28 - 4 * byte);
}
if (grp == 0) {
/* increment PMC1/2/5/6 field */
mask |= 0x8000000000ull;
value |= 0x1000000000ull;
} else if (grp == 1) {
/* increment PMC3/4/7/8 field */
mask |= 0x800000000ull;
value |= 0x100000000ull;
}
*maskp = mask;
*valp = value;
return 0;
}
static int p970_get_alternatives(unsigned int event, unsigned int alt[])
{
alt[0] = event;
/* 2 alternatives for LSU empty */
if (event == 0x2002 || event == 0x3002) {
alt[1] = event ^ 0x1000;
return 2;
}
return 1;
}
static int p970_compute_mmcr(unsigned int event[], int n_ev,
unsigned int hwc[], u64 mmcr[])
{
u64 mmcr0 = 0, mmcr1 = 0, mmcra = 0;
unsigned int pmc, unit, byte, psel;
unsigned int ttm, grp;
unsigned int pmc_inuse = 0;
unsigned int pmc_grp_use[2];
unsigned char busbyte[4];
unsigned char unituse[16];
unsigned char unitmap[] = { 0, 0<<3, 3<<3, 1<<3, 2<<3, 0|4, 3|4 };
unsigned char ttmuse[2];
unsigned char pmcsel[8];
int i;
if (n_ev > 8)
return -1;
/* First pass to count resource use */
pmc_grp_use[0] = pmc_grp_use[1] = 0;
memset(busbyte, 0, sizeof(busbyte));
memset(unituse, 0, sizeof(unituse));
for (i = 0; i < n_ev; ++i) {
pmc = (event[i] >> PM_PMC_SH) & PM_PMC_MSK;
if (pmc) {
if (pmc_inuse & (1 << (pmc - 1)))
return -1;
pmc_inuse |= 1 << (pmc - 1);
/* count 1/2/5/6 vs 3/4/7/8 use */
++pmc_grp_use[((pmc - 1) >> 1) & 1];
}
unit = (event[i] >> PM_UNIT_SH) & PM_UNIT_MSK;
byte = (event[i] >> PM_BYTE_SH) & PM_BYTE_MSK;
if (unit) {
if (unit > PM_LASTUNIT)
return -1;
if (!pmc)
++pmc_grp_use[byte & 1];
if (busbyte[byte] && busbyte[byte] != unit)
return -1;
busbyte[byte] = unit;
unituse[unit] = 1;
}
}
if (pmc_grp_use[0] > 4 || pmc_grp_use[1] > 4)
return -1;
/*
* Assign resources and set multiplexer selects.
*
* PM_ISU can go either on TTM0 or TTM1, but that's the only
* choice we have to deal with.
*/
if (unituse[PM_ISU] &
(unituse[PM_FPU] | unituse[PM_IFU] | unituse[PM_VPU]))
unitmap[PM_ISU] = 2 | 4; /* move ISU to TTM1 */
/* Set TTM[01]SEL fields. */
ttmuse[0] = ttmuse[1] = 0;
for (i = PM_FPU; i <= PM_STS; ++i) {
if (!unituse[i])
continue;
ttm = unitmap[i];
++ttmuse[(ttm >> 2) & 1];
mmcr1 |= (u64)(ttm & ~4) << MMCR1_TTM1SEL_SH;
}
/* Check only one unit per TTMx */
if (ttmuse[0] > 1 || ttmuse[1] > 1)
return -1;
/* Set byte lane select fields and TTM3SEL. */
for (byte = 0; byte < 4; ++byte) {
unit = busbyte[byte];
if (!unit)
continue;
if (unit <= PM_STS)
ttm = (unitmap[unit] >> 2) & 1;
else if (unit == PM_LSU0)
ttm = 2;
else {
ttm = 3;
if (unit == PM_LSU1L && byte >= 2)
mmcr1 |= 1ull << (MMCR1_TTM3SEL_SH + 3 - byte);
}
mmcr1 |= (u64)ttm << (MMCR1_TD_CP_DBG0SEL_SH - 2 * byte);
}
/* Second pass: assign PMCs, set PMCxSEL and PMCx_ADDER_SEL fields */
memset(pmcsel, 0x8, sizeof(pmcsel)); /* 8 means don't count */
for (i = 0; i < n_ev; ++i) {
pmc = (event[i] >> PM_PMC_SH) & PM_PMC_MSK;
unit = (event[i] >> PM_UNIT_SH) & PM_UNIT_MSK;
byte = (event[i] >> PM_BYTE_SH) & PM_BYTE_MSK;
psel = event[i] & PM_PMCSEL_MSK;
if (!pmc) {
/* Bus event or any-PMC direct event */
if (unit)
psel |= 0x10 | ((byte & 2) << 2);
else
psel |= 8;
for (pmc = 0; pmc < 8; ++pmc) {
if (pmc_inuse & (1 << pmc))
continue;
grp = (pmc >> 1) & 1;
if (unit) {
if (grp == (byte & 1))
break;
} else if (pmc_grp_use[grp] < 4) {
++pmc_grp_use[grp];
break;
}
}
pmc_inuse |= 1 << pmc;
} else {
/* Direct event */
--pmc;
if (psel == 0 && (byte & 2))
/* add events on higher-numbered bus */
mmcr1 |= 1ull << mmcr1_adder_bits[pmc];
}
pmcsel[pmc] = psel;
hwc[i] = pmc;
}
for (pmc = 0; pmc < 2; ++pmc)
mmcr0 |= pmcsel[pmc] << (MMCR0_PMC1SEL_SH - 7 * pmc);
for (; pmc < 8; ++pmc)
mmcr1 |= (u64)pmcsel[pmc] << (MMCR1_PMC3SEL_SH - 5 * (pmc - 2));
if (pmc_inuse & 1)
mmcr0 |= MMCR0_PMC1CE;
if (pmc_inuse & 0xfe)
mmcr0 |= MMCR0_PMCjCE;
mmcra |= 0x2000; /* mark only one IOP per PPC instruction */
/* Return MMCRx values */
mmcr[0] = mmcr0;
mmcr[1] = mmcr1;
mmcr[2] = mmcra;
return 0;
}
static void p970_disable_pmc(unsigned int pmc, u64 mmcr[])
{
int shift, i;
if (pmc <= 1) {
shift = MMCR0_PMC1SEL_SH - 7 * pmc;
i = 0;
} else {
shift = MMCR1_PMC3SEL_SH - 5 * (pmc - 2);
i = 1;
}
/*
* Setting the PMCxSEL field to 0x08 disables PMC x.
*/
mmcr[i] = (mmcr[i] & ~(0x1fUL << shift)) | (0x08UL << shift);
}
static int ppc970_generic_events[] = {
[PERF_COUNT_CPU_CYCLES] = 7,
[PERF_COUNT_INSTRUCTIONS] = 1,
[PERF_COUNT_CACHE_REFERENCES] = 0x8810, /* PM_LD_REF_L1 */
[PERF_COUNT_CACHE_MISSES] = 0x3810, /* PM_LD_MISS_L1 */
[PERF_COUNT_BRANCH_INSTRUCTIONS] = 0x431, /* PM_BR_ISSUED */
[PERF_COUNT_BRANCH_MISSES] = 0x327, /* PM_GRP_BR_MPRED */
};
struct power_pmu ppc970_pmu = {
.n_counter = 8,
.max_alternatives = 2,
.add_fields = 0x001100005555ull,
.test_adder = 0x013300000000ull,
.compute_mmcr = p970_compute_mmcr,
.get_constraint = p970_get_constraint,
.get_alternatives = p970_get_alternatives,
.disable_pmc = p970_disable_pmc,
.n_generic = ARRAY_SIZE(ppc970_generic_events),
.generic_events = ppc970_generic_events,
};

View File

@ -1,6 +1,7 @@
config PPC64 config PPC64
bool "64-bit kernel" bool "64-bit kernel"
default n default n
select HAVE_PERF_COUNTERS
help help
This option selects whether a 32-bit or a 64-bit kernel This option selects whether a 32-bit or a 64-bit kernel
will be built. will be built.

View File

@ -236,6 +236,9 @@ extern u64 hw_perf_save_disable(void);
extern void hw_perf_restore(u64 ctrl); extern void hw_perf_restore(u64 ctrl);
extern int perf_counter_task_disable(void); extern int perf_counter_task_disable(void);
extern int perf_counter_task_enable(void); extern int perf_counter_task_enable(void);
extern int hw_perf_group_sched_in(struct perf_counter *group_leader,
struct perf_cpu_context *cpuctx,
struct perf_counter_context *ctx, int cpu);
#else #else
static inline void static inline void

View File

@ -41,12 +41,20 @@ static DEFINE_MUTEX(perf_resource_mutex);
extern __weak const struct hw_perf_counter_ops * extern __weak const struct hw_perf_counter_ops *
hw_perf_counter_init(struct perf_counter *counter) hw_perf_counter_init(struct perf_counter *counter)
{ {
return ERR_PTR(-EINVAL); return NULL;
} }
u64 __weak hw_perf_save_disable(void) { return 0; } u64 __weak hw_perf_save_disable(void) { return 0; }
void __weak hw_perf_restore(u64 ctrl) { barrier(); } void __weak hw_perf_restore(u64 ctrl) { barrier(); }
void __weak hw_perf_counter_setup(void) { barrier(); } void __weak hw_perf_counter_setup(void) { barrier(); }
int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
struct perf_cpu_context *cpuctx,
struct perf_counter_context *ctx, int cpu)
{
return 0;
}
void __weak perf_counter_print_debug(void) { }
static void static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx) list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
@ -341,6 +349,9 @@ group_sched_out(struct perf_counter *group_counter,
{ {
struct perf_counter *counter; struct perf_counter *counter;
if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
return;
counter_sched_out(group_counter, cpuctx, ctx); counter_sched_out(group_counter, cpuctx, ctx);
/* /*
@ -354,15 +365,18 @@ void __perf_counter_sched_out(struct perf_counter_context *ctx,
struct perf_cpu_context *cpuctx) struct perf_cpu_context *cpuctx)
{ {
struct perf_counter *counter; struct perf_counter *counter;
u64 flags;
if (likely(!ctx->nr_counters)) if (likely(!ctx->nr_counters))
return; return;
spin_lock(&ctx->lock); spin_lock(&ctx->lock);
flags = hw_perf_save_disable();
if (ctx->nr_active) { if (ctx->nr_active) {
list_for_each_entry(counter, &ctx->counter_list, list_entry) list_for_each_entry(counter, &ctx->counter_list, list_entry)
group_sched_out(counter, cpuctx, ctx); group_sched_out(counter, cpuctx, ctx);
} }
hw_perf_restore(flags);
spin_unlock(&ctx->lock); spin_unlock(&ctx->lock);
} }
@ -402,7 +416,14 @@ group_sched_in(struct perf_counter *group_counter,
int cpu) int cpu)
{ {
struct perf_counter *counter, *partial_group; struct perf_counter *counter, *partial_group;
int ret = 0; int ret;
if (group_counter->state == PERF_COUNTER_STATE_OFF)
return 0;
ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
if (ret)
return ret < 0 ? ret : 0;
if (counter_sched_in(group_counter, cpuctx, ctx, cpu)) if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
return -EAGAIN; return -EAGAIN;
@ -415,10 +436,9 @@ group_sched_in(struct perf_counter *group_counter,
partial_group = counter; partial_group = counter;
goto group_error; goto group_error;
} }
ret = -EAGAIN;
} }
return ret; return 0;
group_error: group_error:
/* /*
@ -440,11 +460,13 @@ __perf_counter_sched_in(struct perf_counter_context *ctx,
struct perf_cpu_context *cpuctx, int cpu) struct perf_cpu_context *cpuctx, int cpu)
{ {
struct perf_counter *counter; struct perf_counter *counter;
u64 flags;
if (likely(!ctx->nr_counters)) if (likely(!ctx->nr_counters))
return; return;
spin_lock(&ctx->lock); spin_lock(&ctx->lock);
flags = hw_perf_save_disable();
list_for_each_entry(counter, &ctx->counter_list, list_entry) { list_for_each_entry(counter, &ctx->counter_list, list_entry) {
/* /*
* Listen to the 'cpu' scheduling filter constraint * Listen to the 'cpu' scheduling filter constraint
@ -454,12 +476,13 @@ __perf_counter_sched_in(struct perf_counter_context *ctx,
continue; continue;
/* /*
* If we scheduled in a group atomically and * If we scheduled in a group atomically and exclusively,
* exclusively, break out: * or if this group can't go on, break out:
*/ */
if (group_sched_in(counter, cpuctx, ctx, cpu)) if (group_sched_in(counter, cpuctx, ctx, cpu))
break; break;
} }
hw_perf_restore(flags);
spin_unlock(&ctx->lock); spin_unlock(&ctx->lock);
} }
@ -928,18 +951,32 @@ static const struct file_operations perf_fops = {
static int cpu_clock_perf_counter_enable(struct perf_counter *counter) static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
{ {
int cpu = raw_smp_processor_id();
atomic64_set(&counter->hw.prev_count, cpu_clock(cpu));
return 0; return 0;
} }
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
int cpu = raw_smp_processor_id();
s64 prev;
u64 now;
now = cpu_clock(cpu);
prev = atomic64_read(&counter->hw.prev_count);
atomic64_set(&counter->hw.prev_count, now);
atomic64_add(now - prev, &counter->count);
}
static void cpu_clock_perf_counter_disable(struct perf_counter *counter) static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{ {
cpu_clock_perf_counter_update(counter);
} }
static void cpu_clock_perf_counter_read(struct perf_counter *counter) static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{ {
int cpu = raw_smp_processor_id(); cpu_clock_perf_counter_update(counter);
atomic64_set(&counter->count, cpu_clock(cpu));
} }
static const struct hw_perf_counter_ops perf_ops_cpu_clock = { static const struct hw_perf_counter_ops perf_ops_cpu_clock = {